Алгебраическая сумма сигма – Суммирование | Математика, которая мне нравится

Алгебраическая сумма — Howling Pixel

Алгебраическая сумма — это выражение, которое можно представить в виде суммы положительных и отрицательных чисел[1].

Когда пишут знак суммы (сигма, Σ) подразумевается именно алгебраическая сумма.

Алгебраической суммой множеств называют сумму Минковского этих множеств.

Алгебраическая сумма, при замене всех вычитаний сложениями, может быть представлена рациональными числами (положительными, отрицательными и равными нулю), а также числами, обозначенными буквами[1].

См. также

Примечания

  1. 1 2 А. Н. Барсуков. Алгебра 6-8 кл. // 1966
Барионное число

Барио́нное число́ (барио́нный заря́д) — сохраняющееся аддитивное квантовое число в физике элементарных частиц, определяющее количество барионов в системе. Оно определяется как:

B=Nq−Nq¯3,{\displaystyle B={\frac {N_{q}-N_{\overline {q}}}{3}},}

где

Nq {\displaystyle N_{q}\ } — количество кварков и
Nq¯{\displaystyle N_{\overline {q}}} — количество антикварков.

Деление на три присутствует, поскольку по законам сильного взаимодействия полный цветовой заряд частицы должен быть нулевым («белым»), см. конфайнмент. Этого можно добиться соединением кварка одного цвета с антикварком соответствующего антицвета, создав мезон с барионным числом 0, либо соединением трёх кварков трёх различных цветов в барион с барионным числом +1, либо соединением трёх антикварков (с тремя различными антицветами) в антибарион с барионным числом −1. Другая возможность — это экзотический пентакварк, состоящий из 4 кварков и 1 антикварка.

Итак, алгебраическая сумма всех кварков в системе (или разность числа кварков и числа антикварков) всегда кратна 3. Исторически барионное число было определено задолго до того, как установилась сегодняшняя кварковая модель. Теперь более точно говорить о сохранении кваркового числа.

Частицы, не содержащие кварков или антикварков, имеют барионное число, равное 0. Это такие частицы, как лептоны, фотон, W- и Z-бозоны. Как уже отмечено выше, нулевым барионным числом характеризуются все мезоны.

Барионное число сохраняется во всех трёх взаимодействиях Стандартной модели. В рамках Стандартной модели существует формальная возможность несохранения барионного числа при учёте так называемых хиральных аномалий (англ.)русск.. Но такие процессы никогда не наблюдались.

Сохранение барионного числа является на сегодняшний день чисто феноменологическим законом. Его выполнение, наблюдающееся во всех известных физических процессах, не вытекает из каких-либо более фундаментальных законов или симметрий (в отличие, например, от закона сохранения электрического заряда). Таким образом, причина сохранения барионного числа пока неизвестна.

Ранее барионное число часто называли барионным зарядом. Термин «барионное число» более правилен, поскольку не обнаружено каких-либо калибровочных полей, источником которых был бы барионный заряд (наподобие электромагнитного поля, источником которого является электрический заряд).

Теоретически в природе могут существовать взаимодействия, изменяющие барионное число на единицу (ΔB = ±1) или на двойку (ΔB = ±2). В первом случае становится возможным распад протона, во втором — нейтрон-антинейтронные осцилляции (самопроизвольное превращение нейтрона в антинейтрон и наоборот). Экспериментально эти процессы пока не наблюдались, несмотря на интенсивные поиски. Примером теорий, в которых не сохраняется барионное (и лептонное) число, являются теории Великого Объединения. Во многих вариантах Великого Объединения барионное и лептонное число не сохраняются порознь, однако сохраняется их разность B − L. Нарушение этих законов становится заметным при энергиях реакций на масштабе энергии Великого Объединения (> 1015 ГэВ). При малых энергиях эти процессы сильно (хотя и не абсолютно) подавлены чрезвычайно большим значением массы калибровочных бозонов, которые осуществляют взаимодействия, не сохраняющие барионное число. Таким образом, в теориях Великого Объединения сохранение барионного заряда является лишь эффективным правилом, хорошо выполняющимся при низких энергиях.

Несохранение барионного числа является одним из необходимых условий (см. Условия Сахарова) для возникновения наблюдаемой в нашей Вселенной асимметрии между барионами и антибарионами. Вещество Вселенной содержит в основном барионы, примесь антибарионов чрезвычайно мала. Это означает, что на какой-то из ранних стадий космологической эволюции произошёл процесс бариогенезиса с несохранением барионного числа.

Бесконечно малая и бесконечно большая

Бесконечно малая — числовая функция или последовательность, которая стремится к нулю.

Бесконечно большая — числовая функция или последовательность, которая стремится к бесконечности определённого знака.

В нестандартном анализе бесконечно малые и бесконечно большие определяются не как последовательности и не как переменные величины, а как особый вид чисел.

Внутреннее сопротивление

Вну́треннее сопротивле́ние двухполюсника — импеданс в эквивалентной схеме двухполюсника, состоящей из последовательно включённых генератора напряжения и импеданса (см. рисунок). Понятие применяется в теории цепей при замене реального источника идеальными элементами, то есть при переходе к эквивалентной схеме.

Второе начало термодинамики

Второе начало термодинамики (второй закон термодинамики) устанавливает существование энтропии как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры, то есть «второе начало представляет собой закон об энтропии» и её свойствах. В изолированной системе энтропия остаётся либо неизменной, либо возрастает (в неравновесных процессах), достигая максимума при установлении термодинамического равновесия (закон возрастания энтропии). Встречающиеся в литературе различные формулировки второго начала термодинамики являются частными следствиями закона возрастания энтропии.

Второе начало термодинамики позволяет построить рациональную температурную шкалу, не зависящую от произвола в выборе термометрического свойства термодинамического тела и устройства для измерения температуры (термометра)..

Вместе первое и второе начала составляют основу феноменологической термодинамики, которую можно рассматривать как развитую систему следствий этих двух начал. При этом из всех допускаемых первым началом процессов в термодинамической системе (то есть процессов, не противоречащих закону сохранения энергии) второе начало позволяет выделить фактически возможные процессы, не противоречащие законам термодинамики , установить направление протекания самопроизвольных процессов, найти предельное (наибольшее или наименьшее) значение энергии, которое может быть полезным образом использовано (получено или затрачено) в термодинамическом процессе с учётом ограничений, накладываемых законами термодинамики, а также сформулировать критерии равновесия в термодинамических системах.

Закон сохранения электрического заряда

Зако́н сохране́ния электри́ческого заря́да — закон физики, утверждающий, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется:

q1+q2+q3+……+qn=const.{\displaystyle q_{1}+q_{2}+q_{3}+……+q_{n}=const.}

Закон сохранения заряда выполняется абсолютно точно. На данный момент его происхождение объясняют следствием принципа калибровочной инвариантности. Требование релятивистской инвариантности приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме равно потоку заряда через его границу. В изначальной формулировке был бы возможен следующий процесс: заряд исчезает в одной точке пространства и мгновенно возникает в другой. Однако такой процесс был бы релятивистски неинвариантен: из-за относительности одновременности в некоторых системах отсчёта заряд появился бы в новом месте до того, как исчез в предыдущем, а в некоторых — заряд появился бы в новом месте спустя некоторое время после исчезновения в предыдущем. То есть был бы отрезок времени, в течение которого заряд не сохраняется. Требование локальности позволяет записать закон сохранения заряда в дифференциальной и интегральной форме.

Каскад с общим эмиттером

При включении биполярного транзистора по схеме с общим эмиттером (ОЭ) входной сигнал подаётся на базу относительно эмиттера, а выходной сигнал снимается с коллектора относительно эмиттера. При этом выходной сигнал инвертируется относительно входного (для гармонического сигнала с не очень высокой частотой фаза выходного сигнала сдвинута относительно входного на 180°, при высоких частотах фазовый сдвиг отличается от 180° из-за инерционности транзистора).

Данное включение транзистора позволяет получить наибольшее усиление по мощности, потому что усиливается и ток, и напряжение.

Крамер, Габриэль

Габриэ́ль Кра́мер (нем. Gabriel Cramer, 31 июля 1704, Женева, Швейцария—4 января 1752, Баньоль-сюр-Сез, Франция) — швейцарский математик, ученик и друг Иоганна Бернулли, один из создателей линейной алгебры.

Первое начало термодинамики

Пе́рвое нача́ло термодина́мики (первый закон термодинамики) — один из основных законов этой дисциплины, представляющий собой конкретизацию общефизического закона сохранения энергии для термодинамических систем, в которых необходимо учитывать термические, массообменные и химические процессы. В форме закона сохранения (уравнения баланса энергии) первое начало используют в термодинамике потока и в неравновесной термодинамике. В равновесной термодинамике под первым законом термодинамики обычно подразумевают одно из следствий закона сохранения энергии, из чего проистекает отсутствие единообразия формулировок первого начала, используемых в учебной и научной литературе (К. А. Путилов в своей монографии приводит шесть формулировок, которые он считает наиболее удачными).

Переменный ток

Переме́нный ток  — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

Хотя переменный ток часто переводят на английский как alternating current, эти термины не являются эквивалентными. Термин alternating current (AC) в узком смысле означает синусоидальный ток, в широком смысле — периодический знакопеременный ток (то есть периодический двунаправленный ток). Условное обозначение на электроприборах: ∼{\displaystyle \thicksim } или ≈{\displaystyle \thickapprox } (знак синусоиды), или латинскими буквами AC{\displaystyle AC}.

Перцептрон

Перцептро́н, или персептрон (англ. perceptron от лат. perceptio — восприятие; нем. Perzeptron) — математическая или компьютерная модель восприятия информации мозгом (кибернетическая модель мозга), предложенная Фрэнком Розенблаттом в 1957 году и впервые реализованная в виде электронной машины «Марк-1» в 1960 году. Перцептрон стал одной из первых моделей нейросетей, а «Марк-1» — первым в мире нейрокомпьютером.

Перцептрон состоит из трёх типов элементов, а именно: поступающие от датчиков сигналы передаются ассоциативным элементам, а затем реагирующим элементам. Таким образом, перцептроны позволяют создать набор «ассоциаций» между входными стимулами и необходимой реакцией на выходе. В биологическом плане это соответствует преобразованию, например, зрительной информации в физиологический ответ от двигательных нейронов. Согласно современной терминологии, перцептроны могут быть классифицированы как искусственные нейронные сети:

с одним скрытым слоем;

с пороговой передаточной функцией;

с прямым распространением сигнала.На фоне роста популярности нейронных сетей в 1969 году вышла книга Марвина Минского и Сеймура Паперта, которая показала принципиальные ограничения перцептронов. Это привело к смещению интереса исследователей искусственного интеллекта в противоположную от нейросетей область символьных вычислений. Кроме того, из-за сложности математического исследования перцептронов, а также отсутствия общепринятой терминологии, возникли различные неточности и заблуждения.

Впоследствии интерес к нейросетям, и в частности, работам Розенблатта, возобновился. Так, например, сейчас стремительно развивается биокомпьютинг, который в своей теоретической основе вычислений, в том числе, базируется на нейронных сетях, а перцептрон воспроизводят на основе бактериородопсин-содержащих плёнок.

Правила Кирхгофа

Пра́вила Кирхго́фа (часто в технической литературе ошибочно называются Зако́нами Кирхго́фа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи.

Решения систем линейных уравнений, составленных на основе правил Кирхгофа, позволяют найти все токи и напряжения в электрических цепях постоянного, переменного и квазистационарного тока.

Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и практических расчётов сложных электрических цепей.

Применение правил Кирхгофа к линейной электрической цепи позволяет получить систему линейных уравнений относительно токов или напряжений и, соответственно, при решении этой системы найти значения токов на всех ветвях цепи и все межузловые напряжения.

Сформулированы Густавом Кирхгофом в 1845 году.

Название «Правила» корректнее потому, что эти правила не являются фундаментальными законами природы, а вытекают из фундаментальных законов сохранения заряда и безвихревости электростатического поля (третье уравнение Максвелла при неизменном магнитном поле).

Эти правила не следует путать с ещё двумя законами Кирхгофа в химии и физике.

Радиационный баланс

Радиационный баланс земной поверхности — алгебраическая сумма потоков радиации в определенном объёме или на определенной поверхности, то есть разница между поглощенной радиацией и эффективным излучением этой поверхности. Годовые его величины в целом для Земли положительные. Один из климатообразующих факторов, важнейшая характеристика микроклимата посевов и условий их фотосинтеза.

Статика

Ста́тика (от греч. στατός, «неподвижный») — раздел механики, в котором изучаются условия равновесия механических систем под действием приложенных к ним сил и моментов.

Степень окисления

Сте́пень окисле́ния (окислительное число) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций. Она указывает на состояние окисления отдельного атома молекулы и представляет собой лишь удобный метод учёта переноса электронов: она не является истинным зарядом атома в молекуле (см. #Условность).

Представления о степени окисления элементов положены в основу и используются при классификации химических веществ, описании их свойств, составлении формул соединений и их международных названий (номенклатуры). Но особенно широко оно применяется при изучении окислительно-восстановительных реакций.

Понятие степень окисления часто используют в неорганической химии вместо понятия валентность.

Сумма (математика)

Су́мма (лат. summa — итог, общее количество) в математике это результат операции сложения числовых величин (чисел, функций, векторов, матриц и т. д.), либо результат последовательного выполнения нескольких операций сложения (суммирования). Общими для всех случаев являются свойства коммутативности, ассоциативности, а также дистрибутивности по отношению к умножению (если для рассматриваемых величин умножение определено), то есть выполнение соотношений:

a+b=b+a{\displaystyle a+b=b+a}
a+(b+c)=(a+b)+c{\displaystyle a+(b+c)=(a+b)+c}
(a+b)⋅c=a⋅c+b⋅c{\displaystyle (a+b)\cdot c=a\cdot c+b\cdot c}
c⋅(a+b)=c⋅a+c⋅b{\displaystyle c\cdot (a+b)=c\cdot a+c\cdot b}

В теории множеств суммой (или объединением) множеств называется множество, элементами которого являются все элементы слагаемых множеств, взятые без повторений.

Операция сложение (нахождение суммы) может быть определена для более сложных алгебраических структур. Сумма групп, сумма линейных пространств, сумма идеалов, и другие примеры. В теории категорий определяется понятие суммы объектов.

Числовая последовательность

Числовая последовательность (ранее в русскоязычной математической литературе встречался термин вариа́нта, принадлежащий Ш. Мерэ) — это последовательность элементов числового пространства.

Числовые последовательности являются одним из основных объектов рассмотрения в математическом анализе.

Электрический заряд

Электри́ческий заря́д (коли́чество электри́чества) — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии.

Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения заряда в Международной системе единиц (СИ) — кулон — электрический заряд, проходящий через поперечное сечение проводника с током 1 А за время 1 с.

Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9⋅109 H, то есть с силой, с которой гравитация Земли притягивает предмет массой порядка 1 миллиона тонн.

Электронная схема

Электронная схема — изделие, сочетание отдельных электронных компонентов, таких как резисторы, конденсаторы, индуктивности, диоды, транзисторы и интегральные микросхемы, соединённых между собой, для выполнения каких либо задач или схема (рисунок) с условными знаками.

Различные комбинации компонентов позволяют выполнять множество как простых, так и сложных операций, таких как усиление сигналов, обработка и передача информации и так далее

Электронные схемы строятся на базе дискретных компонентов, а также интегральных схем, которые могут объединять множество различных компонентов на одном полупроводниковом кристалле.

Соединения между элементами могут осуществляться посредством проводов, однако в настоящее время чаще применяются печатные платы, когда на изолирующей основе различными методами (например, фотолитографией) создаются проводящие дорожки и контактные площадки, к которым припаиваются компоненты.

Для разработки и тестирования электронных схем применяются макетные платы, позволяющие при необходимости быстро вносить изменения в электронную схему.

Раздел электроники, изучающий проектирование и создание электронных схем, называется схемотехника.

Ядерная реакция

Я́дерная реа́кция — это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, который может сопровождаться изменением состава и строения ядра. Последствием взаимодействия может стать деление ядра, испускание элементарных частиц или фотонов. Кинетическая энергия вновь образованных частиц может быть гораздо выше первоначальной, при этом говорят о выделении энергии ядерной реакцией.

Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота. Она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.

По механизму взаимодействия ядерные реакции делятся на два вида:

реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).

прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при больших энергиях бомбардирующих частиц.Если после столкновения сохраняются исходные ядра и частицы и не рождаются новые, то реакция является упругим рассеянием в поле ядерных сил, сопровождается только перераспределением кинетической энергии и импульса частицы и ядра-мишени и называется потенциальным рассеянием.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.

howlingpixel.com

Сумма

Сумма ( лат. summa ) — Результат операции добавления.

Например, в выражении

4 + 5 = 9

9 является суммой, а числа 4 и 5 называются слагаемыми.

Сумма обозначается знаком + ( плюс).

Для обозначения суммы членов последовательности используется символ , Например

.

Если последовательность бесконечна, то такая сумма называется числовым рядом и обозначается

.

В алгебраическое выражение могут входить члены, знаки которых заранее не определены. То есть для определенных членов выражения выполняется операция сложения, для других — вычитание. Поэтому выражение общего вида, в который входят операции сложения и вычитания называют алгебраической суммой. Например,


1. Определенная сумма

Часто для сокращения сумму с n слагаемых a k,a k ​​+1,…, a N обозначают большой греческой буквой Σ (сигма):

Это обозначение называется определенной (конечно) суммой a i по i от k до N.
Для удобства вместо иногда пишут , Где — Некоторое отношение для , Таким образом это конечная сумма всех , Где
Свойства определенной суммы:


2. Примеры

  1. Сумма арифметической прогрессии :
  2. Сумма геометрической прогрессии :

Почему это так

Почему это так

Доказательство:

Почему это так, потому что так

Доказательство:

    • При получаем , А это последовательность уравнений следующего вида:

3. Неопределенная сумма

Неопределенной суммой a i по i называется такая функция f (i), которая обозначается , Что .

4. Формула Ньютона-Лейбница

Если найдена неопределенная сумма , Тогда .

5. Этимология

Латинское слово summa переводится как «главный пункт», «сущность», «итог». С XV века слово начинает употребляться в современном смысле, появляется глагол «суммировать» ( 1489 год).

Это слово проникло во многие современные языки: в украинский, английский, французский и другие.

Специальный символ для обозначения суммы (S) первым ввел Эйлер в 1755 году. Как вариант, использовалась греческая буква Сигма Σ. Позже ввиду связи понятий суммирования и интегрирования, S также использовали для обозначения операции интегрирования.


См.. также

nado.znate.ru

Помогите решить / разобраться (М)

Добрый день.
Стараюсь разобраться с вариантами записи алгебраической суммы с помощью греческой буквы сигма .
Наиболее полное описание смог найти только в Википедии.
Хотел бы уточнить несколько моментов.

1) Во-первых, почему в приведенных ниже записях как тождественные в качестве индексов переменных используются как переменная индекса, так и ее верхняя граница:
(1) и
(2)
Насколько это правильно?

2) Во-вторых, почему запись
(3)
означает сумму элементов множества ?

Насколько я понимаю, согласно Википедии выражение после буквы сигма обозначает каждый член в серии суммирования. Например, выражение (2) означает сумму всех членов заданного ряда, у каждого из которых отличаются значения переменной индекса .
Но ведь в записи (3) — это тоже переменная, означающая определенную функцию, зависящую от переменной . Тогда логично предположить, что выражение (3) означает сумму всех членов заданного ряда числовых выражений, у каждого из которых отличаются значения переменной , т.е., что
.
Однако, согласно Википедии:
.
Но ведь сумму элементов множества можно записать и следующим образом:
,
что, с моей точки зрения, было бы логичнее.

Очень прошу прояснить данные вопросы, т.к. по всей видимости мое личное мнение ошибочно. Возможно есть какая-нибудь литература, в которой не слишком сложно изложены правила использования алгебраической суммы?

dxdy.ru

Интеграл 2 x 3 x dx – ∫ Найти интеграл от y = f(x) = dx/(3*x^2) (d х делить на (3 умножить на х в квадрате))

∫ Найти интеграл от y = f(x) = x/(3+x^2) dx (х делить на (3 плюс х в квадрате))

Решение

  1          
  /          
 |           
 |    x      
 |  ------ dx
 |       2   
 |  3 + x    
 |           
/            
0            

$$\int_{0}^{1} \frac{x}{x^{2} + 3}\, dx$$

Подробное решение

[LaTeX]

Дан интеграл:

  /         
 |          
 |   x      
 | ------ dx
 |      2   
 | 3 + x    
 |          
/           

Перепишем подинтегральную функцию

         /    2*x     \                   
         |------------|                   
         | 2          |                   
  x      \x  + 0*x + 3/          0        
------ = -------------- + ----------------
     2         2                     2    
3 + x                     /   ___   \     
                          |-\/ 3    |     
                          |-------*x|  + 1
                          \   3     /     

или

  /           
 |            
 |   x        
 | ------ dx  
 |      2    =
 | 3 + x      
 |            
/             
  
  /               
 |                
 |     2*x        
 | ------------ dx
 |  2             
 | x  + 0*x + 3   
 |                
/                 
------------------
        2         

В интеграле

  /               
 |                
 |     2*x        
 | ------------ dx
 |  2             
 | x  + 0*x + 3   
 |                
/                 
------------------
        2         

сделаем замену

тогда

интеграл =

  /                     
 |                      
 |   1                  
 | ----- du             
 | 3 + u                
 |                      
/             log(3 + u)
----------- = ----------
     2            2     

делаем обратную замену

  /                             
 |                              
 |     2*x                      
 | ------------ dx              
 |  2                           
 | x  + 0*x + 3                 
 |                      /     2\
/                    log\3 + x /
------------------ = -----------
        2                 2     

В интеграле

сделаем замену

         ___ 
    -x*\/ 3  
v = ---------
        3    

тогда

интеграл =

делаем обратную замену

Решением будет:

       /     2\
    log\3 + x /
C + -----------
         2     
  1                            
  /                            
 |                             
 |    x         log(4)   log(3)
 |  ------ dx = ------ - ------
 |       2        2        2   
 |  3 + x                      
 |                             
/                              
0                              

$${{\log 4}\over{2}}-{{\log 3}\over{2}}$$

Численный ответ

[LaTeX]

Ответ (Неопределённый)

[LaTeX]

  /                           
 |                    /     2\
 |   x             log\3 + x /
 | ------ dx = C + -----------
 |      2               2     
 | 3 + x                      
 |                            
/                             

$${{\log \left(x^2+3\right)}\over{2}}$$

www.kontrolnaya-rabota.ru

∫ Найти интеграл от y = f(x) = (x-2)^3 dx ((х минус 2) в кубе)

Решение

  1            
  /            
 |             
 |         3   
 |  (x - 2)  dx
 |             
/              
0              

$$\int_{0}^{1} \left(x — 2\right)^{3}\, dx$$

Подробное решение

[LaTeX]

  1. Есть несколько способов вычислить этот интеграл.

    Метод #1

    1. пусть .

      Тогда пусть и подставим :

      1. Интеграл есть :

      Если сейчас заменить ещё в:

    Метод #2

    1. Перепишите подынтегральное выражение:

    2. Интегрируем почленно:

      1. Интеграл есть :

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Интеграл есть :

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Интеграл есть :

        Таким образом, результат будет:

      1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

      Результат есть:

  2. Теперь упростить:

  3. Добавляем постоянную интегрирования:


Ответ:

  1                    
  /                    
 |                     
 |         3           
 |  (x - 2)  dx = -15/4
 |                     
/                      
0                      

$$-{{15}\over{4}}$$

Численный ответ

[LaTeX]

Ответ (Неопределённый)

[LaTeX]

  /                          
 |                          4
 |        3          (x - 2) 
 | (x - 2)  dx = C + --------
 |                      4    
/                            

$${{x^4}\over{4}}-2\,x^3+6\,x^2-8\,x$$

www.kontrolnaya-rabota.ru

∫ Найти интеграл от y = f(x) = e^(2*x+3) dx (e в степени (2 умножить на х плюс 3))

Решение

  1            
  /            
 |             
 |   2*x + 3   
 |  E        dx
 |             
/              
0              

$$\int_{0}^{1} e^{2 x + 3}\, dx$$

Подробное решение

[LaTeX]

  1. Есть несколько способов вычислить этот интеграл.

    Метод #1

    1. пусть .

      Тогда пусть и подставим :

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Интеграл от экспоненты есть он же сам.

        Таким образом, результат будет:

      Если сейчас заменить ещё в:

    Метод #2

    1. Перепишите подынтегральное выражение:

    2. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

      1. пусть .

        Тогда пусть и подставим :

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Интеграл от экспоненты есть он же сам.

          Таким образом, результат будет:

        Если сейчас заменить ещё в:

      Таким образом, результат будет:

  2. Теперь упростить:

  3. Добавляем постоянную интегрирования:


Ответ:

  1                      
  /                      
 |                 5    3
 |   2*x + 3      e    e 
 |  E        dx = -- - --
 |                2    2 
/                        
0                        

$${{E^5}\over{2\,\log E}}-{{E^3}\over{2\,\log E}}$$

Численный ответ

[LaTeX]

Ответ (Неопределённый)

[LaTeX]

  /                          
 |                    2*x + 3
 |  2*x + 3          e       
 | E        dx = C + --------
 |                      2    
/                            

$${{E^{2\,x+3}}\over{2\,\log E}}$$

www.kontrolnaya-rabota.ru

∫ Найти интеграл от y = f(x) = (2*x+5)^3 dx ((2 умножить на х плюс 5) в кубе)

Решение

  1              
  /              
 |               
 |           3   
 |  (2*x + 5)  dx
 |               
/                
0                

$$\int_{0}^{1} \left(2 x + 5\right)^{3}\, dx$$

Подробное решение

[LaTeX]

  1. Есть несколько способов вычислить этот интеграл.

    Метод #1

    1. пусть .

      Тогда пусть и подставим :

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Интеграл есть :

        Таким образом, результат будет:

      Если сейчас заменить ещё в:

    Метод #2

    1. Перепишите подынтегральное выражение:

    2. Интегрируем почленно:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Интеграл есть :

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Интеграл есть :

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Интеграл есть :

        Таким образом, результат будет:

      1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

      Результат есть:

  2. Теперь упростить:

  3. Добавляем постоянную интегрирования:


Ответ:

  1                    
  /                    
 |                     
 |           3         
 |  (2*x + 5)  dx = 222
 |                     
/                      
0                      

$$222$$

Численный ответ

[LaTeX]

Ответ (Неопределённый)

[LaTeX]

  /                              
 |                              4
 |          3          (2*x + 5) 
 | (2*x + 5)  dx = C + ----------
 |                         8     
/                                

$$2\,x^4+20\,x^3+75\,x^2+125\,x$$

www.kontrolnaya-rabota.ru

Неопределенный интеграл. Примеры.

Прежде, чем решать примеры на нахождение неопределенных интегралов, вспомним основные свойства  и основные формулы неопределенных интегралов и запишем все это на отдельном листе «Интегралы«.

Интегралы.

Основные свойства.

I. (∫f (x) dx)’=f (x).

II. d∫f (x) dx=f (x) dx.

III. ∫dF (x)=F (x)+C  или   ∫F'(x) dx=F (x)+C.

IV. ∫kf (x) dx=k·∫f (x) dx, где k — постоянная величина, не равная нулю.

V. ∫(f (x)±g (x)) dx=∫f (x) dx±∫g (x) dx.

VI. Если F (x) есть первообразная для f (x), а k и b — постоянные величины,

причем, k≠0, то (1/k)·F (kx+b) есть первообразная для f (kx+b).

Справедливо равенство:

Даже простейшие примеры на нахождение неопределенных интегралов предполагают хорошее знание таблицы интегралов. С этого и начнем, причем, перепишем все формулы таблицы интегралов для функции u, которая зависит от х. Итак, мы будем считать, что u — не простая переменная, а функция от х, т.е.  u=φ(x), тогда нижеприведенная таблица интегралов окажется справедливой в любом случае: и если  переменная интегрирования является независимой переменной, и если переменная интегрирования есть функция от независимой переменной.

Таблица интегралов.

 3) ∫du=u+C.

 6) ∫cosudu=sinu+C.

 7) ∫sinudu=-cosu+C.

Примеры. 

Найти следующие интегралы и сделать проверку.

1) ∫(2x – 3) dx. Используем свойства V и IV, формулы 1). и 3).

(Наш лист Интегралы)

∫(2x – 3) dx = 2∫xdx — 3∫dx = 2·x²/2  – 3x + C = х2 – 3х + С.

Проверка.   F'(x) = (х2 – 3х + С)’ = 2x – 3 = f (x).

2). ∫(2x – 3)2dx.  Преобразуем подынтегральную функцию по формуле ФСУ (формулы сокращенного умножения): (a – b)2 = a2 – 2ab + b2, а затем используем те же свойства и формулы, что и в примере 1).

∫(2x – 3)2dx =∫( 4x2 – 12x + 9) dx = 4∫x2dx — 12∫xdx + 9∫dx =

= 4·x³/3 — 12· x²/2 + 9x + C = ( 4/3) x3 – 6x2 + 9x + C.

Проверка.   F'(x) = ((4/3) x3 – 6x2 + 9x + C)’ =(4/3)  · 3x2 — 6·2x + 9 = 4x2 – 12x + 9 = (2x – 3)2 = f (x).

Решим пример 2) вторым способом — подведения под знак дифференциала.

Итак, требуется найти  ∫(2x – 3)2dx.

Будем использовать формулу 1). Вместо u у нас (2х – 3) и, по формуле 1), переменная интегрирования должна быть такой же, как и основание степени, т. е (2х – 3). Хорошо,  вместо dx запишем d(2x – 3). И что изменилось? d (2x – 3) = 2dx, т.е. подынтегральное выражение стало больше в 2 раза. Разделим его на 2. Для этого перед значком интеграла поставим множитель ½.

Значит,∫(2x – 3)2dx = (½)∫( 2x – 3)2 d (2x – 3).     Мысленно представляйте себе u2 вместо

(2х – 3)2  и du вместо d(2x – 3). Увидели ∫u2du ?  И что получится? Верно:  u³/3+ C.

«Долго сказка сказывается…», а решаются такие примеры быстро:

∫(2x – 3)2dx =  (½)∫(2x – 3)2 d (2x – 3) =(½) ·(2x-3)³/3  + С =(1/6) · (2х – 3)3 + С.

Проверка.   (F (x)+С)′ = ( 1/6· (2х – 3)3 + С)’ =  (1/6)· 3 (2x – 3)2 · 2 = (2x – 3)2 = f (x).

Сравните эти два способа решения примера 2. Что, не впечатлил второй способ? Тогда пример 3).

3) ∫(2x – 3)7dx.   Желаете возводить (2х – 3) в седьмую степень? А-а, то-то же!

Решаем способом подведения под знак дифференциала, т.е. вторым способом так же, как предыдущий пример.

∫(2x – 3)7dx =  (½)∫(2x – 3)7d (2x – 3) =  (½)· (2x – 3)8 /8 + C =(1/16) (2x – 3)8 + C.

Проверка. F'(x) = ((1/16)(2x – 3)8 + C)’ =(1/16) ·8 (2x – 3)7·2 = (2x – 3)7 = f (x).

 

Запись имеет метки: примеры неопределенных интегралов

www.mathematics-repetition.com

Интеграл sin(3)^(2)*x (dx)

Дано

$$\int_{0}^{1} x \sin^{2}{\left (3 \right )}, dx$$

Подробное решение

  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

    \int x \sin^{2}{\left (3 \right )}, dx = \sin^{2}{\left (3 \right )} \int x, dx

    1. Интеграл
      x^{n}
      есть
      \frac{x^{n + 1}}{n + 1}
      :

      \int x, dx = \frac{x^{2}}{2}
      $$

    Таким образом, результат будет: $$
    \frac{x^{2}}{2} \sin^{2}{\left (3 \right )}
    $$

  2. Добавляем постоянную интегрирования:

    $$
    \frac{x^{2}}{2} \sin^{2}{\left (3 \right )}+ mathrm{constant}


Ответ:

\frac{x^{2}}{2} \sin^{2}{\left (3 \right )}+ mathrm{constant}

Ответ

1
/
| 2
| 2 sin (3)
| sin (3)*x dx = ——-
| 2
/
0

$${{\sin ^23}over{2}}$$

Численный ответ

Ответ (Неопределённый)

/
| 2 2
| 2 x *sin (3)
| sin (3)*x dx = C + ———-
| 2
/

$${{\sin ^23,x^2}over{2}}$$

Загрузка… 23*1/x-3-x^3-4/3-x если x=-3/2 (упростите выражение) Производная cos(3^x)+cos(3*x)+cos(x^3)+cos(x)^(3) >>

uchimatchast.ru

Третья производная – Вторая и третья производные функции

24. Производные высших порядков

Билет 24

 Производные высших порядков явно заданной функции

Производная у’=ƒ'(х) функции у=ƒ(х) есть также функция от х и называется производной первого порядка.

Если функция ƒ'(х) дифференцируема, то ее производная называется производной второго порядка и обозначается у»

Итак, у»=(у’)’.

Производная от производной второго порядка, если она существует, называется производной третьего порядка и обозначается у'» (или ƒ'»(х)). Итак, у'»=(y»)’

Производной n-го порядка (или n-й производной) называется производная от производной  (n-1) порядка:

y(n)=(y(n-1)) .

Производные порядка выше первого называются производными высших порядков.

Начиная с производной четвертого порядка, производные обозначают римскими цифрами или числами в скобках (уν или у(5)— производная пятого порядка).

<< Пример 23.1

Найти производную 13-го порядка функции у=sinx.

Решение:

ФОРМУЛА ТЕЙЛОРА

В определении функции у=ƒ(х) не говорится о том, при помощи каких средств находятся значения у по значениям х. В тех случаях, когда функция является формулой вида у=х3/5-5х+7, значения функции найти легко с помощью четырех арифметических действий. Но как найти значения, например, функций у=sinx, у=ln(1+х) при любых (допустимых) значениях аргумента?

Для того, чтобы вычислить значения данной функции у=ƒ(х), ее заменяют многочленом Рn(х) степени n, значения которого всегда и легко вычисляемы. Обоснование возможности представлять функцию многочленом дает формула Тейлора.

26.1. Формула Тейлора для многочлена

Пусть функция ƒ(х) есть многочлен Рn(х) степени n:

ƒ(х)=Рn(х)=а01х+а2х2+…+аnхn.

Преобразуем этот многочлен также в многочлен степени n относительно разности х-х0, где х0 — произвольное число, т. е. представим Рn(х) в виде

Рn(х)=А0+A1(x-х0)+А2(х-х0)2+…+Аn(х-х0)n        (26.1)

Для нахождения коэффициентов А0, А1 ,…, Аn продифференцируем n раз равенство (26.1):

Р’n(х)=А1+2А2(х-x0)+3A3(x-x0)2+…+nAn(x-x0)n-1,

Рn»(х)=2А2+2•3А3(х-х0)+…+n(n-1)Аn(х-х0)n-2,        

Рn«‘(х)=2•3А3+2•3•4А4(х-х0)+…+n(n-1)(n-2)Аn(х-х0)n-3,

— — — — — — — — — — — — — — — — — —

Рn(n)(х)=n(n-1)( n-2)…2•1Аn

Подставляя х=х0 в полученные равенства и равенство (26.1), имеем:

Подставляя найденные значения A0,A1,…,An в равенство (26.1), получим разложение многочлена n-й степени Рn(х) по степеням (х-х0):

Формула (26.2) называется формулой Тейлора для многочлена Рn(х) степени n.

<< Пример 26.1

 Разложить многочлен Р(х)=-4х3+3х2-2х+1 по степеням х+1.

Решение: Здесь х0=-1, Р'(х)=-12х2+6х-2, Р»(х)=-24х+6, Р'»(х)=-24. Поэтому Р(-1)=10, Р'(-1)=-20, Р»(-1)=30, Р'»(-1)=-24. Следовательно,

т. е.  -4х3+3х2-2х+1=10-20(х+1)+15(х+1)2-4(х+1)3.

Ряд Тейлора. Разложение функции в ряд Тейлора.

Оказывается, большинство практически встречающихся математических функций могут быть с любой точностью представлены в окрестностях некоторой точки в виде степенных рядов, содержащих степени переменной в порядке возрастания. Например, в окрестности точки х=1:

При использовании рядов, называемых рядами Тейлора, смешанные функции, содержащие, скажем, алгебраические, тригонометрические и экспоненциальные функции, могут быть выражены в виде чисто алгебраических функций. С помощью рядов зачастую можно быстро осуществить дифференцирование и интегрирование.

Ряд Тейлора в окрестности точки a имеет виды:

1), где f(x) — функция, имеющая при х=а производные всех порядков. Rn — остаточный член в ряде Тейлора определяется выражением 

2)

k-тый коэффициент (при хk) ряда определяется формулой

3) Частным случаем ряда Тейлора является ряд Маклорена (=Макларена) (разложение происходит вокруг точки а=0)

при a=0 

члены ряда определяются по формуле

Условия применения рядов Тейлора.

1. Для того, чтобы функция f(x) могла быть разложена в ряд Тейлора на интервале (-R;R) необходимо и достаточно, чтобы остаточный член в формуле Тейлора (Маклорена (=Макларена)) для данной функции стремился к нулю при k→∞ на указанном интервале (-R;R).

2. Необходимо чтобы существовали производные для данной функции в точке, в окрестности которой мы собираемся строить ряд Тейлора.

Свойства рядов Тейлора.

  1. Если f есть аналитическая функция, то ее ряд Тейлора в любой точке а области определения f сходится к f в некоторой окрестности а.

  2. Существуют бесконечно дифференцируемые функции, ряд Тейлора которых сходится, но при этом отличается от функции в любой окрестности а. Например:

Ряды Тейлора применяются при аппроксимации ( приближение — научный метод, состоящий в замене одних объектов другими, в том или ином смысле близкими к исходным, но более простыми) функции многочленами. В частности, линеаризация ((от  linearis — линейный), один из методов приближённого представления замкнутых нелинейных систем, при котором исследование нелинейной системы заменяется анализом линейной системы, в некотором смысле эквивалентной исходной.) уравнений происходит путём разложения в ряд Тейлора и отсечения всех членов выше первого порядка.

Таким образом, практически любую функцию можно представить в виде полинома с заданной точностью.

studfiles.net

Производные высших порядков для студентов

Аналогично, если производная существует и дифференцируема, то можно найти третью производную рассматриваемой функции:

   

Таким образом, понятие производной -го порядка вводится индуктивно путем последовательного вычисления производных, начиная с производной первого порядка. Переход к производной следующего, более высокого порядка производится с помощью рекуррентной формулы:

   

Замечание. Порядок производной, чтобы не путать с показателем степени, пишут в круглых скобках либо записывают римскими цифрами. Например, производная четвертого порядка

   

При нахождении производных высшего порядка используются следующие соотношения:

   

   

Примеры вычисления производных высших порядков

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

третья производная — Смысл третьей производной? — 22 ответа



В разделе Наука, Техника, Языки на вопрос Смысл третьей производной? заданный автором BUMER лучший ответ это Позволяет найти угол наклона на графике второй производной или точки перегиба на графике первой…
Кроме того, есть понятие гладкости функции. Функция называется гладкой, если у нее существует производная любого порядка…
В противном случае говорят, что она гладкая только до производной такого-то порядка…

Ответ от 22 ответа[гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Смысл третьей производной?

Ответ от Двутавровый[гуру]
Радиус кривизны смещения точки перегиба…

Ответ от Добросердечный[гуру]
Вторая производная — кривизна графика.
Третья производная — скорость изменения кривизны.

Ответ от ? ?[гуру]
Полностью согласен со всем выше сказанным, но хочу заметить что кроме геометрического смысла производной существует ещё и физический смысл а понять необходимость производных высщего порядка проще всего поняв физическую суть…
К примеру для уравнения движения производная пути по времени — это скорость
вторая производная — ускорение, но не всякое движение может быть равноускоренным
характеристикой изменения ускорения будет третья производная,
но и скорость изменения ускорения может быть не равномерной :)) и т.д.
Кроме того оперируя с производными нельзя мыслить «плоско», очень часто их используют для пространственных характеристик моделей.
Мне очень нравятся задачи с применением производной где требуется оптимизировать процесс или маршрут, или снизить себестоимость…
Простенькая задачка на эту тему для размышления…
Определить оптимальные размеры цилиндрической консервной банки с крышкой для обьёма V=1литр выполненной из жести толщиной S=0.2 мм из условия минимального веса металла 🙂

Ответ от хромосомы[гуру]
Поддерживаю ответ Григория Милонова, а ещё производные высших порядков нужны для разложения функций в ряды — Тейлора, Маклорена. В некоторых методах приближенного решения систем нелинейных уравнений без них тоже никак


Ответ от 2 ответа[гуру]

Привет! Вот еще темы с нужными ответами:

Производная функции на Википедии
Посмотрите статью на википедии про Производная функции

 

Ответить на вопрос:

22oa.ru

Производная высших порядков

В этой статье познакомимся с понятием производной высшего порядка от функции одной переменной. Начнем с определения и рассмотрим несколько примеров. Будем исходить из того, что Вы уже не имеете проблем с вычислением первой производной.

Итак, пусть дана некоторая функция , и пусть она имеет конечную производную первого порядка в интервале , то есть также является функцией на данном интервале. Если эта функция дифференцируема, то можно найти вторую производную исходной функции . Обозначается следующим образом:

   

То есть для нахождения второй производной достаточно продифференцировать первую производную.

Производные более высокого порядка (в случае их существования) функции задаются так:

,     ,     …,     .

Таким образом, для вычисления производной -го порядка от какой-то функции необходимо продифференцировать последовательно раз. Переход к производной более высокого порядка осуществляем по формуле:

Покажем теперь на примерах процесс нахождения производных высших порядков.

Пример 1. Найти вторую производную функции .

Решение

Шаг первый. Находим :

Шаг второй. Находим искомую , применив представленную выше формулу:

Ответ:  

[свернуть]

Пример 2. Найти третью производную функции .

Решение

Находим последовательно производные, не забывая, что имеем дело со сложной функцией (косинус зависит не просто от , а от выражения ).

   

Ответ:  

[свернуть]

Пример 3. Найти с первой по третью производные от функции .

Решение

При нахождении второй производной избавимся от дроби.

   

И работаем теперь с производной произведения.

   

[свернуть]

Пример 4. Найти десятую производную функции .

Решение

Чтобы дать ответ, необязательно находить последовательно с первой по десятую производные. Достаточно открыть таблицу производных и найти там производную от ,

.

Отсюда можем сделать следующий вывод:

.

Ответ:  

[свернуть]

Пример 5. Найти третью производную функции

Решение

Находим последовательное три производные. Не забываем, что перед нами дробь.

   

   

   

   

   

Ответ:  

[свернуть]

Понятно, что сложности с этой темой могут возникнуть только в том случае, если у Вас западает техника нахождения производной. Вопрос нахождения производных высшего порядка от неявно и параметрически заданных функций читайте в следующих статьях:

На этом всё, удачи в освоении матана! 🙂


higher-math.ru

1. Производные высших порядков Понятие производных высших порядков

Пусть функция дифференцируема в некотором интервале. Тогда её производная , вообще говоря, зависит отх , то есть является функцией от х. Следовательно, по отношению к ней снова можно ставить вопрос о существовании производной.

Определение. Производная от первой производной называется производной второго порядка или второй производной и обозначается символом или, то есть

.

Пример 1. Найти вторую производную от функции .

Решение. Найдем первую производную функции:

.

Находим вторую производную как производную первой производной:

.

Определение. Производная от второй производной называется производной третьего порядка или третьей производной и обозначается символом или.

Определение. Производной n-ого порядка функции называется первая производная от производной (n-1)-го порядка данной функции и обозначается символом или:

.

Определение. Производные порядка выше первого называются высшими производными.

Пример 2. Найти производную четвертого порядка функции .

Решение. Находим последовательно первую, вторую, третью и четвертую производные:

, ,,.

Пример 3.Найти производную n-ого порядка для функции (kconst).

Решение. Имеем:

, ,,.

Пример 4. Найти производную n-ого порядка для функции .

Решение. Имеем:

,

,

,

,

.

Замечание. Аналогично можно получить формулу n-ой производной функции :

.

Пример 5. Найти производную n-ого порядка для степенной функции , гдеи— любое вещественное число.

Решение. Дифференцируя последовательно, получим:

, ,,

.

В частном случае, когда , гдеm – натуральное число, получим:

, при.

Замечание. При строгом выводе формулы для производной n-ого порядка следует применять метод математической индукции.

Вторая производная параметрически заданной функции

Если функция задана параметрически уравнениями , то для нахождения производной второго порядка нужно продифференцировать выражение для её первой производной, как сложной функции независимой переменной.

Так как , то

,

и с учетом того, что

,

получим

, то есть

.

Аналогично можно найти третью производную

.

Пример 7. Найти вторую производную параметрически заданной функции ,.

Решение.,

.

Формула Лейбница

Для нахождения производной n-ого порядка от произведения двух функций большое практическое значение имеет формула Лейбница.

Пусть u и v — некоторые функции от переменной х, имеющие производные любого порядка и y=uv. Выразим n-ую производную через производные функцийu и v.

Имеем последовательно

,

,

.

Легко подметить аналогию между выражениями для второй и третьей производных и разложением бинома Ньютона соответственно во второй и третьей степенях, но вместо показателей степени стоят числа, определяющие порядок производной, а сами функции можно рассматривать как «производные нулевого порядка». Учитывая это, получим формулу Лейбница:

. (2)

Эту формулу можно доказать методом математической индукции.

Пример. Найти пятую производную функции .

Решение. Положим и. Найдем,,,,;. Подставляя эти выражения в формулу Лейбница при, получим

.

studfiles.net

Производные высших порядков, формулы и примеры решения задач

Задание. Найти $y^{(4)}(x)$, если $y(x)=e^{4 x} \sin 3 x$

Решение. Так как заданная функция представляет собой произведение двух функций $u(x)=e^{4 x}$, $v(x)=\sin 3 x$, то для нахождения производной четвертого порядка целесообразно будет применить формулу Лейбница:

$y^{(4)}(x)=\left(e^{4 x}\right)^{(4)} \cdot \sin 3 x+C_{4}^{1}\left(e^{4 x}\right)^{(3)} \cdot(\sin 3 x)^{\prime}+$

$+C_{4}^{2}\left(e^{4 x}\right)^{\prime \prime} \cdot(\sin 3 x)^{\prime \prime}+C_{4}^{3}\left(e^{4 x}\right)^{\prime} \cdot(\sin 3 x)^{(3)}+e^{4 x}(\sin 3 x)^{(4)}$

Найдем все производные и посчитаем коэффициенты при слагаемых.

1) Посчитаем коэффициенты при слагаемых:

$C_{4}^{1}=\frac{4 !}{1 ! \cdot(4-1) !}=\frac{4 !}{3 !}=\frac{3 ! \cdot 4}{3 !}=4$

$C_{4}^{2}=\frac{4 !}{2 ! \cdot(4-2) !}=\frac{4 !}{2 ! \cdot 2 !}=\frac{2 ! \cdot 3 \cdot 4}{2 ! \cdot 2 !}=\frac{3 \cdot 4}{2}=6$

$C_{4}^{3}=\frac{4 !}{3 ! \cdot(4-3) !}=\frac{4 !}{3 !}=\frac{3 ! \cdot 4}{3 !}=4$

2) Найдем производные от функции $u(x)$:

$u(x)=e^{4 x}, u^{\prime}(x)=\left(e^{4 x}\right)^{\prime}=e^{4 x} \cdot(4 x)^{\prime}=e^{4 x} \cdot 4 \cdot(x)^{\prime}=4 e^{4 x}$

$u^{\prime \prime}(x)=\left(u^{\prime}(x)\right)^{\prime}=\left(4 e^{4 x}\right)^{\prime}=4 \cdot\left(e^{4 x}\right)^{\prime}=16 e^{4 x}$

$u^{\prime \prime \prime}(x)=\left(u^{\prime \prime}(x)\right)^{\prime}=\left(16 e^{4 x}\right)^{\prime}=64 e^{4 x}$

$u^{(4)}(x)=\left(u^{\prime \prime \prime}(x)\right)^{\prime}=\left(64 e^{4 x}\right)^{\prime}=256 e^{4 x}$

3) Найдем производные от функции $v(x)$:

$v(x)=\sin 3 x, v^{\prime}(x)=(\sin 3 x)^{\prime}=\cos 3 x \cdot(3 x)^{\prime}=3 \cos 3 x$

$v^{\prime \prime}(x)=\left(v^{\prime}(x)\right)^{\prime}=(3 \cos 3 x)^{\prime}=3 \cdot(\cos 3 x)^{\prime}=$

$=3 \cdot(-\sin 3 x) \cdot(3 x)^{\prime}=-9 \sin 3 x$

$v^{\prime \prime \prime}(x)=\left(v^{\prime \prime}(x)\right)^{\prime}=-27 \cos 3 x, v^{(4)}(x)=\left(v^{\prime \prime \prime}(x)\right)^{\prime}=81 \sin 3 x$

Тогда

$y^{(4)}(x)=256 e^{4 x} \cdot \sin 3 x+4 \cdot 64 e^{4 x} \cdot 3 \cos 3 x+$

$+6 \cdot 16 e^{4 x} \cdot(-9 \sin 3 x)+4 \cdot 4 e^{4 x} \cdot(-27 \cos 3 x)+e^{4 x} 81 \sin 3 x=$

$=e^{4 x}(336 \cos 3 x-527 \sin 3 x)$

Ответ. $y^{(4)}(x)=e^{4 x}(336 \cos 3 x-527 \sin 3 x)$

www.webmath.ru

Производные высших порядков. Правила и примеры

Под производной высших порядков понимают дифференцирования функции более одного раза. Если производнуюповторно дифференцировать, то получим производную второго порядка, или вторую производную функции , и она обозначается

Производная третьего порядка будет иметь вид

Аналогично получают формулы для нахождения производных высших порядков. При нахождении производной порядке необходимо иметь производную порядка. Исключение составляют функции для которых можно заметить тенденцию изменения производных. Это степенные, некоторые тригонометрические и экспоненциальные функции:

В других случаях, для нахождения производных высших порядков от заданной функции нужно последовательно находить все ее производные низших порядков. Для практического усвоения материала рассмотрим примеры.

Пример 1.

Вычислить производные второго порядка

1)

2)

3)

4)

Решение.

1) По правилам дифференцирования параметрических функций имеем

Применим к заданной функции. Найдем производную

Дифференцируем второй раз. По правилу дифференцирования получим

По формуле вычисляем

2)Определяем первую производную для функции

Вычисляем вторую производную

3)Вычислим первую производную

а потом вторую

При нахождении производной второго и высших порядков для данного примера и ему подобных можно пользоваться следующим правилам:

1) если степень функции меньше порядка производной , то она вклада не дает

2) все старшие степени дают вклад

По такой схеме вторую производную можно было найти так:

Для практики второй способ эффективнее, особенно если нужно найти производные гораздо более высоких порядков чем второй.

4) Производную функции первого порядка будет иметь вид

второго порядка

По аналогии можно вывести формулу для производной экспоненциальной функции порядка

Решая примеры для синус и косинус функций можно заметить сходство при исчислении старших производных и вывести следующие зависимости

Пользуйтесь и пусть не возникают проблемы с производными высших порядков.

yukhym.com

Исследовать ряд на абсолютную и условную сходимость онлайн калькулятор – Сходимость ряда — исследование онлайн · Как пользоваться Контрольная Работа РУ

абсолютная и условная сходимость ряда онлайн

Вы искали абсолютная и условная сходимость ряда онлайн? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и абсолютная и условная сходимость ряда онлайн калькулятор, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «абсолютная и условная сходимость ряда онлайн».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как абсолютная и условная сходимость ряда онлайн,абсолютная и условная сходимость ряда онлайн калькулятор,доказать сходимость ряда и найти его сумму онлайн с решением,знакопеременные ряды,знакопеременный ряд,исследование на сходимость ряда онлайн,исследование на сходимость ряда онлайн с подробным решением,исследование на сходимость рядов онлайн,исследование ряда на сходимость онлайн,исследование ряда на сходимость онлайн с подробным решением,исследование рядов на сходимость онлайн,исследование рядов на сходимость онлайн с подробным решением,исследовать знакочередующийся ряд на сходимость,исследовать знакочередующийся ряд на сходимость онлайн,исследовать на абсолютную и условную сходимость ряд онлайн,исследовать на абсолютную и условную сходимость ряд онлайн калькулятор,исследовать на сходимость знакочередующийся ряд,исследовать на сходимость знакочередующийся ряд онлайн,исследовать на сходимость и абсолютную сходимость ряд,исследовать на сходимость и абсолютную сходимость ряд онлайн,исследовать на сходимость и абсолютную сходимость ряды,исследовать на сходимость онлайн,исследовать на сходимость ряд калькулятор онлайн,исследовать на сходимость ряд онлайн,исследовать на сходимость ряд онлайн калькулятор,исследовать на сходимость ряд онлайн калькулятор с подробным решением,исследовать на сходимость ряд онлайн с подробным решением,исследовать на сходимость ряд онлайн с подробным решением калькулятор,исследовать на сходимость ряд онлайн с решением,исследовать на сходимость ряды онлайн,исследовать на сходимость ряды онлайн калькулятор,исследовать на сходимость ряды онлайн калькулятор с решением,исследовать на сходимость ряды онлайн с подробным решением калькулятор,исследовать на сходимость числовой ряд онлайн с решением,исследовать на сходимость числовые ряды онлайн,исследовать на условную и абсолютную сходимость ряды,исследовать ряд на абсолютную и условную сходимость онлайн,исследовать ряд на абсолютную и условную сходимость онлайн калькулятор,исследовать ряд на сходимость онлайн,исследовать ряд на сходимость онлайн калькулятор,исследовать ряд на сходимость онлайн калькулятор с подробным решением,исследовать ряд на сходимость онлайн с подробным решением,исследовать ряд на сходимость онлайн с решением,исследовать ряд на условную и абсолютную сходимость онлайн,исследовать ряды на сходимость и абсолютную сходимость,исследовать ряды на сходимость онлайн,исследовать ряды на сходимость онлайн калькулятор,исследовать ряды на сходимость онлайн калькулятор с подробным решением,исследовать сходимость ряда онлайн,исследовать сходимость ряда онлайн калькулятор с подробным решением,исследовать сходимость ряда онлайн с подробным решением калькулятор,исследовать сходимость рядов онлайн,исследовать сходимость рядов онлайн калькулятор,исследовать сходимость числового ряда калькулятор онлайн,исследовать сходимость числового ряда онлайн калькулятор,исследовать сходимость числового ряда онлайн решение,исследовать числовой ряд на сходимость онлайн с решением,исследовать числовые ряды на сходимость онлайн,калькулятор онлайн признак коши,калькулятор онлайн ряды,калькулятор онлайн сходимость рядов,калькулятор онлайн числовые ряды,калькулятор рядов,калькулятор рядов онлайн,калькулятор рядов онлайн с решением,калькулятор рядов онлайн с решением на сходимость,калькулятор рядов с решением онлайн,калькулятор рядов сходимости,калькулятор ряды,калькулятор ряды сходимость,калькулятор сходимости ряда,калькулятор сходимости рядов,калькулятор сходимости рядов с решением,калькулятор числовых рядов,найти сходимость ряда онлайн,найти сходимость ряда онлайн с решением,онлайн исследование на сходимость ряда,онлайн исследование на сходимость ряда онлайн с решением,онлайн исследование ряда на сходимость,онлайн исследовать сходимость рядов,онлайн калькулятор исследовать на сходимость ряд,онлайн калькулятор признак даламбера,онлайн калькулятор признак коши,онлайн калькулятор рядов,онлайн калькулятор рядов на сходимость с решением,онлайн калькулятор рядов с решением,онлайн калькулятор рядов сходимость,онлайн калькулятор ряды,онлайн калькулятор сходимость ряда,онлайн калькулятор сходимость рядов,онлайн калькулятор числовые ряды,онлайн решение на сходимость рядов,онлайн решение рядов,онлайн решение рядов на сходимость,онлайн решение рядов с подробным решением,онлайн решение ряды,онлайн решение числовых рядов,онлайн ряды на сходимость онлайн калькулятор с подробным решением,определить сходимость ряда онлайн,признак даламбера онлайн,признак даламбера онлайн калькулятор,признак коши калькулятор онлайн,признак коши онлайн калькулятор,признак лейбница примеры,признак лейбница сходимости,признак лейбница сходимости ряда,признак сходимости лейбница,примеры признак лейбница,проверить на сходимость ряд,проверить на сходимость ряд онлайн,проверить ряд на сходимость,проверить ряд на сходимость онлайн,проверить сходимость ряда онлайн,проверка на сходимость рядов онлайн,проверка рядов на сходимость онлайн,радикальный признак коши онлайн калькулятор,решение на сходимость рядов онлайн,решение онлайн рядов на сходимость,решение онлайн ряды,решение рядов на сходимость онлайн,решение рядов онлайн,решение рядов онлайн на сходимость,решение рядов онлайн с подробным решением,решение ряды онлайн,решение числовых рядов онлайн,решить онлайн ряды,решить ряд решить онлайн,решить ряды онлайн,ряд на сходимость онлайн,ряд онлайн,ряд сходится или расходится онлайн,ряды калькулятор,ряды калькулятор онлайн,ряды онлайн,ряды онлайн калькулятор,ряды онлайн калькулятор на сходимость с решением,ряды онлайн калькулятор с подробным решением,ряды онлайн решение,ряды онлайн решить,ряды онлайн сходимость,ряды решение онлайн,ряды решить онлайн,ряды сходимость калькулятор,ряды сходимость онлайн,ряды числовые калькулятор,сходимость,сходимость знакочередующегося ряда,сходимость и расходимость рядов,сходимость и расходимость рядов онлайн,сходимость онлайн,сходимость ряда калькулятор онлайн,сходимость ряда онлайн,сходимость ряда онлайн калькулятор,сходимость ряда онлайн калькулятор с подробным решением,сходимость рядов знакопеременных,сходимость рядов знакопеременных рядов,сходимость рядов калькулятор онлайн,сходимость рядов онлайн,сходимость рядов онлайн калькулятор,сходимость числового ряда онлайн,сходится или расходится ряд онлайн,сходится ли ряд онлайн с решением,числовые ряды калькулятор,числовые ряды онлайн,числовые ряды онлайн калькулятор с решением. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и абсолютная и условная сходимость ряда онлайн. Просто введите задачу в окошко и нажмите «решить» здесь (например, доказать сходимость ряда и найти его сумму онлайн с решением).

Где можно решить любую задачу по математике, а так же абсолютная и условная сходимость ряда онлайн Онлайн?

Решить задачу абсолютная и условная сходимость ряда онлайн вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

www.pocketteacher.ru

признаки сходимости числовых рядов — 28 Июля 2013 — Примеры решений задач


Необходимое условие сходимости ряда 


Достаточные признаки сходимости знакоположительного ряда:

    — Первый, второй и третий признаки сравнения
Их суть заключается в сравнении исследуемого числового ряда с рядом, сходимость или расходимость которого известна.

   — Признак Даламбера

   
   

    — Радикальный признак Коши



    — Интегральный признак Коши

    — Признак Раабе.


Исследование знакопеременных рядов на абсолютную сходимость.



Достаточные признаки условной сходимости числового ряда:

    Признак Лейбница



    Признак Абеля-Дирихле
Алгоритм исследования числовых рядов на сходимость, следующий:1) Проверяем необходимый признак сходимости, если признак не выполняется, то ряд расходящийся, если выполняется, то переходим к следующему пункту;
2) Смотрим, какой ряд, если знакопостоянный, то используем признаки сходимости для знакопостоянных рядов, если знакопеременный,  то сначала исследуем на абсолютную сходимость, затем на условную (все признаки сходимости рядов изложены выше).

По данной теме читают: Калькулятор сходимости рядов

www.reshim.su

Абсолютная и условная сходимость рядов — ПриМат

Рассмотрим числовой ряд с бесконечным множеством положительных и бесконечным множеством отрицательных членов. Такой ряд называется знакопеременным рядом.

Запишем произвольный знакопеременный ряд
$a_{1}+a_{2}+a_{3}+…+a_{n}+…=\sum\limits_{n=1}^{\infty }a_{n}$ $(1)$,
где числа $a_{1},a_{2},a_{3},…,a_{n},…$ являются как положительными, так и отрицательными, причем располагаются они в ряде произвольно. Так же рассмотрим ряд, составленный из абсолютных величин членов ряда (1):
$|a_{1}|+|a_{2}|+|a_{3}|+…+|a_{n}|+…=\sum\limits_{n=1}^{\infty }|a_{n}|$ $(2)$.
Для знакопеременных рядов справедлива следующая Теорема:

Теорема 1

Если ряд $(2)$ сходится, то сходится и ряд $(1)$.

Доказательство

Предположим, что ряд $(2)$ сходится. Обозначим через $S_{n}$ частичную сумму ряда $(1)$, а через $\sigma_{n}$ частичную сумму ряда  $(2)$. Тогда: $S_{n} = a_{1}+a_{2}+a_{3}+…+a_{n}$;

$\sigma_{n} = |a_{1}|+|a_{2}|+|a_{3}|+…+|a_{n}|$. Так как ряд  $(2)$ сходится, то последовательность его частичных сумм ${\sigma_{n}}$ имеет предел $\lim\limits_{n\rightarrow \infty }\sigma_{n}=\sigma$, при этом для любого $n$ справедливо неравенство

$\sigma_{n}\leq\sigma$ $(3)$,
Поскольку члены ряда  $(2)$ неотрицательны.
Обозначим через $S{}’_{n}$ сумму положительных членов, а через $S{}»_{n}$ сумму модулей отрицательных членов, содержащихся в сумме $S_{n}$.
Тогда
$S_{n}=S{}’_{n}-S{}»_{n}$ $(4)$,
$\sigma_{n}=S{}’_{n}+S{}»_{n}$ $(5)$.
Видно, что последовательности ${S{}’_{n}}$ и ${S{}»_{n}}$ не убывают, а из равенства $(5)$ и неравенства $(3)$ следует, что они являются ограниченными: $S{}’_{n}\leq\sigma_{n}\leq\sigma$ и $S{}»_{n}\leq\sigma_{n}\leq\sigma$. Следовательно, существуют $\lim\limits_{n\rightarrow\infty }S{}’_{n}=S{}’$ и $\lim\limits_{n\rightarrow\infty }S{}_{n}»=S{}»$. Но в таком случае, в силу равенства $(4)$, последовательность частичных сумм ряда $(1)$ имеет предел
$\lim\limits_{n\rightarrow\infty }S_{n}=\lim\limits_{n\rightarrow\infty }(S{}’_{n}-S{}»_{n})=\lim\limits_{n\rightarrow\infty }S{}’_{n}-\lim\limits_{n\rightarrow\infty }S{}»_{n}=S{}’-S{}»$.

Это означает, что ряд $(1)$ сходится. $\blacksquare$

Пример 1

Ряд $1-\frac{1}{2^{2}}-\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}-\frac{1}{6^{2}}-\frac{1}{7^{2}}+…$ согласно доказанной Теореме 1 сходится, т. к. сходится ряд, составленный из абсолютных величин членов данного ряда: $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+…$
Ниже представлен график поведения первых двадцати, составленных из абсолютных величин, членов ряда

Рассмотренный признак сходимости знакопеременного ряда является достаточным, но не необходим, т. к. существуют знакопеременные ряды, которые сходятся, а ряды, составленные из абсолютных величин их членов, расходятся. Так, например, ряд $\sum\limits_{n=1}^{\infty}-1^{n+1}\frac{1}{n}$ согласно признаку Лейбница сходится, а ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$, составленный из абсолютных величин его членов, расходится.

Поэтому все сходящиеся ряды можно разделить на абсолютно и условно сходящиеся.

Ряд с действительными или комплексными членами $\sum\limits_{n = 1}^{\infty }a_{n}$ называется абсолютно сходящимся, если сходиться ряд $\sum\limits_{n = 1}^{\infty }\left | a_{n} \right |$.

Ряд $\sum\limits_{n = 1}^{\infty }a_{n}$ называется условно сходящимся, если этот ряд сходиться, а ряд $\sum\limits_{n = 1}^{\infty }\left | a_{n} \right |$ расходиться.

Спойлер

Пример 2

Ряд $1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+…$ условно сходящийся, так как сам он сходится по признаку Лейбница, а ряд, составленный из абсолютных величин, $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+…$ расходится.
Можно заметить, что свойства абсолютно сходящихся и условно сходящихся рядов имеют некоторые отличия. Так, например, в условно сходящихся рядах, сумма ряда не равна сумме положительных и отрицательных членов ряда, но для абсолютно сходящихся это свойство справедливо, что можно было увидеть при доказательстве Теоремы 1.

[свернуть]

Литература

  • Лысенко З.М., конспект лекций по математическому анализу, 2014-2015 гг., семестр 2 из 2
  • Демидович Б.П., Сборник заданий и упражнений по математическому анализу, издание 13, исправленное, Издательство ЧеРо, 1997, стр. 247-259
  • Шипачев В.С., Высшая математика, учебник для спец. вузов /Под ред. акад. А.Н. Тихонова.- М.: Высш.шк., 1985.- 471 с., стр. 390-391 ил.
  • Тер-Крикоров А.М. и Шабунин М.И. Курс математического анализа, стр. 394-406
  • Демидович Б.П., Сборник заданий и упражнений по математическому анализу, издание 13, исправленное, Издательство ЧеРо, 1997, стр. 259-267

Абсолютная и условная сходимость рядов

Лимит времени: 0

Информация

Предлагаем Вам пройти тест на тему «Абсолютная и условная сходимость рядов».

Вы уже проходили тест ранее. Вы не можете запустить его снова.

Тест загружается…

Вы должны войти или зарегистрироваться для того, чтобы начать тест.

Вы должны закончить следующие тесты, чтобы начать этот:

Правильных ответов: 0 из 5

Ваше время:

Время вышло

Вы набрали 0 из 0 баллов (0)

Средний результат

 

 
Ваш результат

 

 
Ваш результат был записан в таблицу лидеров
  1. С ответом
  2. С отметкой о просмотре
  1. Задание 1 из 5

    Количество баллов: 1

    Признак сходимости для знакопеременных рядов: Даны ряды

    и
    . Имеет место следующий признак

    Правильно 1 / 1Баллы Неправильно / 1 Баллы
  2. Задание 2 из 5

    Количество баллов: 1

    Исследовать на сходимость ряд

    Правильно

    Применим признак Лейбница для знакочередующихся рядов. Получаем $\lim_{n\rightarrow \infty }|a_{n}|=\lim_{n\rightarrow \infty}\left |(-1)^{n}\frac{\sin ^{2}n}{n} \right |=\lim_{n\rightarrow \infty}\frac{\sin ^{2}n}{n}=0$
    Поскольку $\sin ^{2}\leq 1$. Следовательно данный ряд сходится.

    Неправильно

  3. Задание 3 из 5

    Количество баллов: 1

    Рядом называется выражение вида:

    Правильно 1 / 1Баллы Неправильно / 1 Баллы
  4. Задание 4 из 5

    Количество баллов: 1

    К абсолютно сходящимся рядам относятся

    Правильно

    Неправильно

  5. Задание 5 из 5

    Количество баллов: 1

    К условно сходящимся рядам относятся…

    • сходящиеся ряды, для которых ряды, составленные из абсолютных величин их членов, расходятся.
    • сходящиеся ряды, для которых ряды, составленные из абсолютных величин их членов, сходятся.
    • расходящиеся ряды, для которых ряды, составленные из абсолютных величин их членов, расходятся.
    • расходящиеся ряды, для которых ряды, составленные из абсолютных величин их членов, сходятся.

    Правильно

    Неправильно


Таблица лучших: Абсолютная и условная сходимость рядов

максимум из 5 баллов
МестоИмяЗаписаноБаллыРезультат
Таблица загружается
Нет данных

Поделиться ссылкой:

Похожее

ib.mazurok.com

Перевести градусы в секунды – Перевод градусов минут и секунд в десятичные градусы и обратно

градус в секунду [°/с] радиан в секунду [рад/с] • Механика • Конвертер угловой скорости и частоты вращения • Компактный калькулятор

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

1 градус в секунду [°/с] = 0,0174532925199433 радиан в секунду [рад/с]

Общие сведения

Угловая скорость в спорте

Угловая скорость и хранение данных на оптических носителях

Угловая скорость в космосе

Потолочный вентилятор, вращающийся со скоростью 250 оборотов в минуту

Общие сведения

Угловая скорость — это векторная величина, определяющая скорость вращения тела относительно оси вращения. Этот вектор направлен перпендикулярно плоскости вращения и определяется с помощью правила буравчика. Угловую скорость измеряют как отношение между углом, на который переместилось тело, то есть угловым смещением, и временем, на это потраченным. В системе СИ угловое ускорение измеряют в радианах в секунду.

Угловая скорость в спорте

Угловая скорость часто используется в спорте. Например, спортсмены уменьшают или увеличивают угловую скорость движения клюшки для гольфа, биты или ракетки, чтобы улучшить результаты. Угловая скорость связана с линейной скоростью так, что из всех точек на отрезке, вращающемся вокруг точки на этом отрезке, то есть вокруг центра вращения, самая отдаленная точка от этого центра движется с самой высокой линейной скоростью. Так, например, если клюшка для гольфа вращается, то конец этой клюшки, больше всего удаленный от центра вращения двигается с самой высокой линейной скоростью. В то же время все точки на этом отрезке движутся с одинаковой угловой скоростью. Поэтому удлиняя клюшку, биту, или ракетку, спортсмен также увеличивает линейную скорость, а соответственно скорость удара, передающуюся мячу, так что он может пролететь на большее расстояние. Укорачивая ракетку или клюшку, даже перехватив ее ниже, чем обычно, наоборот замедляют скорость удара.

При первобытнообщинном строе главными охотниками были мужчины

Спортсменам с более длинными руками и ногами удается добиться бо́льшей угловой скорости

У высоких людей с длинными конечностями есть преимущество в отношении линейной скорости. То есть, передвигая ноги с одинаковой угловой скоростью, они двигают ступни с более высокой линейной скоростью. То же происходит и с их руками. Такое преимущество может быть одной из причин того, что в первобытных обществах мужчины занимались охотой чаще, чем женщины. Вероятно, что из-за этого также в процессе эволюции выиграли более высокие люди. Длинные конечности помогали не только в беге, но и во время охоты — длинные руки бросали копья и камни с большей линейной скоростью. С другой стороны, длинные руки и ноги могут быть неудобством. Длинные конечности имеют больший вес и для их перемещения нужна дополнительная энергия. Кроме этого, когда человек быстро бежит, длинные ноги быстрее двигаются, а значит, при столкновении с препятствием удар будет сильнее, чем у людей с короткими ногами, которые двигаются с той же линейной скоростью.

В гимнастике, фигурном катании и нырянии также используют угловую скорость. Если спортсмен знает угловую скорость, то легко вычислить количество переворотов и других акробатических трюков во время прыжка. Во время кувырков спортсмены обычно прижимают ноги и руки как можно ближе к корпусу, чтобы уменьшить инерцию и увеличить ускорение, а значит и угловую скорость. С другой стороны, во время ныряния или приземления, судьи смотрят, как ровно спортсмен приземлился. На высокой скорости трудно регулировать направление полета, поэтому спортсмены специально замедляют угловую скорость, немного вытягивая от корпуса руки и ноги.

Спортсмены, которые занимаются метанием диска или молота, тоже контролируют линейную скорость с помощью угловой. Если просто бросить молот, не вращая его по кругу на длинной стальной проволоке, увеличивающей линейную скорость, то бросок будет не таким сильным, поэтому молот сначала раскручивают. Олимпийские спортсмены поворачиваются вокруг своей оси от трех до четырех раз, чтобы увеличить угловую скорость до максимально возможной.

Угловая скорость и хранение данных на оптических носителях

Диски в накопителе на жестких магнитных дисках («винчестере») вращаются со скоростями от 4&nbsp200 оборотов в минуту на портативных устройствах с низким энергопотреблением до 15&nbsp000 оборотов в минуту на высокоэффективных серверах

Во время записи данных на оптических носителях, например на компакт дисках (CD), для измерения скорости записи и считывания данных в приводе также используются угловая и линейная скорости. Существует несколько способов записи данных, во время которых используют переменную или постоянную линейную или угловую скорость. Так, например, режим постоянной линейной скорости (по-английски — Constant Linear Velocity или CVL) — один из основных методов записи дисков, при котором данные записывают с одинаковой скоростью по всей поверхности диска. Во время записи в режиме зональной постоянной линейной скорости (по-английски — Zone Constant Linear Velocity или ZCLV) постоянная скорость поддерживается во время записи на определенной части, то есть зоне диска. В этом случае диск замедляет вращение при записи на внешних зонах. Режим частично постоянной угловой скорости (Partial Constant Angular Velocity или PCAV) позволяет осуществлять запись с постепенным увеличением угловой скорости, пока она не достигнет определенного порога. После этого угловая скорость становится постоянной. Последний режим записи — режим постоянной угловой скорости (Constant Angular Velocity или CAV). В этом режиме во время записи по всей поверхности диска поддерживается одинаковая угловая скорость. При этом линейная скорость увеличивается по мере того, как записывающая головка перемещается все дальше и дальше к краю диска. Этот режим используется также при записи грампластинок и в компьютерных жестких дисках.

Угловая скорость в космосе

Геостационарная орбита

На расстоянии 35 786 километров (22 236 миль) от Земли находится орбита, на которой вращаются спутники. Это особенная орбита, потому что тела, вращающиеся на ней в одном направлении с Землей, проходят всю орбиту примерно за такое же время, которое требуется Земле, чтобы совершить полный круг вокруг своей оси. Это немного меньше 24 часов, то есть один сидерический день. Так как угловая скорость вращения тел на этой орбите равна угловой скорости вращения Земли, то наблюдателям с Земли кажется, что эти тела не движутся. Такая орбита называется геостационарной.

На эту орбиту обычно выводят спутники, которые отслеживают изменения погоды (метеорологические спутники), спутники, следящие за изменениями в океане и спутники связи, которые обеспечивают телевизионное и радиовещание, телефонную связь и спутниковый Интернет. Геостационарную орбиту часто используют для спутников потому, что антенны, один раз направленные на спутник, не нужно направлять вторично. С другой стороны, с их использованием связаны такие неудобства, как необходимость иметь прямое поле видимости между антенной и спутником. Кроме того, геостационарная орбита находится далеко от Земли и для передачи сигнала необходимо использовать более мощные передатчики, чем те, что используются для передачи с более низких орбит. Сигнал приходит с задержкой приблизительно в 0,25 секунды, что заметно для пользователей. Например, во время трансляции новостей корреспонденты в удаленных районах обычно связываются со студией по спутниковому каналу; при этом заметно, что когда телеведущий задает им вопрос, они отвечают с задержкой. Несмотря на это, спутники на геостационарной орбите широко используются. Например, до недавнего времени связь между континентами осуществлялась, главным образом, с помощью спутников. Сейчас ее в основном заменили межконтинентальные кабели, проложенные по океанскому дну; однако спутниковую связь до сих пор применяют в отдаленных районах. В последние двадцать лет спутники связи также обеспечивают доступ к интернету, особенно в отдаленных местах, где нет наземной инфраструктуры связи.

Спутниковые антенны

Срок службы спутника в основном определяется количеством топлива на борту, требуемым для периодической коррекции орбиты. Количество топлива в спутниках ограничено, поэтому когда оно заканчивается, спутники выводят из эксплуатации. Чаще всего их переводят на орбиту захоронения, то есть орбиту, намного выше геостационарной. Это — дорогостоящий процесс; однако если оставлять ненужные спутники на геостационарной орбите, это грозит вероятностью столкновений с другими спутниками. Место на геостационарной орбите ограничено, поэтому старые спутники, оставленные на орбите, будут занимать место, которое мог бы использовать новый спутник. В связи с этим во многих странах существуют нормы, требующие от владельцев спутников подписать договор о том, что в конце эксплуатации спутник будет выведен на орбиту захоронения.

Литература

Автор статьи: Kateryna Yuri

Unit Converter articles were edited and illustrated by Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер угловой скорости и частоты вращения» выполняются с помощью функций unitconversion.org.

www.translatorscafe.com

оборотов в минуту [об/мин] градус в секунду [°/с] • Механика • Конвертер угловой скорости и частоты вращения • Компактный калькулятор

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

1 оборотов в минуту [об/мин] = 6,00000000000002 градус в секунду [°/с]

Общие сведения

Угловая скорость в спорте

Угловая скорость и хранение данных на оптических носителях

Угловая скорость в космосе

Потолочный вентилятор, вращающийся со скоростью 250 оборотов в минуту

Общие сведения

Угловая скорость — это векторная величина, определяющая скорость вращения тела относительно оси вращения. Этот вектор направлен перпендикулярно плоскости вращения и определяется с помощью правила буравчика. Угловую скорость измеряют как отношение между углом, на который переместилось тело, то есть угловым смещением, и временем, на это потраченным. В системе СИ угловое ускорение измеряют в радианах в секунду.

Угловая скорость в спорте

Угловая скорость часто используется в спорте. Например, спортсмены уменьшают или увеличивают угловую скорость движения клюшки для гольфа, биты или ракетки, чтобы улучшить результаты. Угловая скорость связана с линейной скоростью так, что из всех точек на отрезке, вращающемся вокруг точки на этом отрезке, то есть вокруг центра вращения, самая отдаленная точка от этого центра движется с самой высокой линейной скоростью. Так, например, если клюшка для гольфа вращается, то конец этой клюшки, больше всего удаленный от центра вращения двигается с самой высокой линейной скоростью. В то же время все точки на этом отрезке движутся с одинаковой угловой скоростью. Поэтому удлиняя клюшку, биту, или ракетку, спортсмен также увеличивает линейную скорость, а соответственно скорость удара, передающуюся мячу, так что он может пролететь на большее расстояние. Укорачивая ракетку или клюшку, даже перехватив ее ниже, чем обычно, наоборот замедляют скорость удара.

При первобытнообщинном строе главными охотниками были мужчины

Спортсменам с более длинными руками и ногами удается добиться бо́льшей угловой скорости

У высоких людей с длинными конечностями есть преимущество в отношении линейной скорости. То есть, передвигая ноги с одинаковой угловой скоростью, они двигают ступни с более высокой линейной скоростью. То же происходит и с их руками. Такое преимущество может быть одной из причин того, что в первобытных обществах мужчины занимались охотой чаще, чем женщины. Вероятно, что из-за этого также в процессе эволюции выиграли более высокие люди. Длинные конечности помогали не только в беге, но и во время охоты — длинные руки бросали копья и камни с большей линейной скоростью. С другой стороны, длинные руки и ноги могут быть неудобством. Длинные конечности имеют больший вес и для их перемещения нужна дополнительная энергия. Кроме этого, когда человек быстро бежит, длинные ноги быстрее двигаются, а значит, при столкновении с препятствием удар будет сильнее, чем у людей с короткими ногами, которые двигаются с той же линейной скоростью.

В гимнастике, фигурном катании и нырянии также используют угловую скорость. Если спортсмен знает угловую скорость, то легко вычислить количество переворотов и других акробатических трюков во время прыжка. Во время кувырков спортсмены обычно прижимают ноги и руки как можно ближе к корпусу, чтобы уменьшить инерцию и увеличить ускорение, а значит и угловую скорость. С другой стороны, во время ныряния или приземления, судьи смотрят, как ровно спортсмен приземлился. На высокой скорости трудно регулировать направление полета, поэтому спортсмены специально замедляют угловую скорость, немного вытягивая от корпуса руки и ноги.

Спортсмены, которые занимаются метанием диска или молота, тоже контролируют линейную скорость с помощью угловой. Если просто бросить молот, не вращая его по кругу на длинной стальной проволоке, увеличивающей линейную скорость, то бросок будет не таким сильным, поэтому молот сначала раскручивают. Олимпийские спортсмены поворачиваются вокруг своей оси от трех до четырех раз, чтобы увеличить угловую скорость до максимально возможной.

Угловая скорость и хранение данных на оптических носителях

Диски в накопителе на жестких магнитных дисках («винчестере») вращаются со скоростями от 4&nbsp200 оборотов в минуту на портативных устройствах с низким энергопотреблением до 15&nbsp000 оборотов в минуту на высокоэффективных серверах

Во время записи данных на оптических носителях, например на компакт дисках (CD), для измерения скорости записи и считывания данных в приводе также используются угловая и линейная скорости. Существует несколько способов записи данных, во время которых используют переменную или постоянную линейную или угловую скорость. Так, например, режим постоянной линейной скорости (по-английски — Constant Linear Velocity или CVL) — один из основных методов записи дисков, при котором данные записывают с одинаковой скоростью по всей поверхности диска. Во время записи в режиме зональной постоянной линейной скорости (по-английски — Zone Constant Linear Velocity или ZCLV) постоянная скорость поддерживается во время записи на определенной части, то есть зоне диска. В этом случае диск замедляет вращение при записи на внешних зонах. Режим частично постоянной угловой скорости (Partial Constant Angular Velocity или PCAV) позволяет осуществлять запись с постепенным увеличением угловой скорости, пока она не достигнет определенного порога. После этого угловая скорость становится постоянной. Последний режим записи — режим постоянной угловой скорости (Constant Angular Velocity или CAV). В этом режиме во время записи по всей поверхности диска поддерживается одинаковая угловая скорость. При этом линейная скорость увеличивается по мере того, как записывающая головка перемещается все дальше и дальше к краю диска. Этот режим используется также при записи грампластинок и в компьютерных жестких дисках.

Угловая скорость в космосе

Геостационарная орбита

На расстоянии 35 786 километров (22 236 миль) от Земли находится орбита, на которой вращаются спутники. Это особенная орбита, потому что тела, вращающиеся на ней в одном направлении с Землей, проходят всю орбиту примерно за такое же время, которое требуется Земле, чтобы совершить полный круг вокруг своей оси. Это немного меньше 24 часов, то есть один сидерический день. Так как угловая скорость вращения тел на этой орбите равна угловой скорости вращения Земли, то наблюдателям с Земли кажется, что эти тела не движутся. Такая орбита называется геостационарной.

На эту орбиту обычно выводят спутники, которые отслеживают изменения погоды (метеорологические спутники), спутники, следящие за изменениями в океане и спутники связи, которые обеспечивают телевизионное и радиовещание, телефонную связь и спутниковый Интернет. Геостационарную орбиту часто используют для спутников потому, что антенны, один раз направленные на спутник, не нужно направлять вторично. С другой стороны, с их использованием связаны такие неудобства, как необходимость иметь прямое поле видимости между антенной и спутником. Кроме того, геостационарная орбита находится далеко от Земли и для передачи сигнала необходимо использовать более мощные передатчики, чем те, что используются для передачи с более низких орбит. Сигнал приходит с задержкой приблизительно в 0,25 секунды, что заметно для пользователей. Например, во время трансляции новостей корреспонденты в удаленных районах обычно связываются со студией по спутниковому каналу; при этом заметно, что когда телеведущий задает им вопрос, они отвечают с задержкой. Несмотря на это, спутники на геостационарной орбите широко используются. Например, до недавнего времени связь между континентами осуществлялась, главным образом, с помощью спутников. Сейчас ее в основном заменили межконтинентальные кабели, проложенные по океанскому дну; однако спутниковую связь до сих пор применяют в отдаленных районах. В последние двадцать лет спутники связи также обеспечивают доступ к интернету, особенно в отдаленных местах, где нет наземной инфраструктуры связи.

Спутниковые антенны

Срок службы спутника в основном определяется количеством топлива на борту, требуемым для периодической коррекции орбиты. Количество топлива в спутниках ограничено, поэтому когда оно заканчивается, спутники выводят из эксплуатации. Чаще всего их переводят на орбиту захоронения, то есть орбиту, намного выше геостационарной. Это — дорогостоящий процесс; однако если оставлять ненужные спутники на геостационарной орбите, это грозит вероятностью столкновений с другими спутниками. Место на геостационарной орбите ограничено, поэтому старые спутники, оставленные на орбите, будут занимать место, которое мог бы использовать новый спутник. В связи с этим во многих странах существуют нормы, требующие от владельцев спутников подписать договор о том, что в конце эксплуатации спутник будет выведен на орбиту захоронения.

Литература

Автор статьи: Kateryna Yuri

Unit Converter articles were edited and illustrated by Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер угловой скорости и частоты вращения» выполняются с помощью функций unitconversion.org.

www.translatorscafe.com

градус в секунду [°/с] оборотов в секунду [об/с] • Механика • Конвертер угловой скорости и частоты вращения • Компактный калькулятор

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

1 градус в секунду [°/с] = 0,00277777777777777 оборотов в секунду [об/с]

Общие сведения

Угловая скорость в спорте

Угловая скорость и хранение данных на оптических носителях

Угловая скорость в космосе

Потолочный вентилятор, вращающийся со скоростью 250 оборотов в минуту

Общие сведения

Угловая скорость — это векторная величина, определяющая скорость вращения тела относительно оси вращения. Этот вектор направлен перпендикулярно плоскости вращения и определяется с помощью правила буравчика. Угловую скорость измеряют как отношение между углом, на который переместилось тело, то есть угловым смещением, и временем, на это потраченным. В системе СИ угловое ускорение измеряют в радианах в секунду.

Угловая скорость в спорте

Угловая скорость часто используется в спорте. Например, спортсмены уменьшают или увеличивают угловую скорость движения клюшки для гольфа, биты или ракетки, чтобы улучшить результаты. Угловая скорость связана с линейной скоростью так, что из всех точек на отрезке, вращающемся вокруг точки на этом отрезке, то есть вокруг центра вращения, самая отдаленная точка от этого центра движется с самой высокой линейной скоростью. Так, например, если клюшка для гольфа вращается, то конец этой клюшки, больше всего удаленный от центра вращения двигается с самой высокой линейной скоростью. В то же время все точки на этом отрезке движутся с одинаковой угловой скоростью. Поэтому удлиняя клюшку, биту, или ракетку, спортсмен также увеличивает линейную скорость, а соответственно скорость удара, передающуюся мячу, так что он может пролететь на большее расстояние. Укорачивая ракетку или клюшку, даже перехватив ее ниже, чем обычно, наоборот замедляют скорость удара.

При первобытнообщинном строе главными охотниками были мужчины

Спортсменам с более длинными руками и ногами удается добиться бо́льшей угловой скорости

У высоких людей с длинными конечностями есть преимущество в отношении линейной скорости. То есть, передвигая ноги с одинаковой угловой скоростью, они двигают ступни с более высокой линейной скоростью. То же происходит и с их руками. Такое преимущество может быть одной из причин того, что в первобытных обществах мужчины занимались охотой чаще, чем женщины. Вероятно, что из-за этого также в процессе эволюции выиграли более высокие люди. Длинные конечности помогали не только в беге, но и во время охоты — длинные руки бросали копья и камни с большей линейной скоростью. С другой стороны, длинные руки и ноги могут быть неудобством. Длинные конечности имеют больший вес и для их перемещения нужна дополнительная энергия. Кроме этого, когда человек быстро бежит, длинные ноги быстрее двигаются, а значит, при столкновении с препятствием удар будет сильнее, чем у людей с короткими ногами, которые двигаются с той же линейной скоростью.

В гимнастике, фигурном катании и нырянии также используют угловую скорость. Если спортсмен знает угловую скорость, то легко вычислить количество переворотов и других акробатических трюков во время прыжка. Во время кувырков спортсмены обычно прижимают ноги и руки как можно ближе к корпусу, чтобы уменьшить инерцию и увеличить ускорение, а значит и угловую скорость. С другой стороны, во время ныряния или приземления, судьи смотрят, как ровно спортсмен приземлился. На высокой скорости трудно регулировать направление полета, поэтому спортсмены специально замедляют угловую скорость, немного вытягивая от корпуса руки и ноги.

Спортсмены, которые занимаются метанием диска или молота, тоже контролируют линейную скорость с помощью угловой. Если просто бросить молот, не вращая его по кругу на длинной стальной проволоке, увеличивающей линейную скорость, то бросок будет не таким сильным, поэтому молот сначала раскручивают. Олимпийские спортсмены поворачиваются вокруг своей оси от трех до четырех раз, чтобы увеличить угловую скорость до максимально возможной.

Угловая скорость и хранение данных на оптических носителях

Диски в накопителе на жестких магнитных дисках («винчестере») вращаются со скоростями от 4&nbsp200 оборотов в минуту на портативных устройствах с низким энергопотреблением до 15&nbsp000 оборотов в минуту на высокоэффективных серверах

Во время записи данных на оптических носителях, например на компакт дисках (CD), для измерения скорости записи и считывания данных в приводе также используются угловая и линейная скорости. Существует несколько способов записи данных, во время которых используют переменную или постоянную линейную или угловую скорость. Так, например, режим постоянной линейной скорости (по-английски — Constant Linear Velocity или CVL) — один из основных методов записи дисков, при котором данные записывают с одинаковой скоростью по всей поверхности диска. Во время записи в режиме зональной постоянной линейной скорости (по-английски — Zone Constant Linear Velocity или ZCLV) постоянная скорость поддерживается во время записи на определенной части, то есть зоне диска. В этом случае диск замедляет вращение при записи на внешних зонах. Режим частично постоянной угловой скорости (Partial Constant Angular Velocity или PCAV) позволяет осуществлять запись с постепенным увеличением угловой скорости, пока она не достигнет определенного порога. После этого угловая скорость становится постоянной. Последний режим записи — режим постоянной угловой скорости (Constant Angular Velocity или CAV). В этом режиме во время записи по всей поверхности диска поддерживается одинаковая угловая скорость. При этом линейная скорость увеличивается по мере того, как записывающая головка перемещается все дальше и дальше к краю диска. Этот режим используется также при записи грампластинок и в компьютерных жестких дисках.

Угловая скорость в космосе

Геостационарная орбита

На расстоянии 35 786 километров (22 236 миль) от Земли находится орбита, на которой вращаются спутники. Это особенная орбита, потому что тела, вращающиеся на ней в одном направлении с Землей, проходят всю орбиту примерно за такое же время, которое требуется Земле, чтобы совершить полный круг вокруг своей оси. Это немного меньше 24 часов, то есть один сидерический день. Так как угловая скорость вращения тел на этой орбите равна угловой скорости вращения Земли, то наблюдателям с Земли кажется, что эти тела не движутся. Такая орбита называется геостационарной.

На эту орбиту обычно выводят спутники, которые отслеживают изменения погоды (метеорологические спутники), спутники, следящие за изменениями в океане и спутники связи, которые обеспечивают телевизионное и радиовещание, телефонную связь и спутниковый Интернет. Геостационарную орбиту часто используют для спутников потому, что антенны, один раз направленные на спутник, не нужно направлять вторично. С другой стороны, с их использованием связаны такие неудобства, как необходимость иметь прямое поле видимости между антенной и спутником. Кроме того, геостационарная орбита находится далеко от Земли и для передачи сигнала необходимо использовать более мощные передатчики, чем те, что используются для передачи с более низких орбит. Сигнал приходит с задержкой приблизительно в 0,25 секунды, что заметно для пользователей. Например, во время трансляции новостей корреспонденты в удаленных районах обычно связываются со студией по спутниковому каналу; при этом заметно, что когда телеведущий задает им вопрос, они отвечают с задержкой. Несмотря на это, спутники на геостационарной орбите широко используются. Например, до недавнего времени связь между континентами осуществлялась, главным образом, с помощью спутников. Сейчас ее в основном заменили межконтинентальные кабели, проложенные по океанскому дну; однако спутниковую связь до сих пор применяют в отдаленных районах. В последние двадцать лет спутники связи также обеспечивают доступ к интернету, особенно в отдаленных местах, где нет наземной инфраструктуры связи.

Спутниковые антенны

Срок службы спутника в основном определяется количеством топлива на борту, требуемым для периодической коррекции орбиты. Количество топлива в спутниках ограничено, поэтому когда оно заканчивается, спутники выводят из эксплуатации. Чаще всего их переводят на орбиту захоронения, то есть орбиту, намного выше геостационарной. Это — дорогостоящий процесс; однако если оставлять ненужные спутники на геостационарной орбите, это грозит вероятностью столкновений с другими спутниками. Место на геостационарной орбите ограничено, поэтому старые спутники, оставленные на орбите, будут занимать место, которое мог бы использовать новый спутник. В связи с этим во многих странах существуют нормы, требующие от владельцев спутников подписать договор о том, что в конце эксплуатации спутник будет выведен на орбиту захоронения.

Литература

Автор статьи: Kateryna Yuri

Unit Converter articles were edited and illustrated by Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер угловой скорости и частоты вращения» выполняются с помощью функций unitconversion.org.

www.translatorscafe.com

градус в секунду [°/с] градус в сутки [°/сутки] • Механика • Конвертер угловой скорости и частоты вращения • Компактный калькулятор

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

1 градус в секунду [°/с] = 86399,9999999998 градус в сутки [°/сутки]

Общие сведения

Угловая скорость в спорте

Угловая скорость и хранение данных на оптических носителях

Угловая скорость в космосе

Потолочный вентилятор, вращающийся со скоростью 250 оборотов в минуту

Общие сведения

Угловая скорость — это векторная величина, определяющая скорость вращения тела относительно оси вращения. Этот вектор направлен перпендикулярно плоскости вращения и определяется с помощью правила буравчика. Угловую скорость измеряют как отношение между углом, на который переместилось тело, то есть угловым смещением, и временем, на это потраченным. В системе СИ угловое ускорение измеряют в радианах в секунду.

Угловая скорость в спорте

Угловая скорость часто используется в спорте. Например, спортсмены уменьшают или увеличивают угловую скорость движения клюшки для гольфа, биты или ракетки, чтобы улучшить результаты. Угловая скорость связана с линейной скоростью так, что из всех точек на отрезке, вращающемся вокруг точки на этом отрезке, то есть вокруг центра вращения, самая отдаленная точка от этого центра движется с самой высокой линейной скоростью. Так, например, если клюшка для гольфа вращается, то конец этой клюшки, больше всего удаленный от центра вращения двигается с самой высокой линейной скоростью. В то же время все точки на этом отрезке движутся с одинаковой угловой скоростью. Поэтому удлиняя клюшку, биту, или ракетку, спортсмен также увеличивает линейную скорость, а соответственно скорость удара, передающуюся мячу, так что он может пролететь на большее расстояние. Укорачивая ракетку или клюшку, даже перехватив ее ниже, чем обычно, наоборот замедляют скорость удара.

При первобытнообщинном строе главными охотниками были мужчины

Спортсменам с более длинными руками и ногами удается добиться бо́льшей угловой скорости

У высоких людей с длинными конечностями есть преимущество в отношении линейной скорости. То есть, передвигая ноги с одинаковой угловой скоростью, они двигают ступни с более высокой линейной скоростью. То же происходит и с их руками. Такое преимущество может быть одной из причин того, что в первобытных обществах мужчины занимались охотой чаще, чем женщины. Вероятно, что из-за этого также в процессе эволюции выиграли более высокие люди. Длинные конечности помогали не только в беге, но и во время охоты — длинные руки бросали копья и камни с большей линейной скоростью. С другой стороны, длинные руки и ноги могут быть неудобством. Длинные конечности имеют больший вес и для их перемещения нужна дополнительная энергия. Кроме этого, когда человек быстро бежит, длинные ноги быстрее двигаются, а значит, при столкновении с препятствием удар будет сильнее, чем у людей с короткими ногами, которые двигаются с той же линейной скоростью.

В гимнастике, фигурном катании и нырянии также используют угловую скорость. Если спортсмен знает угловую скорость, то легко вычислить количество переворотов и других акробатических трюков во время прыжка. Во время кувырков спортсмены обычно прижимают ноги и руки как можно ближе к корпусу, чтобы уменьшить инерцию и увеличить ускорение, а значит и угловую скорость. С другой стороны, во время ныряния или приземления, судьи смотрят, как ровно спортсмен приземлился. На высокой скорости трудно регулировать направление полета, поэтому спортсмены специально замедляют угловую скорость, немного вытягивая от корпуса руки и ноги.

Спортсмены, которые занимаются метанием диска или молота, тоже контролируют линейную скорость с помощью угловой. Если просто бросить молот, не вращая его по кругу на длинной стальной проволоке, увеличивающей линейную скорость, то бросок будет не таким сильным, поэтому молот сначала раскручивают. Олимпийские спортсмены поворачиваются вокруг своей оси от трех до четырех раз, чтобы увеличить угловую скорость до максимально возможной.

Угловая скорость и хранение данных на оптических носителях

Диски в накопителе на жестких магнитных дисках («винчестере») вращаются со скоростями от 4&nbsp200 оборотов в минуту на портативных устройствах с низким энергопотреблением до 15&nbsp000 оборотов в минуту на высокоэффективных серверах

Во время записи данных на оптических носителях, например на компакт дисках (CD), для измерения скорости записи и считывания данных в приводе также используются угловая и линейная скорости. Существует несколько способов записи данных, во время которых используют переменную или постоянную линейную или угловую скорость. Так, например, режим постоянной линейной скорости (по-английски — Constant Linear Velocity или CVL) — один из основных методов записи дисков, при котором данные записывают с одинаковой скоростью по всей поверхности диска. Во время записи в режиме зональной постоянной линейной скорости (по-английски — Zone Constant Linear Velocity или ZCLV) постоянная скорость поддерживается во время записи на определенной части, то есть зоне диска. В этом случае диск замедляет вращение при записи на внешних зонах. Режим частично постоянной угловой скорости (Partial Constant Angular Velocity или PCAV) позволяет осуществлять запись с постепенным увеличением угловой скорости, пока она не достигнет определенного порога. После этого угловая скорость становится постоянной. Последний режим записи — режим постоянной угловой скорости (Constant Angular Velocity или CAV). В этом режиме во время записи по всей поверхности диска поддерживается одинаковая угловая скорость. При этом линейная скорость увеличивается по мере того, как записывающая головка перемещается все дальше и дальше к краю диска. Этот режим используется также при записи грампластинок и в компьютерных жестких дисках.

Угловая скорость в космосе

Геостационарная орбита

На расстоянии 35 786 километров (22 236 миль) от Земли находится орбита, на которой вращаются спутники. Это особенная орбита, потому что тела, вращающиеся на ней в одном направлении с Землей, проходят всю орбиту примерно за такое же время, которое требуется Земле, чтобы совершить полный круг вокруг своей оси. Это немного меньше 24 часов, то есть один сидерический день. Так как угловая скорость вращения тел на этой орбите равна угловой скорости вращения Земли, то наблюдателям с Земли кажется, что эти тела не движутся. Такая орбита называется геостационарной.

На эту орбиту обычно выводят спутники, которые отслеживают изменения погоды (метеорологические спутники), спутники, следящие за изменениями в океане и спутники связи, которые обеспечивают телевизионное и радиовещание, телефонную связь и спутниковый Интернет. Геостационарную орбиту часто используют для спутников потому, что антенны, один раз направленные на спутник, не нужно направлять вторично. С другой стороны, с их использованием связаны такие неудобства, как необходимость иметь прямое поле видимости между антенной и спутником. Кроме того, геостационарная орбита находится далеко от Земли и для передачи сигнала необходимо использовать более мощные передатчики, чем те, что используются для передачи с более низких орбит. Сигнал приходит с задержкой приблизительно в 0,25 секунды, что заметно для пользователей. Например, во время трансляции новостей корреспонденты в удаленных районах обычно связываются со студией по спутниковому каналу; при этом заметно, что когда телеведущий задает им вопрос, они отвечают с задержкой. Несмотря на это, спутники на геостационарной орбите широко используются. Например, до недавнего времени связь между континентами осуществлялась, главным образом, с помощью спутников. Сейчас ее в основном заменили межконтинентальные кабели, проложенные по океанскому дну; однако спутниковую связь до сих пор применяют в отдаленных районах. В последние двадцать лет спутники связи также обеспечивают доступ к интернету, особенно в отдаленных местах, где нет наземной инфраструктуры связи.

Спутниковые антенны

Срок службы спутника в основном определяется количеством топлива на борту, требуемым для периодической коррекции орбиты. Количество топлива в спутниках ограничено, поэтому когда оно заканчивается, спутники выводят из эксплуатации. Чаще всего их переводят на орбиту захоронения, то есть орбиту, намного выше геостационарной. Это — дорогостоящий процесс; однако если оставлять ненужные спутники на геостационарной орбите, это грозит вероятностью столкновений с другими спутниками. Место на геостационарной орбите ограничено, поэтому старые спутники, оставленные на орбите, будут занимать место, которое мог бы использовать новый спутник. В связи с этим во многих странах существуют нормы, требующие от владельцев спутников подписать договор о том, что в конце эксплуатации спутник будет выведен на орбиту захоронения.

Литература

Автор статьи: Kateryna Yuri

Unit Converter articles were edited and illustrated by Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер угловой скорости и частоты вращения» выполняются с помощью функций unitconversion.org.

www.translatorscafe.com

градус в час [°/ч] радиан в секунду [рад/с] • Механика • Конвертер угловой скорости и частоты вращения • Компактный калькулятор

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

1 градус в час [°/ч] = 4,84813681109536E-06 радиан в секунду [рад/с]

Общие сведения

Угловая скорость в спорте

Угловая скорость и хранение данных на оптических носителях

Угловая скорость в космосе

Потолочный вентилятор, вращающийся со скоростью 250 оборотов в минуту

Общие сведения

Угловая скорость — это векторная величина, определяющая скорость вращения тела относительно оси вращения. Этот вектор направлен перпендикулярно плоскости вращения и определяется с помощью правила буравчика. Угловую скорость измеряют как отношение между углом, на который переместилось тело, то есть угловым смещением, и временем, на это потраченным. В системе СИ угловое ускорение измеряют в радианах в секунду.

Угловая скорость в спорте

Угловая скорость часто используется в спорте. Например, спортсмены уменьшают или увеличивают угловую скорость движения клюшки для гольфа, биты или ракетки, чтобы улучшить результаты. Угловая скорость связана с линейной скоростью так, что из всех точек на отрезке, вращающемся вокруг точки на этом отрезке, то есть вокруг центра вращения, самая отдаленная точка от этого центра движется с самой высокой линейной скоростью. Так, например, если клюшка для гольфа вращается, то конец этой клюшки, больше всего удаленный от центра вращения двигается с самой высокой линейной скоростью. В то же время все точки на этом отрезке движутся с одинаковой угловой скоростью. Поэтому удлиняя клюшку, биту, или ракетку, спортсмен также увеличивает линейную скорость, а соответственно скорость удара, передающуюся мячу, так что он может пролететь на большее расстояние. Укорачивая ракетку или клюшку, даже перехватив ее ниже, чем обычно, наоборот замедляют скорость удара.

При первобытнообщинном строе главными охотниками были мужчины

Спортсменам с более длинными руками и ногами удается добиться бо́льшей угловой скорости

У высоких людей с длинными конечностями есть преимущество в отношении линейной скорости. То есть, передвигая ноги с одинаковой угловой скоростью, они двигают ступни с более высокой линейной скоростью. То же происходит и с их руками. Такое преимущество может быть одной из причин того, что в первобытных обществах мужчины занимались охотой чаще, чем женщины. Вероятно, что из-за этого также в процессе эволюции выиграли более высокие люди. Длинные конечности помогали не только в беге, но и во время охоты — длинные руки бросали копья и камни с большей линейной скоростью. С другой стороны, длинные руки и ноги могут быть неудобством. Длинные конечности имеют больший вес и для их перемещения нужна дополнительная энергия. Кроме этого, когда человек быстро бежит, длинные ноги быстрее двигаются, а значит, при столкновении с препятствием удар будет сильнее, чем у людей с короткими ногами, которые двигаются с той же линейной скоростью.

В гимнастике, фигурном катании и нырянии также используют угловую скорость. Если спортсмен знает угловую скорость, то легко вычислить количество переворотов и других акробатических трюков во время прыжка. Во время кувырков спортсмены обычно прижимают ноги и руки как можно ближе к корпусу, чтобы уменьшить инерцию и увеличить ускорение, а значит и угловую скорость. С другой стороны, во время ныряния или приземления, судьи смотрят, как ровно спортсмен приземлился. На высокой скорости трудно регулировать направление полета, поэтому спортсмены специально замедляют угловую скорость, немного вытягивая от корпуса руки и ноги.

Спортсмены, которые занимаются метанием диска или молота, тоже контролируют линейную скорость с помощью угловой. Если просто бросить молот, не вращая его по кругу на длинной стальной проволоке, увеличивающей линейную скорость, то бросок будет не таким сильным, поэтому молот сначала раскручивают. Олимпийские спортсмены поворачиваются вокруг своей оси от трех до четырех раз, чтобы увеличить угловую скорость до максимально возможной.

Угловая скорость и хранение данных на оптических носителях

Диски в накопителе на жестких магнитных дисках («винчестере») вращаются со скоростями от 4&nbsp200 оборотов в минуту на портативных устройствах с низким энергопотреблением до 15&nbsp000 оборотов в минуту на высокоэффективных серверах

Во время записи данных на оптических носителях, например на компакт дисках (CD), для измерения скорости записи и считывания данных в приводе также используются угловая и линейная скорости. Существует несколько способов записи данных, во время которых используют переменную или постоянную линейную или угловую скорость. Так, например, режим постоянной линейной скорости (по-английски — Constant Linear Velocity или CVL) — один из основных методов записи дисков, при котором данные записывают с одинаковой скоростью по всей поверхности диска. Во время записи в режиме зональной постоянной линейной скорости (по-английски — Zone Constant Linear Velocity или ZCLV) постоянная скорость поддерживается во время записи на определенной части, то есть зоне диска. В этом случае диск замедляет вращение при записи на внешних зонах. Режим частично постоянной угловой скорости (Partial Constant Angular Velocity или PCAV) позволяет осуществлять запись с постепенным увеличением угловой скорости, пока она не достигнет определенного порога. После этого угловая скорость становится постоянной. Последний режим записи — режим постоянной угловой скорости (Constant Angular Velocity или CAV). В этом режиме во время записи по всей поверхности диска поддерживается одинаковая угловая скорость. При этом линейная скорость увеличивается по мере того, как записывающая головка перемещается все дальше и дальше к краю диска. Этот режим используется также при записи грампластинок и в компьютерных жестких дисках.

Угловая скорость в космосе

Геостационарная орбита

На расстоянии 35 786 километров (22 236 миль) от Земли находится орбита, на которой вращаются спутники. Это особенная орбита, потому что тела, вращающиеся на ней в одном направлении с Землей, проходят всю орбиту примерно за такое же время, которое требуется Земле, чтобы совершить полный круг вокруг своей оси. Это немного меньше 24 часов, то есть один сидерический день. Так как угловая скорость вращения тел на этой орбите равна угловой скорости вращения Земли, то наблюдателям с Земли кажется, что эти тела не движутся. Такая орбита называется геостационарной.

На эту орбиту обычно выводят спутники, которые отслеживают изменения погоды (метеорологические спутники), спутники, следящие за изменениями в океане и спутники связи, которые обеспечивают телевизионное и радиовещание, телефонную связь и спутниковый Интернет. Геостационарную орбиту часто используют для спутников потому, что антенны, один раз направленные на спутник, не нужно направлять вторично. С другой стороны, с их использованием связаны такие неудобства, как необходимость иметь прямое поле видимости между антенной и спутником. Кроме того, геостационарная орбита находится далеко от Земли и для передачи сигнала необходимо использовать более мощные передатчики, чем те, что используются для передачи с более низких орбит. Сигнал приходит с задержкой приблизительно в 0,25 секунды, что заметно для пользователей. Например, во время трансляции новостей корреспонденты в удаленных районах обычно связываются со студией по спутниковому каналу; при этом заметно, что когда телеведущий задает им вопрос, они отвечают с задержкой. Несмотря на это, спутники на геостационарной орбите широко используются. Например, до недавнего времени связь между континентами осуществлялась, главным образом, с помощью спутников. Сейчас ее в основном заменили межконтинентальные кабели, проложенные по океанскому дну; однако спутниковую связь до сих пор применяют в отдаленных районах. В последние двадцать лет спутники связи также обеспечивают доступ к интернету, особенно в отдаленных местах, где нет наземной инфраструктуры связи.

Спутниковые антенны

Срок службы спутника в основном определяется количеством топлива на борту, требуемым для периодической коррекции орбиты. Количество топлива в спутниках ограничено, поэтому когда оно заканчивается, спутники выводят из эксплуатации. Чаще всего их переводят на орбиту захоронения, то есть орбиту, намного выше геостационарной. Это — дорогостоящий процесс; однако если оставлять ненужные спутники на геостационарной орбите, это грозит вероятностью столкновений с другими спутниками. Место на геостационарной орбите ограничено, поэтому старые спутники, оставленные на орбите, будут занимать место, которое мог бы использовать новый спутник. В связи с этим во многих странах существуют нормы, требующие от владельцев спутников подписать договор о том, что в конце эксплуатации спутник будет выведен на орбиту захоронения.

Литература

Автор статьи: Kateryna Yuri

Unit Converter articles were edited and illustrated by Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер угловой скорости и частоты вращения» выполняются с помощью функций unitconversion.org.

www.translatorscafe.com

градус в секунду [°/с] градус в минуту [°/мин] • Механика • Конвертер угловой скорости и частоты вращения • Компактный калькулятор

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

1 градус в секунду [°/с] = 59,9999999999998 градус в минуту [°/мин]

Общие сведения

Угловая скорость в спорте

Угловая скорость и хранение данных на оптических носителях

Угловая скорость в космосе

Потолочный вентилятор, вращающийся со скоростью 250 оборотов в минуту

Общие сведения

Угловая скорость — это векторная величина, определяющая скорость вращения тела относительно оси вращения. Этот вектор направлен перпендикулярно плоскости вращения и определяется с помощью правила буравчика. Угловую скорость измеряют как отношение между углом, на который переместилось тело, то есть угловым смещением, и временем, на это потраченным. В системе СИ угловое ускорение измеряют в радианах в секунду.

Угловая скорость в спорте

Угловая скорость часто используется в спорте. Например, спортсмены уменьшают или увеличивают угловую скорость движения клюшки для гольфа, биты или ракетки, чтобы улучшить результаты. Угловая скорость связана с линейной скоростью так, что из всех точек на отрезке, вращающемся вокруг точки на этом отрезке, то есть вокруг центра вращения, самая отдаленная точка от этого центра движется с самой высокой линейной скоростью. Так, например, если клюшка для гольфа вращается, то конец этой клюшки, больше всего удаленный от центра вращения двигается с самой высокой линейной скоростью. В то же время все точки на этом отрезке движутся с одинаковой угловой скоростью. Поэтому удлиняя клюшку, биту, или ракетку, спортсмен также увеличивает линейную скорость, а соответственно скорость удара, передающуюся мячу, так что он может пролететь на большее расстояние. Укорачивая ракетку или клюшку, даже перехватив ее ниже, чем обычно, наоборот замедляют скорость удара.

При первобытнообщинном строе главными охотниками были мужчины

Спортсменам с более длинными руками и ногами удается добиться бо́льшей угловой скорости

У высоких людей с длинными конечностями есть преимущество в отношении линейной скорости. То есть, передвигая ноги с одинаковой угловой скоростью, они двигают ступни с более высокой линейной скоростью. То же происходит и с их руками. Такое преимущество может быть одной из причин того, что в первобытных обществах мужчины занимались охотой чаще, чем женщины. Вероятно, что из-за этого также в процессе эволюции выиграли более высокие люди. Длинные конечности помогали не только в беге, но и во время охоты — длинные руки бросали копья и камни с большей линейной скоростью. С другой стороны, длинные руки и ноги могут быть неудобством. Длинные конечности имеют больший вес и для их перемещения нужна дополнительная энергия. Кроме этого, когда человек быстро бежит, длинные ноги быстрее двигаются, а значит, при столкновении с препятствием удар будет сильнее, чем у людей с короткими ногами, которые двигаются с той же линейной скоростью.

В гимнастике, фигурном катании и нырянии также используют угловую скорость. Если спортсмен знает угловую скорость, то легко вычислить количество переворотов и других акробатических трюков во время прыжка. Во время кувырков спортсмены обычно прижимают ноги и руки как можно ближе к корпусу, чтобы уменьшить инерцию и увеличить ускорение, а значит и угловую скорость. С другой стороны, во время ныряния или приземления, судьи смотрят, как ровно спортсмен приземлился. На высокой скорости трудно регулировать направление полета, поэтому спортсмены специально замедляют угловую скорость, немного вытягивая от корпуса руки и ноги.

Спортсмены, которые занимаются метанием диска или молота, тоже контролируют линейную скорость с помощью угловой. Если просто бросить молот, не вращая его по кругу на длинной стальной проволоке, увеличивающей линейную скорость, то бросок будет не таким сильным, поэтому молот сначала раскручивают. Олимпийские спортсмены поворачиваются вокруг своей оси от трех до четырех раз, чтобы увеличить угловую скорость до максимально возможной.

Угловая скорость и хранение данных на оптических носителях

Диски в накопителе на жестких магнитных дисках («винчестере») вращаются со скоростями от 4&nbsp200 оборотов в минуту на портативных устройствах с низким энергопотреблением до 15&nbsp000 оборотов в минуту на высокоэффективных серверах

Во время записи данных на оптических носителях, например на компакт дисках (CD), для измерения скорости записи и считывания данных в приводе также используются угловая и линейная скорости. Существует несколько способов записи данных, во время которых используют переменную или постоянную линейную или угловую скорость. Так, например, режим постоянной линейной скорости (по-английски — Constant Linear Velocity или CVL) — один из основных методов записи дисков, при котором данные записывают с одинаковой скоростью по всей поверхности диска. Во время записи в режиме зональной постоянной линейной скорости (по-английски — Zone Constant Linear Velocity или ZCLV) постоянная скорость поддерживается во время записи на определенной части, то есть зоне диска. В этом случае диск замедляет вращение при записи на внешних зонах. Режим частично постоянной угловой скорости (Partial Constant Angular Velocity или PCAV) позволяет осуществлять запись с постепенным увеличением угловой скорости, пока она не достигнет определенного порога. После этого угловая скорость становится постоянной. Последний режим записи — режим постоянной угловой скорости (Constant Angular Velocity или CAV). В этом режиме во время записи по всей поверхности диска поддерживается одинаковая угловая скорость. При этом линейная скорость увеличивается по мере того, как записывающая головка перемещается все дальше и дальше к краю диска. Этот режим используется также при записи грампластинок и в компьютерных жестких дисках.

Угловая скорость в космосе

Геостационарная орбита

На расстоянии 35 786 километров (22 236 миль) от Земли находится орбита, на которой вращаются спутники. Это особенная орбита, потому что тела, вращающиеся на ней в одном направлении с Землей, проходят всю орбиту примерно за такое же время, которое требуется Земле, чтобы совершить полный круг вокруг своей оси. Это немного меньше 24 часов, то есть один сидерический день. Так как угловая скорость вращения тел на этой орбите равна угловой скорости вращения Земли, то наблюдателям с Земли кажется, что эти тела не движутся. Такая орбита называется геостационарной.

На эту орбиту обычно выводят спутники, которые отслеживают изменения погоды (метеорологические спутники), спутники, следящие за изменениями в океане и спутники связи, которые обеспечивают телевизионное и радиовещание, телефонную связь и спутниковый Интернет. Геостационарную орбиту часто используют для спутников потому, что антенны, один раз направленные на спутник, не нужно направлять вторично. С другой стороны, с их использованием связаны такие неудобства, как необходимость иметь прямое поле видимости между антенной и спутником. Кроме того, геостационарная орбита находится далеко от Земли и для передачи сигнала необходимо использовать более мощные передатчики, чем те, что используются для передачи с более низких орбит. Сигнал приходит с задержкой приблизительно в 0,25 секунды, что заметно для пользователей. Например, во время трансляции новостей корреспонденты в удаленных районах обычно связываются со студией по спутниковому каналу; при этом заметно, что когда телеведущий задает им вопрос, они отвечают с задержкой. Несмотря на это, спутники на геостационарной орбите широко используются. Например, до недавнего времени связь между континентами осуществлялась, главным образом, с помощью спутников. Сейчас ее в основном заменили межконтинентальные кабели, проложенные по океанскому дну; однако спутниковую связь до сих пор применяют в отдаленных районах. В последние двадцать лет спутники связи также обеспечивают доступ к интернету, особенно в отдаленных местах, где нет наземной инфраструктуры связи.

Спутниковые антенны

Срок службы спутника в основном определяется количеством топлива на борту, требуемым для периодической коррекции орбиты. Количество топлива в спутниках ограничено, поэтому когда оно заканчивается, спутники выводят из эксплуатации. Чаще всего их переводят на орбиту захоронения, то есть орбиту, намного выше геостационарной. Это — дорогостоящий процесс; однако если оставлять ненужные спутники на геостационарной орбите, это грозит вероятностью столкновений с другими спутниками. Место на геостационарной орбите ограничено, поэтому старые спутники, оставленные на орбите, будут занимать место, которое мог бы использовать новый спутник. В связи с этим во многих странах существуют нормы, требующие от владельцев спутников подписать договор о том, что в конце эксплуатации спутник будет выведен на орбиту захоронения.

Литература

Автор статьи: Kateryna Yuri

Unit Converter articles were edited and illustrated by Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер угловой скорости и частоты вращения» выполняются с помощью функций unitconversion.org.

www.translatorscafe.com

Как найти периметр трапеции прямоугольной – Как найти периметр равнобедренной трапеции 🚩 площадь и периметр трапеции 🚩 Математика

Как найти периметр прямоугольной трапеции

Трапеция — четырехугольник с двумя параллельными основаниями и не параллельными боковыми сторонами. Прямоугольная трапеция имеет прямой угол при одной боковой стороне.

Инструкция

  • Периметр прямоугольной трапеции равен сумме длин сторон двух оснований и двух боковых сторон. Задача 1. Найдите периметр прямоугольной трапеции, если известны длины всех его сторон. Для этого сложите все четыре значения: P (периметр) = a + b + c + d.Это самый простой вариант нахождения периметра, задачи с другими начальными данными, в конечном итоге, сводятся к ней. Рассмотрим варианты.
  • Задача 2.Найдите периметр прямоугольной трапеции, если известно нижнее основание AD = a, не перпендикулярная ему боковая сторона CD = d, а угол при этой боковой стороне ADC равен Альфа.Решение.Проведите высоту трапеции из вершины C на большее основание, получим отрезок CE, трапеция разделилась на две фигуры — прямоугольник ABCE и прямоугольный треугольник ECD. Гипотенуза треугольника — это известная нам боковая сторона трапеции CD, один из катетов равен перпендикулярной боковой стороне трапеции (по правилу прямоугольника две параллельные стороны равны — AB = CE), а другой — отрезок, длина которого равна разности оснований трапеции ED = AD — BC.
  • Найдите катеты треугольника: по существующим формулам CE = CD*sin(ADC) и ED = CD*cos(ADC).Теперь вычислите верхнее основание — BC = AD — ED = a — CD*cos(ADC) = a — d*cos(Альфа).Узнайте длину перпендикулярной боковой стороны — AB = CE = d*sin(Альфа).Итак, вы получили длины всех сторон прямоугольной трапеции.
  • Сложите полученные значения, это и будет периметр прямоугольной трапеции😛 = AB + BC + CD + AD = d*sin(Альфа) + (a — d*cos(Альфа)) + d + a = 2*a + d*(sin(Альфа) — cos(Альфа) + 1).
  • Задача 3.Найдите периметр прямоугольной трапеции, если известны длины его оснований AD = a, BC = c, длина перпендикулярной боковой стороны AB = b и острый угол при другой боковой стороне ADC = Альфа.Решение.Проведите перпендикуляр CE, получите прямоугольник ABCE и треугольник CED.Теперь найдите длину гипотенузы треугольника CD = AB/sin(ADC) = b/sin(Альфа).Итак, вы получили длины всех сторон.
  • Сложите полученные значения:P = AB + BC + CD + AD = b + c + b/sin(Альфа) + a = a + b*(1+1/sin(Альфа) + с.

completerepair.ru

Как найти периметр трапеции?

Периметр любой фигуры находится как сумма длин всех ее сторон.
Трапеция представляет собой четырехугольник, у которого две стороны параллельны, а две другие – нет. Если обозначить длины сторон произвольной трапеции как a, b, c и d, то периметр трапеции, который обозначается буквой Р (для любой фигуры) будет равен:

   


Пример.
Дана трапеция, длины сторон которой равны 121 см, 345 см, 234 см и 205 см. Найти периметр данной трапеции.

Решение:
Для нахождения периметра трапеции добавим все ее длины сторон:

   

Ответ: (см).

У равнобокой трапеции боковые стороны равны.

На рисунке показана равнобокая трапеция, боковые стороны которой .

Тогда периметр равнобокой трапеции можно записать несколько сокращенным способом, а именно:

   

Пример.
В равнобокой трапеции основания равны 11 и 23 см, а высота, проведенная к большему основанию, равна 17 см. Найти периметр данной трапеции.
Решение:
Воспользуемся рисунком с обозначенной высотой ВК.

Проведем еще одну высоту к большему основанию – CN. В результате получим прямоугольник BCNK. По определению прямоугольника стороны BC=KN. Получившиеся треугольники и являются прямоугольными и равными между собой. Таким образом AK=ND. Тогда . Выразим из последнего равенства АК:

   

Подставим известные величины:

   

Воспользуемся теоремой Пифагора и найдем из  сторону AB:

   

Теперь можем найти периметр данной равнобокой трапеции:

   

Ответ: .

ru.solverbook.com

Как найти периметр трапеции Как? Так!

Содержимое:

3 метода:

Трапеция – это четырехугольник с двумя параллельными сторонами. Чтобы найти периметр трапеции, нужно сложить длины всех четырех сторон. Зачастую в задачах длины некоторых сторон не даны, но известны другие величины, например, высота или угол трапеции. При помощи известных величин, а также геометрических и тригонометрических правил можно найти неизвестные стороны трапеции.

Шаги

Метод 1 По известным боковым сторонам и основаниям

  1. 1 Запишите формулу для вычисления периметра трапеции. Формула: P=T+B+L+R
  2. 2 В формулу подставьте известные длины сторон. Не используйте этот метод, если не даны значения всех четырех сторон.
    • Например, верхнее основание трапеции равно 2 см, нижнее основание равно 3 см, а каждая боковая сторона равна 1 см. В этом случае формула примет следующий вид:
      P=2+3+1+1 3 Сложите длины сторон. Так вы найдете периметр трапеции.
      • В нашем примере:
        P=2+3+1+1

        Метод 2 По известным высоте, боковым сторонам и верхнему основанию

        1. 1 Разбейте трапецию на прямоугольник и два прямоугольных треугольника. Для этого из каждой вершины трапеции проведите высоту.
          • Если одна сторона трапеции перпендикулярна основаниям, вы не сможете получить два прямоугольных треугольника. В этом случае боковая сторона, перпендикулярная основаниям, равна высоте, а трапеция разбивается на прямоугольник и один прямоугольный треугольник.
        2. 2 Обозначьте каждую высоту. Так как высоты являются противоположными сторонами прямоугольника, они равны.
          • Например, высота трапеции равна 6 см. Из вершин трапеции проведите две высоты (к нижнему основанию). Возле каждой высоты напишите «6 см» (без кавычек).
        3. 3 Обозначьте среднюю часть нижнего основания (она является нижней стороной прямоугольника). Эта часть равна верхнему основанию (то есть верхней стороне прямоугольника), так как противоположные стороны прямоугольника равны. Не используйте этот метод, если не дано значение верхнего основания.
          • Например, если верхнее основание трапеции равно 6 см, то средняя часть нижнего основания также равна 6 см.
        4. 4 Запишите теорему Пифагора для первого прямоугольного треугольника. Формула: a2+b2=c2
        5. 5 В формулу подставьте известные величины первого треугольника. Боковую сторону трапеции подставьте вместо c 6 Возведите в квадрат известные значения. Затем при помощи вычитания обособьте переменную b 7 Извлеките квадратный корень, чтобы найти b.) Вы найдете основание первого прямоугольного треугольника. Напишите найденное значение под основанием соответствующего треугольника.
          • В нашем примере:
            b2=45 8 Найдите неизвестную сторону второго прямоугольного треугольника. Для этого запишите теорему Пифагора для второго треугольника и действуйте так, как описано выше. Если дана равнобедренная трапеция, у которой боковые стороны равны,то два прямоугольных треугольника являются равными, то есть любая сторона одного треугольника равна соответствующей стороне другого.
            • Например, если вторая боковая сторона трапеции равна 7 см, то формула запишется так:
              a2+b2=c2 9 Сложите значения всех сторон трапеции. Периметр любого многоугольника равен сумме всех его сторон:P=T+B+L+R

              Метод 3 По известным высоте, основаниям и нижним углам

              1. 1 Разбейте трапецию на прямоугольник и два прямоугольных треугольника. Для этого из каждой вершины трапеции проведите высоту.
                • Если одна сторона трапеции перпендикулярна основаниям, вы не сможете получить два прямоугольных треугольника. В этом случае боковая сторона, перпендикулярная основаниям, равна высоте, а трапеция разбивается на прямоугольник и один прямоугольный треугольник.
              2. 2 Обозначьте каждую высоту. Так как высоты являются противоположными сторонами прямоугольника, они равны.
                • Например, высота трапеции равна 6 см. Из вершин трапеции проведите две высоты (к нижнему основанию). Возле каждой высоты напишите «6 см» (без кавычек).
              3. 3 Обозначьте среднюю часть нижнего основания (она является нижней стороной прямоугольника). Эта часть равна верхнему основанию (то есть верхней стороне прямоугольника), так как противоположные стороны прямоугольника равны.
                • Например, если верхнее основание трапеции равно 6 см, то средняя часть нижнего основания также равна 6 см.
              4. 4 Напишите функцию (формулу) синуса угла первого прямоугольного треугольника. Функция: sin⁡θ=BH 5 В формулу синуса подставьте известные величины. Вместо противоположной стороны подставьте высоту треугольника. Вы найдете гипотенузу, то есть боковую сторону трапеции.
                • Например, если нижний угол трапеции равен 35 градусов, а высота треугольника равна 6 см, то формула запишется так:
                  sin⁡(35)=6H 6 Найдите синус угла. Это делается при помощи научного калькулятора, а именно клавиши SIN. Найденное значение подставьте в формулу.
                  • При помощи калькулятора вы найдете, что синус угла в 35 градусов приблизительно равен 0,5738. Таким образом, формула примет следующий вид:
                    0,5738=6H 7 Найдите переменную H. Для этого каждую сторону уравнения (формулы) умножьте на Н, а затем каждую сторону уравнения разделите на синус угла. Или просто разделите высоту треугольника на синус угла.
                    • В нашем примере:
                      0,5738=6H 8 Найдите гипотенузу второго прямоугольного треугольника. Напишите функцию (формулу) синуса угла второго прямоугольного треугольника: sin⁡θ=BH 9 Запишите теорему Пифагора для первого прямоугольного треугольника. Формула: a2+b2=c2 10 В формулу подставьте известные величины первого треугольника. Боковую сторону трапеции подставьте вместо c 11 Найдите b 12 Найдите основание второго прямоугольного треугольника. Для этого воспользуйтесь теоремой Пифагора (a2+b2=c2 13 Сложите значения всех сторон трапеции. Периметр любого многоугольника равен сумме всех его сторон:P=T+B+L+R или треугольник 90-45-45) существуют формулы, при помощи которых можно найти неизвестные стороны без использования функции синуса или теоремы Пифагора.
                    • Чтобы найти синус угла, воспользуйтесь научным калькулятором – введите угол, а затем нажмите клавишу SIN. Или используйте тригонометрические таблицы.

                    Что вам понадобится

                    • Калькулятор
                    • Карандаш
                    • Бумага

Прислал: Лебедева Мария . 2017-11-06 17:23:24

kak-otvet.imysite.ru

Сколько дней до 19 ноября 2019 – Сколько осталось дней до 19.11.2019

Сколько осталось дней до 19.11.2019


Осталось времени до этой даты

ДНИ ЧАСЫ МИНУТЫ СЕКУНДЫ
Скопируйте код счетчика себе на сайт или в блог:
Осталось времени
Лет 0
месяцев 5
недель 23
дней 163
часов 3918
минут 235117
секунд 14107043

  • Луна будет в Последней четверти, 21.1 лунный день
  • Продолжительность дня 7 часов 57 минут
  • Длина ночи 16 часов 3 минут
  • Знак зодиака Скорпион. По лунному календарю – это влажный плодородный знак. Благоприятное время для борьбы с вредителями и болезнями, сбора урожая для длительного хранения. Благоприятное время для любых посадок и пересадок, ухода за цветами.
  • Год Свиньи по китайскому гороскопу

Другие графические счетчики оставшегося времени 2019 года:


Бесплатные калькуляторы дат

date.kalkulator.pro

Сколько осталось дней до 19.11.2021


Осталось времени до этой даты

ДНИ ЧАСЫ МИНУТЫ СЕКУНДЫ
Скопируйте код счетчика себе на сайт или в блог:
Осталось времени
Лет 2
месяцев 28
недель 127
дней 894
часов 21462
минут 1287757
секунд 77265443

  • Луна будет Полная, 14.3 лунный день
  • Продолжительность дня 7 часов 55 минут
  • Длина ночи 16 часов 5 минут
  • Знак зодиака Скорпион. По лунному календарю – это влажный плодородный знак. Благоприятное время для борьбы с вредителями и болезнями, сбора урожая для длительного хранения. Благоприятное время для любых посадок и пересадок, ухода за цветами.
  • Год Быка по китайскому гороскопу

Другие графические счетчики оставшегося времени 2021 года:


Бесплатные калькуляторы дат

date.kalkulator.pro

Сколько осталось дней до 02.11.2019


Осталось времени до этой даты

ДНИ ЧАСЫ МИНУТЫ СЕКУНДЫ
Скопируйте код счетчика себе на сайт или в блог:
Осталось времени
Лет 0
месяцев 4
недель 20
дней 146
часов 3510
минут 210637
секунд 12638243

  • Луна будет Молодая, 5 лунный день
  • Продолжительность дня 9 часов 3 минут
  • Длина ночи 14 часов 57 минут
  • Знак зодиака Скорпион. По лунному календарю – это влажный плодородный знак. Благоприятное время для борьбы с вредителями и болезнями, сбора урожая для длительного хранения. Благоприятное время для любых посадок и пересадок, ухода за цветами.
  • Год Свиньи по китайскому гороскопу

Другие графические счетчики оставшегося времени 2019 года:


Бесплатные калькуляторы дат

date.kalkulator.pro

Сколько осталось дней до 17.11.2019


Осталось времени до этой даты

ДНИ ЧАСЫ МИНУТЫ СЕКУНДЫ
Скопируйте код счетчика себе на сайт или в блог:
Осталось времени
Лет 0
месяцев 5
недель 23
дней 161
часов 3870
минут 232237
секунд 13934243

  • Луна будет Убывающая, 19 лунный день
  • Продолжительность дня 8 часов 4 минут
  • Длина ночи 15 часов 56 минут
  • Знак зодиака Скорпион. По лунному календарю – это влажный плодородный знак. Благоприятное время для борьбы с вредителями и болезнями, сбора урожая для длительного хранения. Благоприятное время для любых посадок и пересадок, ухода за цветами.
  • Год Свиньи по китайскому гороскопу

Другие графические счетчики оставшегося времени 2019 года:


Бесплатные калькуляторы дат

date.kalkulator.pro

Сколько осталось дней до 18.11.2019


Осталось времени до этой даты

ДНИ ЧАСЫ МИНУТЫ СЕКУНДЫ
Скопируйте код счетчика себе на сайт или в блог:
Осталось времени
Лет 0
месяцев 5
недель 23
дней 162
часов 3894
минут 233677
секунд 14020643

  • Луна будет Убывающая, 20 лунный день
  • Продолжительность дня 8 часов 0 минут
  • Длина ночи 16 часов 0 минут
  • Знак зодиака Скорпион. По лунному календарю – это влажный плодородный знак. Благоприятное время для борьбы с вредителями и болезнями, сбора урожая для длительного хранения. Благоприятное время для любых посадок и пересадок, ухода за цветами.
  • Год Свиньи по китайскому гороскопу

Другие графические счетчики оставшегося времени 2019 года:


Бесплатные калькуляторы дат

date.kalkulator.pro

Сколько осталось дней до 09.11.2019


Осталось времени до этой даты

ДНИ ЧАСЫ МИНУТЫ СЕКУНДЫ
Скопируйте код счетчика себе на сайт или в блог:
Осталось времени
Лет 0
месяцев 4
недель 21
дней 153
часов 3678
минут 220717
секунд 13243043

  • Луна будет Прибывающая, 11.3 лунный день
  • Продолжительность дня 8 часов 34 минут
  • Длина ночи 15 часов 26 минут
  • Знак зодиака Скорпион. По лунному календарю – это влажный плодородный знак. Благоприятное время для борьбы с вредителями и болезнями, сбора урожая для длительного хранения. Благоприятное время для любых посадок и пересадок, ухода за цветами.
  • Год Свиньи по китайскому гороскопу

Другие графические счетчики оставшегося времени 2019 года:


Бесплатные калькуляторы дат

date.kalkulator.pro

Сколько осталось дней до 27.11.2019


Осталось времени до этой даты

ДНИ ЧАСЫ МИНУТЫ СЕКУНДЫ
Скопируйте код счетчика себе на сайт или в блог:
Осталось времени
Лет 0
месяцев 5
недель 24
дней 171
часов 4110
минут 246637
секунд 14798243

  • Луна будет Новая, 0.3 лунный день
  • Продолжительность дня 7 часов 31 минут
  • Длина ночи 16 часов 29 минут
  • Знак зодиака Стрелец. По лунному календарю – это сухой бесплодный знак. Благоприятен для работ с почвой, но не для посадок и пересадок. Из ухода эффективен только полив растений.
  • Год Свиньи по китайскому гороскопу

Другие графические счетчики оставшегося времени 2019 года:


Бесплатные калькуляторы дат

date.kalkulator.pro

Deg на калькуляторе что это – DEG на калькуляторе что это

Конвертировать Градусов в Радианы (deg → rad)

1 Градусов = 0.0175 Радианы10 Градусов = 0.1745 Радианы2500 Градусов = 43.6332 Радианы
2 Градусов = 0.0349 Радианы20 Градусов = 0.3491 Радианы5000 Градусов = 87.2665 Радианы
3 Градусов = 0.0524 Радианы30 Градусов = 0.5236 Радианы10000 Градусов = 174.53 Радианы
4 Градусов = 0.0698 Радианы40 Градусов = 0.6981 Радианы25000 Градусов = 436.33 Радианы
5 Градусов = 0.0873 Радианы50 Градусов = 0.8727 Радианы50000 Градусов = 872.66 Радианы
6 Градусов = 0.1047 Радианы100 Градусов = 1.7453 Радианы100000 Градусов = 1745.33 Радианы
7 Градусов = 0.1222 Радианы250 Градусов = 4.3633 Радианы250000 Градусов = 4363.32 Радианы
8 Градусов = 0.1396 Радианы500 Градусов = 8.7266 Радианы500000 Градусов = 8726.65 Радианы
9 Градусов = 0.1571 Радианы1000 Градусов = 17.4533 Радианы1000000 Градусов = 17453.29 Радианы

convertlive.com

Кнопки калькулятора онлайн

Калькулятор онлайн может стать верным помощником предпринимателям и их сотрудникам, профессионально занимающихся финансовыми расчетами. Наш калькулятор может стать палочкой-выручалочкой для бухгалтера или финансиста. В любом случае, если ваш бизнес или трудовая деятельность напрямую или косвенно связаны с постоянными вычислениями и расчетами, то стоит испытать предлагаемый бесплатный калькулятор, оценить степень его точности и функциональности для нужд конкретного дела.

В таблице ниже указаны все кнопки калькулятора онлайн (виртуальные клавиши) и выполняемые ими операции.

КлавишаСимволОперация
pipiПостоянная pi
ееЧисло Эйлера
%%Процент
( )( )Открыть/Закрыть скобки
,,Запятая
sinsin(α)Синус угла
coscos(β)Косинус
tantan(y)Тангенс
sinhsinh()Гиперболический синус
coshcosh()Гиперболический косинус
tanhtanh()Гиперболический тангенс
sin-1asin()Обратный синус
cos-1acos()Обратный косинус
tan-1atan()Обратный тангенс
sinh-1asinh()Обратный гиперболический синус
cosh-1acosh()Обратный гиперболический косинус
tanh-1atanh()Обратный гиперболический тангенс
x2^2Возведение в квадрат
х3^3Возведение в куб
xy^Возведение в степень
10x10^()Возведение в степень по основанию 10
exexp()Возведение в степень числа Эйлера
√xsqrt(x)Квадратный корень
3√xsqrt3(x)Корень 3-ей степени
y√xsqrt(x,y)Извлечение корня
log2xlog2(x)Двоичный логарифм
loglog(x)Десятичный логарифм
lnln(x)Натуральный логарифм
logyxlog(x,y)Логарифм
I / IIСворачивание/Вызов дополнительных функций
UnitКонвертер величин
MatrixМатрицы
SolveУравнения и системы уравнений
Построение графиков
Дополнительные функции (вызов клавишей II)
modmodДеление с остатком
!!Факториал
i / ji / jМнимая единица
ReRe()Выделение целой действительной части
ImIm()Исключение действительной части
|x|abs()Модуль числа
Argarg()Аргумент функции
nCrncr()Биноминальный коэффициент
gcdgcd()НОД
lcmlcm()НОК
sumsum()Суммарное значение всех решений
facfactorize()Разложение на простые множители
diffdiff()Дифференцирование
DegГрадусы
RadРадианы

 

На этом предлагаем закончить изучение кнопок онлайн калькулятора и перейти к рассмотрению его функций. Функции онлайн калькулятора >>

Кнопки калькулятора онлайн was last modified: Март 3rd, 2016 by Admin

compuzilla.ru

Как на калькуляторе посчитать число в степени? Помогите, пожалуйста!!

Вид — Инженерный, вводишь значение числа, которое ты хочешь возвести в искомую степень x находишь функцию x^y, нажимаешь на эту кнопку и вводишь значение степени y, нажимаешь = или Enter

число умножь само на себя столько раз в какой степени надо)))) а так в зависимости от твоего калькулятора

на инженерном калькуляторе можно посчитать!!!! ну или на кампе открой калькулятор и в кладке вид измени на инженерный и потом вводишь число которое надо ввести в степнь и нажимаешь x^y и потом жмешь свою степень какая нужна

Если у тебя инженерный калькулятор, там обычно бывает x^y кнопочка (вводишь число — потом нажимаешь кнопку — потом степень) . И смотри внимательно: если на одной кнопке написано несколько действий, чтобы выполнить второе из них, может быть надо раскладку поменять (обычно кнопка в левом верхнем углу) . А так можно просто число умножить само на себя сколько раз надо…

на инженерном есть кнопка степеня (иногда обозначается птичкой «^»). На простых иногда можно ввести основу, нажать умножение и потом нажимать равно столько раз, какая степень нужна. Допустим надо 2^10 = вводим 2, жмем * и 10 раз жмем = Да, и ещё позвольте поинтересоватся — нахрена вам 1627 степень числа? Ни один физический калькулятор такое число не сьест, это разве что на компе в каком-нить продвинутом (может быть даже в маткаде) P. S. Ещё a^b=exp(b*ln(a)) где exp — экспонента

touch.otvet.mail.ru

Калькулятор Инструкция по применению. Функции калькулятора. Кнопки калькулятора.

Материал этой страницы содержит общую информацию из подготовленной нами справки «Калькулятор Инструкция по применению». Каждая функция калькулятора подробно рассматривается в соответствующих разделах инструкции.

Предлагаемый вашему вниманию бесплатный калькулятор располагает богатым арсеналом возможностей для математических вычислений. Он позволяет использовать онлайн калькулятор в различных сферах деятельности: образовательной, профессиональной и коммерческой. Конечно, применение калькулятора онлайн особенно популярно у студентов и школьников, он значительно облегчает им выполнение самых разных расчётов.

Вместе с тем калькулятор может стать полезным инструментом в некоторых направлениях бизнеса и для людей разных профессий. Безусловно, необходимость применения калькулятора в бизнесе или трудовой деятельности определяется прежде всего видом самой деятельности. Если бизнес и профессия связаны с постоянными расчётами и вычислениями, то стоит опробовать электронный калькулятор и оценить степень его полезности для конкретного дела.

Функции калькулятора

Ниже перечислены все функции калькулятора. Этот перечень поможет определить, пригодится ли вам подобный сервис, и как можно использовать калькулятор онлайн для решения своих задач в бизнесе, работе и учёбе.

Дополнительные функции калькулятора:

  • Деление с остатком
  • Нахождение факториала
  • Использование мнимой единицы при расчётах комплексных чисел
  • Выделение целой действительной части
  • Исключение действительной части
  • Нахождение абсолютной величины числа
  • Нахождение значения аргумента функции
  • Нахождение биноминального коэффициента
  • Нахождение наибольшего общего делителя
  • Нахождение наименьшего общего кратного
  • Суммарное значение всех решений
  • Разложение числа на простые множители
  • Функция дифференцирования

Основные функции калькулятора:

В целом online калькулятор предлагает приятный и удобный интерфейс, его кнопки имеют интуитивно понятные обозначения. Управлять калькулятором можно как с помощью мыши, используя панель задач калькулятора, так и посредством клавиатуры вашего компьютера. Порядок ввода математического выражения не имеет значения, просто пользователь выбирает удобный для него способ внесения записи.

Рабочая область калькулятора включает в себя дисплей, поле ввода выражения, панель инструментов и цифровую клавиатуру.

1. Дисплей (экран калькулятора) отображает введенное выражение и результат его расчёта обычными символами, как мы пишем на бумаге. Это поле предназначено просто для просмотра текущей операции. Запись отображается на дисплее по мере набора математического выражения в строке ввода.

2. Поле ввода выражения предназначено для записи выражения, которое нужно вычислить. Здесь следует отметить, что математические символы, используемые в компьютерных программах, не всегда совпадают с теми, которые обычно мы применяем на бумаге. В обзоре каждой функции калькулятора вы найдёте правильное обозначение конкретной операции и примеры расчётов в калькуляторе. На этой странице ниже приводится перечень всех возможных операций в калькуляторе, также с указанием их правильного написания.

3. Панель инструментов — это кнопки калькулятора, которые заменяют ручной ввод математических символов, обозначающих соответствующую операцию. Некоторые кнопки калькулятора (дополнительные функции, конвертер величин, решение матриц и уравнений, графики) дополняют панель задач новыми полями, где вводятся данные для конкретного расчёта. Поле «History» содержит примеры написания математических выражений, а также ваши шесть последних записей.

Обратите внимание, при нажатии кнопок вызова дополнительных функций, конвертера величин, решения матриц и уравнений, построения графиков вся панель калькулятора смещается вверх, закрывая часть дисплея. Заполните необходимые поля и нажмите клавишу «I» (на рисунке выделена красным цветом), чтобы увидеть дисплей в полный размер.

4. Цифровая клавиатура содержит цифры и знаки арифметических действий. Кнопка «С» удаляет всю запись в поле ввода выражения. Чтобы удалять символы по одному, нужно использовать стрелочку справа от строки ввода.

Старайтесь всегда закрывать скобки в конце выражения. Для большинства операций это некритично, калькулятор online рассчитает всё верно. Однако, в некоторых случаях возможны ошибки. Например, при возведении в дробную степень незакрытые скобки приведут к тому, что знаменатель дроби в показателе степени уйдет в знаменатель основания. На дисплее закрывающая скобка обозначена бледно-серым цветом, её нужно закрыть, когда запись закончена.

Кнопки калькулятора

В списке ниже указаны все клавиши калькулятора и выполняемые ими операции.

Клавиша Символ Операция
pi pi Постоянная pi
е е Число Эйлера
% % Процент
( ) ( ) Открыть/Закрыть скобки
, , Запятая
sin sin(α) Синус угла
cos cos(β) Косинус
tan tan(y) Тангенс
sinh sinh() Гиперболический синус
cosh cosh() Гиперболический косинус
tanh tanh() Гиперболический тангенс
sin-1 asin() Обратный синус
cos-1 acos() Обратный косинус
tan-1 atan() Обратный тангенс
sinh-1 asinh() Обратный гиперболический синус
cosh-1 acosh() Обратный гиперболический косинус
tanh-1 atanh() Обратный гиперболический тангенс
x2 ^2 Возведение в квадрат
х3 ^3 Возведение в куб
xy ^ Возведение в степень
10x 10^() Возведение в степень по основанию 10
ex exp() Возведение в степень числа Эйлера
√x sqrt(x) Квадратный корень
3√x sqrt3(x) Корень 3-ей степени
y√x sqrt(x,y) Извлечение корня
log2x log2(x) Двоичный логарифм
log log(x) Десятичный логарифм
ln ln(x) Натуральный логарифм
logyx log(x,y) Логарифм
I / II   Сворачивание/Вызов дополнительных функций
Unit   Конвертер величин
Matrix   Матрицы
Solve   Уравнения и системы уравнений
  Построение графиков
Дополнительные функции (вызов клавишей II)
mod mod Деление с остатком
! ! Факториал
i / j i / j Мнимая единица
Re Re() Выделение целой действительной части
Im Im() Исключение действительной части
|x| abs() Модуль числа
Arg arg() Аргумент функции
nCr ncr() Биноминальный коэффициент
gcd gcd() НОД
lcm lcm() НОК
sum sum() Суммарное значение всех решений
fac factorize() Разложение на простые множители
diff diff() Дифференцирование
Deg   Градусы
Rad   Радианы

kalkulyatoronline.ru

Решение на задачи на проценты – Задачи на проценты

Решение задач на сплавы, смеси, работу, движение, проценты с использованием таблиц

Разделы: Математика


Цель: научить учащихся, используя таблицу, быстро решать “трудные” задачи.

При решении многих задач можно использовать таблицу, которая мобилизует, упрощает, помогает решению задач. Для начала введем стандартную таблицу.3 на 3 (Три линии по горизонтали и три по вертикали)

Схема таблицы:

Данная таблица приемлема при решении задач на движение, на работу, на сплавы, растворы и проценты. При решении многих задач в столбцах рекомендую детям следующее обозначение (См. презентацию):

Рассмотрим задачи.

1. Имеется руда из двух пластов с содержанием меди (1 вещество) в 6% и 11%.Сколько надо взять “бедной” руды, чтобы получить при смешивании с “богатой” (2 вещество), 20 тонн с содержанием меди 8% (1+2 вещество)?

Возможны наводящие вопросы:

  1. Если первое вещество 6%, то второе сколько %?
  2. Первое обозначаем Х т, а общий вес 20 т, то второго сколько т?
  3. Медь первого куска и второго составляет медь сплава.

Заполним таблицу:

  1-ое вещество (медь) 2-ое вещество Вес (т)
1. 6% 94% х
2. 11% 89% 20-х
1. + 2. 8% 92% 20

Составим уравнение с использованием 1-го или 2-го столбца и обязательно 3-го. Получаем линейное уравнение. Решение не вызывает трудности.

1столбец и 3 столбец или 2столбец и 3 столбец
6х+11(20-х)=8*20   94х+89(20-х)=92*20
х=12    

Ответ 12т

2.Раствор 18% соли (1 вещество) массой 2 кг разбавили стаканом воды (2 вещество)0,25 кг. Какой концентрации раствор (1+2 вещество) в процентах в результате был получен?

Возможны наводящие вопросы:

Добавляем чистую воду, тогда сколько % соли?

  1 в-во (соль) 2 в-во (вода) вес
1 18% 82% 2 кг
2 0% 100% 0,25 кг
1+2 х% (100-х)% 2,25 кг

Составим уравнение с использованием 1-го или 2-го столбца и обязательно 3-го. Получаем линейное уравнение. Решение не вызывает трудности.

1столбец и 3 столбец 2столбец и 3 столбец.

18*2=х*2,25 или 82*2+100*0,25=2,25(100-х)

х=16

Ответ 16%

3.Цену товара первоначально снизили на 20%, затем еще на 15%. На сколько процентов всего снижена цена?

При решении задач на проценты меняется точка отсчета, “стало” из первой строки переходит в “было” второй строки т.д. (См. презентацию)

  Было Изменение Стало
1 х -20% х-0,2х=0,8х
2 0,8х -15% 0,8х(1-0.15)=0,68х
  0,68х    

Составляем уравнение, отвечая на вопрос задачи:

х-0,68х=0,32х 32%

Ответ 32%

4.Цену на автомобиль подняли сначала на 45%, а затем ещё на 20%,и после перерасчета повысили на 10%. На сколько процентов всего повысилась цена?

  Было Изменение Стало
1 х +45% х+0,45х=1,45х
2 1,45х +20% 1,45х(1+0,2)=1,74х
3 1,74х +10% 1,74х(1+0,1)=1,914х

Составляем уравнение, отвечая на вопрос задачи:

1,914х-1=0,914х 91,4%

Ответ:91,4%

5.Два комбайна убирали поле за 4 дня. За сколько дней мог убрать поле каждый комбайн, если одному из них для выполнения этой работы потребовалось бы на 6 дней меньше, чем другому?

  v t A
1 1\х х 1
2 1\(х-6) х-6 1
1+2 1\4 4 1

1\х+1\(х-6)=1\4

4(х-6)+4х=х(х-6)

х=12

Ответ:12 дней

6.Один завод может выполнить некоторый заказ на 4 дня быстрее, чем другой. За какое время может выполнить этот заказ каждый завод, если известно, что при совместной работе за 24 дня они выполнили заказ, в пять раз больший?

  v t A
1. 1\х х 1
2. 1\(х+4) х+4 2
1.+2. 5\24 24 5

1\х+1\(х+4)=5\24

2-28х-96=0

х=8, 8 дней и 12 дней.

Ответ: 8 дней; 12 дней.

7.Две бригады работниц пропололи по 280 грядок каждая, причем первая бригада, пропалывая в день на 30 грядок меньше, чем вторая работала на 3 дня больше. Сколько дней работала каждая бригада?

  v t Vраб
1 х 280\х 280
2 х+30 280\(х+30) 280
    t1-3=t2  

280\х-3=280\(х+30)

x=40 (грядок), 7 дней и 4 дня.

Ответ: 7 дней, 4 дня.

8.Свежие грибы содержат по массе 90% воды сухие-12% воды. Сколько получиться сухих грибов из 22 кг свежих?

Что происходит с водой? (испаряется)

Какой компонент не меняется? (Вещество)

  Воды Вещество Вес
Сухое 12% 88% х
Свежее 90% 10% 22 кг
    Одинаково  

На основании этого составим уравнение:

0,88х=0,1*22

х=2,5

Ответ: 2,5 кг.

Примеры задач для самостоятельного решения:

  1. В результате очистки сырья количество примесей в нём уменьшилось от 20% в исходном сырье до 5% в очищенном. Сколько надо взять исходного сырья, чтобы получить 160 кг очищенного?
  2. Имеется лом стали двух сортов с содержанием никеля 5% и 40%.Сколько нужно взять металла каждого сорта, чтобы получить 140 тонн стали с содержанием никеля 30%?
  3. Цену на столовый сервиз повысили сначала на 25%, а потом ещё на 20%. Во сколько раз увеличилась цена сервиза?
  4. Морская вода содержит 5% (по весу) соли: Сколько кг пресной воды надо добавить к 40 кг морской воды, чтобы концентрация соли в последней стала 2%?
  5. Применить этот метод можно к разным типам задач. Научившись решать не трудные задачи постепенно возможно и усложнение текста. Главное экономия времени. Рассматривая Кимы ЕГЭ задачи такого содержания очень популярны.

Литература:

  • Система тренировочных задач и упражнений по математике. Симонов А.Я. Бакаев Д.С. Эпельман А.Г. и др.
  • Задания для проведения письменного экзамена по математике в 9 классе. Под ред. Звавич Л.И., и под ред. Л.В.Кузнецовой.
  • ДВГТУ центр довузовской подготовки Математика (задачи на сплавы, растворы, на проценты) г. Владивосток 1998 г.

Презентация

19.02.2010

Поделиться страницей:

xn--i1abbnckbmcl9fb.xn--p1ai

Текстовые задачи на проценты. Решение задач 4, 6 и 9

Решение текстовых задач на проценты

Задачи 4, 6 и 9

Весь список текстовых задач на проценты здесь.

  1. Условие задачи: Для офиса решили купить 4 телефона и 3 факса на сумму 1470 долларов. Удалось снизить цену на телефон на 20%, и в результате за ту же покупку уплатили 1326 долларов. Найдите цену факса.
    Решение: Пусть цена факса равна , цена телефона до снижения равна долларов. Тогда новая цена телефона равна . И можно составить два уравнения: и . Из первого уравнения выразим и подставим во второе. Получим уравнение с одной неизвестной: , откуда .
    Ответ: 250
  2. Условие задачи: Рабочий день сократился с 8 ч до 7 ч. На сколько процентов нужны повысить производительность труда, чтобы при тех же расценках заработная плата возросла бы на n % процентов?

    Решение:
    Пусть цена за час работы была . Тогда заработная плата за 8-часовой рабочий день была . Новая заработная плата должна быть равна , а новая цена за час работы должна быть . Здесь  и есть то количество процентов, на которое необходимо повысить производительность труда (ибо оплата труда пропорциональна производительности). Тогда . Подставим и после сокращения получим, что , откуда .
    Ответ:
  3. Условие задачи: Объем вещества А составляет половину суммы объемов веществ В и С, а объем вещества В составляет 20% суммы объемов веществ А и С. Найдите отношение объема вещества С к сумме объемов веществ А и В.

    Решение: 
    Пуcть — объемы веществ A,B,C соответственно. Тогда и . Требуется определить . Выразим две переменные через третью. Для этого из первого уравнения подставим во второе. Получим , откуда и тогда . В результате,
    Ответ: 1

 

Метки решение, текстовые задачи. Смотреть запись.

www.itmathrepetitor.ru

Образцы решения типовых задач на проценты

ОСНОВНЫЕ ТИПЫ РЕШЕНИЯ ЗАДАЧ НА ПРОЦЕНТЫ

I. НАХОЖДЕНИЕ ЧАСТИ ОТ ЦЕЛОГО

Чтобы найти часть (%) от целого, надо число умножить на часть (проценты, переведенные в десятичную дробь).

ПРИМЕР: В классе 32 ученика. Во время контрольной работы отсутствовало 12,5% учащихся. Найди, сколько учеников отсутствовало?
РЕШЕНИЕ 1: Целое в этой задаче – общее количество учащихся (32).
12,5% = 0,125
32 · 0,125 = 4
РЕШЕНИЕ 2: Пусть х учеников отсутствовали, что составляет 12,5%. Если 32 ученика –
общее количество учеников (100%), то
32 ученика – 100%
х учеников – 12,5%

х =

ОТВЕТ: В классе отсутствовало 4 ученика.

II. НАХОЖДЕНИЕ ЦЕЛОГО ПО ЕГО ЧАСТИ

Чтобы найти целое по его части (%-ам), надо число разделить на часть (проценты, переведенные в десятичную дробь).

ПРИМЕР: Коля истратил в парке аттракционов 120 крон, что составило75% всех его карманных денег. Сколько было карманных денег у Коли до прихода в парк аттракционов?
РЕШЕНИЕ 1: В этой задаче надо найти целое, если известна данная часть и значение
этой части.
75% = 0,75
120 : 0,75 = 160

РЕШЕНИЕ 2: Пусть х крон было у Коли, что составляет целое, т.е 100%. Если он потратил 120 крон, что составило 75%, то
120 крон– 75 %
х крон – 100 %

х =

ОТВЕТ:У Коли было 160 крон.

III. ВЫРАЖЕНИЕ В ПРОЦЕНТАХ ОТНОШЕНИЯ ДВУХ ЧИСЕЛ

ТИПОВОЙ ВОПРОС:
СКОЛЬКО % СОСТАВЛЯЕТ ОДНА ВЕЛИЧИНА ОТ ДРУГОЙ?


ПРИМЕР: Ширина прямоугольника 20м, а длина 32м. Сколько % составляет ширина от длины? (Длина является основой для сравнения)
РЕШЕНИЕ 1:

РЕШЕНИЕ 2: В этой задаче длина прямоугольника 32м составляет 100%, тогда ширина 20м составляет х%. Составим и решим пропорцию:
20 метров – х %
32 метра – 100 %

х =

ОТВЕТ: Ширина составляет от длины 62,5%.

NB! Обратите внимание на то, как меняется решение в зависимости от изменения вопроса.

ПРИМЕР: Ширина прямоугольника 20м, а длина 32м. Сколько % составляет длина от ширины? (Ширина является основой для сравнения)
РЕШЕНИЕ 1:

РЕШЕНИЕ 2: В этой задаче ширина прямоугольника 20м составляет 100%, тогда длина 32м составляет х%. Составим и решим пропорцию:
20 метров – 100 %
32 метра – х %

х =

ОТВЕТ: Длина составляет от ширины 160%.

IV. ВЫРАЖЕНИЕ В ПРОЦЕНТАХ ИЗМЕНЕНИЯ ВЕЛИЧИНЫ

ТИПОВОЙ ВОПРОС:
НА СКОЛЬКО % ИЗМЕНИЛАСЬ (УВЕЛИЧИЛАСЬ, УМЕНЬШИЛАСЬ) ПЕРВОНАЧАЛЬНАЯ ВЕЛИЧИНА?

Чтобы найти изменение величины в % надо:
1) найти на сколько изменилась величина (без %)
2) разделить полученную величину из п.1) на величину, являющуюся основой для сравнения
3) перевести результат в % (выполнив умножение на 100%)

ПРИМЕР: Цена платья снизилась с 1250 крон до 1000 крон. Найди на сколько процентов снизилась цена платья?
РЕШЕНИЕ 1:

1) 1250 –1000= 250 (кр) на столько изменилась цена
2) Основа для сравнения здесь 1250 крон (т.е. то, что было изначально)
3)
Решение задачи одним действием:
ОТВЕТ: Цена платья уменьшилась на 20%.

NB! Обратите внимание на то, как меняется решение в зависимости от изменения вопроса.

ПРИМЕР: Цена платья повысилась с 1000 крон до 1250 крон. Найди на сколько процентов повысилась цена платья?
РЕШЕНИЕ 1:

1) 1250 –1000= 250 (кр) на столько изменилась цена
2) Основа для сравнения здесь 1000 крон (т.е. то, что было изначально)
3)
Решение задачи одним действием:

РЕШЕНИЕ 2:
1250 –1000= 250 (кр) на столько изменилась цена
В этой задаче первоначальная цена 1000 крон 100%, тогда изменение цены 250 крон составляет х%. Составим и решим пропорцию:
1000 крон – 100 %
250 крон – х %

х =
ОТВЕТ: Цена платья увеличилась на 25%.

V. ПОСЛЕДОВАТЕЛЬНОЕ ИЗМЕНЕНИЕ ВЕЛИЧИНЫ (ЧИСЛА)

ПРИМЕР:
Число уменьшили на 15%, а затем увеличили на 20%. Найди на сколько процентов изменилось число?

Самая распространенная ошибка: число увеличилось на 5 %.

РЕШЕНИЕ 1:
1) Хотя исходное число не дано, для простоты решения можно принять его за 100 (т.е. одно целое или 1)
2) Если число уменьшилось на 15%, то полученное число составит 85%, или от 100 это было бы 85.
3) Теперь полученный результат надо увеличить на 20%, т.е
85 – 100%
а новое число х – 120% (т.к. увеличилось на 20%)

х =
4)Таким образом в результате изменений число 100 (первоначальное) изменилось и стало 102, а это означает, что первоначальное число увеличилось на 2%

РЕШЕНИЕ 2:
1) Пусть исходное число Х
2) Если число уменьшилось на 15%, то полученное число составит 85% от Х, т.е. 0,85Х.
3) Теперь полученное число надо увеличить на 20%, т.е
0,85Х – 100%
а новое число ? – 120% (т.к. увеличилось на 20%)

? =
4) Таким образом в результате изменений число Х (первоначальное), является основой для сравнения, а число 1,02Х(полученное), (см. IV тип решения задач), тогда

ОТВЕТ: Число увеличилось на 2%.

mat-jelena.blogspot.com

Текстовые задачи на проценты. Решение задач 1-3

Решение текстовых задач на проценты

Задачи 1 — 3

Весь список текстовых задач на проценты здесь.

  1. Условие задачи: Учитель зарабатывает на 25% меньше, чем профессор. На сколько процентов больше, чем учитель, зарабатывает профессор?
    Решение: Пусть — зарплата профессора, тогда — зарплата учителя, так как по условию он зарабатывает на 25% меньше профессора, то есть зарплата профессора составляет 100%. Далее за 100% берем зарплату учителя. Тогда зарплата профессора составляет % зарплаты учителя, что на % больше.
    Ответ: 100/3 %
  2. Условие задачи: Найти число, если известно, что 25% его равны 45% от 640 000.
    Решение: 
    45% от 640 000 равны . И это 25% от неизвестного числа. Тогда само число есть 100%, то есть в 4 раза больше (). Поэтому ответом является число .
    Ответ: 1152000
  3. Условие задачи: После двух последовательных повышений зарплата возросла в   раза. На сколько процентов повысилась зарплата в первый раз, если второе повышение было в процентном отношении вдвое больше первого?
    Решение: 
    Пусть первоначально зарплата составляла р. Значит, после двукратного повышения она стала равной р. Если в первый раз зарплата повысилась на p %, то во второй раз она повысилась на 2p%. Применим формулу сложных процентов. Тогда . Сократим на и введем замену , получим уравнение , то есть . Откуда или . Второе значение не удовлетворяет условию задачи.
    Ответ: на 25%

 

Метки решение, текстовые задачи. Смотреть запись.

www.itmathrepetitor.ru

Линейное уравнение множественной регрессии – Множественная линейная регрессия. Улучшение модели регрессии

Множественная линейная регрессия

Пример: множественный регрессионный анализ

Коэффициенты регрессии

Значимость эффектов предиктора

Построчный график выбросов

Расстояния Махаланобиса

Удаленные остатки

Задачей множественной линейной регрессии является построение линейной модели связи между набором непрерывных предикторов и непрерывной зависимой переменной. Часто используется следующее регрессионное уравнение:

     (1)

Здесь аi — регрессионные коэффициенты, b0 — свободный член(если он используется), е — член, содержащий ошибку — по поводу него делаются различные предположения, которые, однако, чаще сводятся к нормальности распределения с нулевым вектором мат. ожидания и корреляционной матрицей .

Такой линейной моделью хорошо описываются многие задачи в различных предметных областях, например, экономике, промышленности, медицине. Это происходит потому, что некоторые задачи линейны по своей природе.

Приведем простой пример. Пусть требуется предсказать стоимость прокладки дороги по известным ее параметрам. При этом у нас есть данные о уже проложенных дорогах с указанием протяженности, глубины обсыпки, количества рабочего материала, числе рабочих и так далее.

Ясно, что стоимость дороги в итоге станет равной сумме стоимостей всех этих факторов в отдельности. Потребуется некоторое количество, например, щебня, с известной стоимостью за тонну, некоторое количество асфальта также с известной стоимостью.

Возможно, для прокладки придется вырубать лес, что также приведет к дополнительным затратам. Все это вместе даст стоимость создания дороги.

При этом в модель войдет свободный член, который, например, будет отвечать за организационные расходы (которые примерно одинаковы для всех строительно-монтажных работ данного уровня) или налоговые отчисления.

Ошибка будет включать в себя факторы, которые мы не учли при построении модели (например, погоду при строительстве — ее вообще учесть невозможно).

Пример: множественный регрессионный анализ

Для этого примера будут анализироваться несколько возможных корреляций уровня бедности и степень, которая предсказывает процент семей, находящихся за чертой бедности. Следовательно мы будем считать переменную характерезующую процент семей, находящихся за чертой бедности, — зависимой переменной, а остальные переменные непрерывными предикторами.

Коэффициенты регрессии

Чтобы узнать, какая из независимых переменных делает больший вклад в предсказание уровня бедности, изучим стандартизованные коэффициенты (или Бета) регрессии.

Рис. 1. Оценки параметров коэффициентов регрессии.

Коэффициенты Бета это коэффициенты, которые вы бы получили, если бы привели все переменные к среднему 0 и стандартному отклонению 1. Следовательно величина этих Бета коэффициентов позволяет сравнивать относительный вклад каждой независимой переменной в зависимую переменную. Как видно из Таблицы, показанной выше, переменные изменения населения с 1960 года (POP_ CHING), процент населения, проживающего в деревне (PT_RURAL) и число людей, занятых в сельском хозяйстве (N_Empld) являются самыми главными предикторами уровня бедности, т.к. только они статистически значимы (их 95% доверительный интервал не включает в себя 0). Коэффициент регрессии изменения населения с 1960 года (Pop_Chng) отрицательный, следовательно, чем меньше возрастает численность населения, тем больше семей, которые живут за чертой бедности в соответствующем округе. Коэффициент регрессии для населения (%), проживающего в деревне (Pt_Rural) положительный, т.е., чем больше процент сельских жителей, тем больше уровень бедности.

Значимость эффектов предиктора

Просмотрим Таблицу с критериями значимости.

Рис. 2. Одновременные результаты для каждой заданной переменной.

Как показывает эта Таблица, статистически значимы только эффекты 2 переменных: изменение населения с 1960 года (Pop_Chng) и процент населения, проживающего в деревне (Pt_Rural), p < .05.

Анализ остатков. После подгонки уравнения регрессии, почти всегда нужно проверять предсказанные значения и остатки. Например, большие выбросы могут сильно исказить результаты и привести к ошибочным выводам.

Построчный график выбросов

Обычно необходимо проверять исходные или стандартизованные остатки на большие выбросы.

Рис. 3. Номера наблюдений и остатки.

Шкала вертикальной оси этого графика отложена по величине сигма, т.е., стандартного отклонения остатков. Если одно или несколько наблюдений не попадают в интервал ± 3 умноженное на сигма, то, возможно, стоит исключить эти наблюдения (это можно легко сделать через условия выбора наблюдений) и еще раз запустить анализ, чтобы убедится, что результаты не изменяются этими выбросами.

Расстояния Махаланобиса

Большинство статистических учебников уделяют много времени выбросам и остаткам относительно зависимой переменной. Тем не менее роль выбросов в предикторах часто остается не выявленной. На стороне переменной предиктора имеется список переменных, которые участвуют с различными весами (коэффициенты регрессии) в предсказании зависимой переменной. Можно считать независимые переменные многомерным пространством, в котором можно отложить любое наблюдение. Например, если у вас есть две независимых переменных с равными коэффициентами регрессии, то можно было бы построить диаграмму рассеяния этих двух переменных и поместить каждое наблюдение на этот график. Потом можно было отметить на этом графике среднее значение и вычислить расстояния от каждого наблюдения до этого среднего (так называемый центр тяжести) в двумерном пространстве. В этом и заключается основная идея вычисления расстояния Махаланобиса. Теперь посмотрим на гистограмму переменной изменения населения с 1960 года.

Рис. 4. Гистограмма распределения расстояний Махаланобиса.

Из графика следует, что есть один выброс на расстояниях Махаланобиса.

Рис. 5. Наблюдаемые, предсказанные и значения остатков.

Обратите внимание на то, что округ Shelby (в первой строке) выделяется на фоне остальных округов. Если посмотреть на исходные данные, то вы обнаружите, что в действительности округ Shelby имеет самое большое число людей, занятых в сельском хозяйстве (переменная N_Empld). Возможно, было бы разумным выразить в процентах, а не в абсолютных числах, и в этом случае расстояние Махаланобиса округа Shelby, вероятно, не будет таким большим на фоне других округов. Очевидно, что округ Shelby является выбросом.

Удаленные остатки

Другой очень важной статистикой, которая позволяет оценить серьезность проблемы выбросов, являются удаленные остатки. Это стандартизованные остатки для соответствующих наблюдений, которые получаются при удалении этого наблюдения из анализа. Помните, что процедура множественной регрессии подгоняет поверхность регрессии таким образом, чтобы показать взаимосвязь между зависимой и переменной и предиктором. Если одно наблюдение является выбросом (как округ Shelby), то существует тенденция к «оттягиванию» поверхности регрессии к этому выбросу. В результате, если соответствующее наблюдение удалить, будет получена другая поверхность (и Бета коэффициенты). Следовательно, если удаленные остатки очень сильно отличаются от стандартизованных остатков, то у вас будет повод считать, что регрессионный анализа серьезно искажен соответствующим наблюдением. В этом примере удаленные остатки для округа Shelby показывают, что это выброс, который серьезно искажает анализ. На диаграмме рассеяния явно виден выброс.

Рис. 6. Исходные остатки и Удаленные остатки переменной, означающей процент семей, проживающих ниже прожиточного минимума.

Большинство из них имеет более или менее ясные интерпретации, тем не менее обратимся к нормальным вероятностным графикам.

Как уже было упомянуто, множественная регрессия предполагает, что существует линейная взаимосвязь между переменными в уравнении и нормальное распределение остатков. Если эти предположения нарушены, то вывод может оказаться неточным. Нормальный вероятностный график остатков укажет вам, имеются ли серьезные нарушения этих предположений или нет.

Рис. 7. Нормальный вероятностный график; Исходные остатки.

Этот график был построен следующим образом. Вначале стандартизованные остатки ранжируюся по порядку. По этим рангам можно вычислить z значения (т.е. стандартные значения нормального распределения) на основе предположения, что данные подчиняются нормальному распределению. Эти z значения откладываются по оси y на графике.

Если наблюдаемые остатки (откладываемые по оси x) нормально распределены, то все значения легли бы на прямую линию на графике. На нашем графике все точки лежат очень близко относительно кривой. Если остатки не являются нормально распределенными, то они отклоняются от этой линии. Выбросы также становятся заметными на этом графике.

Если имеется потеря согласия и кажется, что данные образуют явную кривую (например, в форме буквы S) относительно линии, то зависимую переменную можно преобразовать некоторым способом (например, логарифмическое преобразование для «уменьшения» хвоста распределения и т.д.). Обсуждение этого метода находится за пределами этого примера (Neter, Wasserman, и Kutner, 1985, pp. 134-141, представлено обсуждение преобразований, убирающих ненормальность и нелинейность данных). Однако исследователи очень часто просто проводят анализ напрямую без проверки соответствующих предположений, что ведет к ошибочным выводам.

Связанные определения:
Линейная регрессия
Матрица плана
Общая линейная модель
Регрессия

В начало

Содержание портала

statistica.ru

1.3.1 Линейное уравнение множественной регрессии

Возможны разные виды уравнений множественной регрессии: линейные и нелинейные.

Ввиду четкой интерпретации параметров наиболее широко используется линейная функция. В линейной множественной регрессии параметры приназываютсякоэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.

Рассмотрим линейную модель множественной регрессии

. (1.24)

Оценка параметров линейных уравнений регрессии

Классический подход к оцениванию параметров линейной модели множественной регрессии основан на методе наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака от расчетныхминимальна:

. (1.25)

Как известно из курса математического анализа, для того чтобы найти экстремум функции нескольких переменных, надо вычислить частные производные первого порядка по каждому из параметров и приравнять их к нулю.

Имеем функцию аргумента:

.

Находим частные производные первого порядка:

После элементарных преобразований приходим к системе линейных нормальных уравнений для нахождения параметров линейного уравнения множественной регрессии (1.24):

(1.26)

Для двухфакторной модели данная система будет иметь вид:

1.3.2 Линейное уравнение множественной регрессии с стандартизированном масштабе

Метод наименьших квадратов применим и к уравнению множественной регрессии в стандартизированном масштабе:

(1.27)

где – стандартизированные переменные:,, для которых среднее значение равно нулю:, а среднее квадратическое отклонение равно единице:;– стандартизированные коэффициенты регрессии.

Стандартизованные коэффициенты регрессии показывают, на сколько единиц изменится в среднем результат, если соответствующий фактор изменится на одну единицу при неизменном среднем уровне других факторов. В силу того, что все переменные заданы как центрированные и нормированные, стандартизованные коэффициенты регрессииможно сравнивать между собой. Сравнивая их друг с другом, можно ранжировать факторы по силе их воздействия на результат.В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые несравнимы между собой.

Применяя МНК к уравнению множественной регрессии в стандартизированном масштабе, получим систему нормальных уравнений вида

(1.28)

где и– коэффициенты парной и межфакторной корреляции.

Коэффициенты «чистой» регрессии связаны со стандартизованными коэффициентами регрессииследующим образом:

. (1.29)

Поэтому можно переходить от уравнения регрессии в стандартизованном масштабе (1.27) к уравнению регрессии в натуральном масштабе переменных (1.24), при этом параметр определяется как

.

Рассмотренный смысл стандартизованных коэффициентов регрессии позволяет их использовать при отсеве факторов – из модели исключаются факторы с наименьшим значением .

1.3.2 Частные уравнения регрессии

На основе линейного уравнения множественной регрессии

(1.30)

могут быть найдены частные уравнения регрессии:

(1.31)

т.е. уравнения регрессии, которые связывают результативный признак с соответствующим фактором при закреплении остальных факторов на среднем уровне. В развернутом виде систему (1.31) можно переписать в виде:

При подстановке в эти уравнения средних значений соответствующих факторов они принимают вид парных уравнений линейной регрессии, т.е. имеем

(1.32)

где

В отличие от парной регрессии частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности:

, (1.33)

где – коэффициент регрессии для факторав уравнении множественной регрессии,– частное уравнение регрессии.

Наряду с частными коэффициентами эластичности могут быть найдены средние по совокупности показатели эластичности:

, (1.34)

которые показывают, на сколько процентов в среднем изменится результат, при изменении соответствующего фактора на 1%. Средние показатели эластичности можно сравнивать друг с другом и соответственно ранжировать факторы по силе их воздействия на результат.

studfiles.net

Уравнение регрессии. Уравнение множественной регрессии :: SYL.ru

Во время учебы студенты очень часто сталкиваются с разнообразными уравнениями. Одно из них – уравнение регрессии — рассмотрено в данной статье. Такой тип уравнения применяется специально для описания характеристики связи между математическими параметрами. Данный вид равенств используют в статистике и эконометрике.

Определение понятия регрессии

В математике под регрессией подразумевается некая величина, описывающая зависимость среднего значения совокупности данных от значений другой величины. Уравнение регрессии показывает в качестве функции определенного признака среднее значение другого признака. Функция регрессии имеет вид простого уравнения у = х, в котором у выступает зависимой переменной, а х – независимой (признак-фактор). Фактически регрессия выражаться как у = f (x).

Какие бывают типы связей между переменными

В общем, выделяется два противоположных типа взаимосвязи: корреляционная и регрессионная.

Первая характеризуется равноправностью условных переменных. В данном случае достоверно не известно, какая переменная зависит от другой.

Если же между переменными не наблюдается равноправности и в условиях сказано, какая переменная объясняющая, а какая – зависимая, то можно говорить о наличии связи второго типа. Для того чтобы построить уравнение линейной регрессии, необходимо будет выяснить, какой тип связи наблюдается.

Виды регрессий

На сегодняшний день выделяют 7 разнообразных видов регрессии: гиперболическая, линейная, множественная, нелинейная, парная, обратная, логарифмически линейная.

Гиперболическая, линейная и логарифмическая

Уравнение линейной регрессии применяют в статистике для четкого объяснения параметров уравнения. Оно выглядит как у = с+т*х+Е. Гиперболическое уравнение имеет вид правильной гиперболы у = с + т / х + Е. Логарифмически линейное уравнение выражает взаимосвязь с помощью логарифмической функции: In у = In с + т* In x + In E.

Множественная и нелинейная

Два более сложных вида регрессии – это множественная и нелинейная. Уравнение множественной регрессии выражается функцией у = f(х1 , х2 …хс)+E. В данной ситуации у выступает зависимой переменной, а х – объясняющей. Переменная Е — стохастическая, она включает влияние других факторов в уравнении. Нелинейное уравнение регрессии немного противоречиво. С одной стороны, относительно учтенных показателей оно не линейное, а с другой стороны, в роли оценки показателей оно линейное.

Обратные и парные виды регрессий

Обратная – это такой вид функции, который необходимо преобразовать в линейный вид. В самых традиционных прикладных программах она имеет вид функции у = 1/с + т*х+Е. Парное уравнение регрессии демонстрирует взаимосвязь между данными в качестве функции у = f (x) + Е. Точно так же, как и в других уравнениях, у зависит от х, а Е — стохастический параметр.

Понятие корреляции

Это показатель, демонстрирующий существование взаимосвязи двух явлений или процессов. Сила взаимосвязи выражается в качестве коэффициента корреляции. Его значение колеблется в рамках интервала [-1;+1]. Отрицательный показатель говорит о наличии обратной связи, положительный – о прямой. Если коэффициент принимает значение, равное 0, то взаимосвязи нет. Чем ближе значение к 1 – тем сильнее связь между параметрами, чем ближе к 0 – тем слабее.

Методы

Корреляционные параметрические методы могут оценить тесноту взаимосвязи. Их используют на базе оценки распределения для изучения параметров, подчиняющихся закону нормального распределения.

Параметры уравнения линейной регрессии необходимы для идентификации вида зависимости, функции регрессионного уравнения и оценивания показателей избранной формулы взаимосвязи. В качестве метода идентификации связи используется поле корреляции. Для этого все существующие данные необходимо изобразить графически. В прямоугольной двухмерной системе координат необходимо нанести все известные данные. Так образуется поле корреляции. Значение описывающего фактора отмечаются вдоль оси абсцисс, в то время как значения зависимого – вдоль оси ординат. Если между параметрами есть функциональная зависимость, они выстраиваются в форме линии.

В случае если коэффициент корреляции таких данных будет менее 30 %, можно говорить о практически полном отсутствии связи. Если он находится между 30 % и 70 %, то это говорит о наличии связей средней тесноты. 100 % показатель – свидетельство функциональной связи.

Нелинейное уравнение регрессии так же, как и линейное, необходимо дополнять индексом корреляции (R).

Корреляция для множественной регрессии

Коэффициент детерминации является показателем квадрата множественной корреляции. Он говорит о тесноте взаимосвязи представленного комплекса показателей с исследуемым признаком. Он также может говорить о характере влияния параметров на результат. Уравнение множественной регрессии оценивают с помощью этого показателя.

Для того чтобы вычислить показатель множественной корреляции, необходимо рассчитать его индекс.

Метод наименьших квадратов

Данный метод является способом оценивания факторов регрессии. Его суть заключается в минимизировании суммы отклонений в квадрате, полученных вследствие зависимости фактора от функции.

Парное линейное уравнение регрессии можно оценить с помощью такого метода. Этот тип уравнений используют в случае обнаружения между показателями парной линейной зависимости.

Параметры уравнений

Каждый параметр функции линейной регрессии несет определенный смысл. Парное линейное уравнение регрессии содержит два параметра: с и т. Параметр т демонстрирует среднее изменение конечного показателя функции у, при условии уменьшения (увеличения) переменной х на одну условную единицу. Если переменная х – нулевая, то функция равняется параметру с. Если же переменная х не нулевая, то фактор с не несет в себе экономический смысл. Единственное влияние на функцию оказывает знак перед фактором с. Если там минус, то можно сказать о замедленном изменении результата по сравнению с фактором. Если там плюс, то это свидетельствует об ускоренном изменении результата.

Каждый параметр, изменяющий значение уравнения регрессии, можно выразить через уравнение. Например, фактор с имеет вид с = y – тх.

Сгруппированные данные

Бывают такие условия задачи, в которых вся информация группируется по признаку x, но при этом для определенной группы указываются соответствующие средние значения зависимого показателя. В таком случае средние значения характеризуют, каким образом изменяется показатель, зависящий от х. Таким образом, сгруппированная информация помогает найти уравнение регрессии. Ее используют в качестве анализа взаимосвязей. Однако у такого метода есть свои недостатки. К сожалению, средние показатели достаточно часто подвергаются внешним колебаниям. Данные колебания не являются отображением закономерности взаимосвязи, они всего лишь маскируют ее «шум». Средние показатели демонстрируют закономерности взаимосвязи намного хуже, чем уравнение линейной регрессии. Однако их можно применять в виде базы для поиска уравнения. Перемножая численность отдельной совокупности на соответствующую среднюю можно получить сумму у в пределах группы. Далее необходимо подбить все полученные суммы и найти конечный показатель у. Чуть сложнее производить расчеты с показателем суммы ху. В том случае если интервалы малы, можно условно взять показатель х для всех единиц (в пределах группы) одинаковым. Следует перемножить его с суммой у, чтобы узнать сумму произведений x на у. Далее все суммы подбиваются вместе и получается общая сумма ху.

Множественное парное уравнение регрессии: оценка важности связи

Как рассматривалось ранее, множественная регрессия имеет функцию вида у = f (x1,x2,…,xm)+E. Чаще всего такое уравнение используют для решения проблемы спроса и предложения на товар, процентного дохода по выкупленным акциям, изучения причин и вида функции издержек производства. Ее также активно применяют в самых разнообразным макроэкономических исследованиях и расчетах, а вот на уровне микроэкономики такое уравнение применяют немного реже.

Основной задачей множественной регрессии является построение модели данных, содержащих огромное количество информации, для того чтобы в дальнейшем определить, какое влияние имеет каждый из факторов по отдельности и в их общей совокупности на показатель, который необходимо смоделировать, и его коэффициенты. Уравнение регрессии может принимать самые разнообразные значения. При этом для оценки взаимосвязи обычно используется два типа функций: линейная и нелинейная.

Линейная функция изображается в форме такой взаимосвязи: у = а0 + a1х1 + а2х2,+ … + amxm. При этом а2, am, считаются коэффициентами «чистой» регрессии. Они необходимы для характеристики среднего изменения параметра у с изменением (уменьшением или увеличением) каждого соответствующего параметра х на одну единицу, с условием стабильного значения других показателей.

Нелинейные уравнения имеют, к примеру, вид степенной функции у=ах1b1 х2b2…xmbm. В данном случае показатели b1, b2….. bm – называются коэффициентами эластичности, они демонстрируют, каким образом изменится результат (на сколько %) при увеличении (уменьшении) соответствующего показателя х на 1 % и при стабильном показателе остальных факторов.

Какие факторы необходимо учитывать при построении множественной регрессии

Для того чтобы правильно построить множественную регрессию, необходимо выяснить, на какие именно факторы следует обратить особое внимание.

Необходимо иметь определенное понимание природы взаимосвязей между экономическими факторами и моделируемым. Факторы, которые необходимо будет включать, обязаны отвечать следующим признакам:

  • Должны быть подвластны количественному измерению. Для того чтобы использовать фактор, описывающий качество предмета, в любом случае следует придать ему количественную форму.
  • Не должна присутствовать интеркорреляция факторов, или функциональная взаимосвязь. Такие действия чаще всего приводят к необратимым последствиям – система обыкновенных уравнений становится не обусловленной, а это влечет за собой ее ненадежность и нечеткость оценок.
  • В случае существования огромного показателя корреляции не существует способа для выяснения изолированного влияния факторов на окончательный результат показателя, следовательно, коэффициенты становятся неинтерпретируемыми.

Методы построения

Существует огромное количество методов и способов, объясняющих, каким образом можно выбрать факторы для уравнения. Однако все эти методы строятся на отборе коэффициентов с помощью показателя корреляции. Среди них выделяют:

  • Способ исключения.
  • Способ включения.
  • Пошаговый анализ регрессии.

Первый метод подразумевает отсев всех коэффициентов из совокупного набора. Второй метод включает введение множества дополнительных факторов. Ну а третий – отсев факторов, которые были ранее применены для уравнения. Каждый из этих методов имеет право на существование. У них есть свои плюсы и минусы, но они все по-своему могут решить вопрос отсева ненужных показателей. Как правило, результаты, полученные каждым отдельным методом, достаточно близки.

Методы многомерного анализа

Такие способы определения факторов базируются на рассмотрении отдельных сочетаний взаимосвязанных признаков. Они включают в себя дискриминантный анализ, распознание обликов, способ главных компонент и анализ кластеров. Кроме того, существует также факторный анализ, однако он появился вследствие развития способа компонент. Все они применяются в определенных обстоятельствах, при наличии определенных условий и факторов.

www.syl.ru

Тема 11. Оценка параметров уравнения множественной регрессии — Мегаобучалка

Пусть требуется оценить параметры линейной множественной регрессии, т.е. построить линейное уравнение множественной регрессии .

Параметры такого уравнения можно оценить с помощью МНК. При этом необходимо проверить выполнение следующих предпосылок МНК:

1) математическое ожидание случайного отклонения должно быть равно 0 для всех наблюдений;

2) должно выполняться свойство гомоспедантичности остатков, т.е. постоянство дисперсий отклонений;

3) отсутствие автокорреляции;

4) случайное отклонение должно быть независимо от объясняющих переменных;

5) модель должна быть линейной относительно параметров;

6) отсутствие мультиколлениарности факторов;

7) ошибки для каждого измерения должны иметь нормальное распределение.

В этом случае система нормальных уравнений для определения параметров множественной регрессии примет вид:

решение которой может быть выполнено с помощью метода определителей

; ; …; ,

где определитель системы нормальных уравнений , , — частные определители, получаемые из определителей системы путем замены соответствующего столбца столбцом свободным членом.

Линейное уравнение множественной регрессии может быть представлено в матричной форме:

, где

, , ,

— -мерный вектор-столбец значений результативного признака;

— матрица размерности , представляющая собой наблюдаемые значения факторов ;

— вектор-столбец параметров уравнения регрессии.

В матричной форме решение уравнения можно записать .

Уравнение множественной регрессии вида называют уравнением множественной регрессии в натуральном масштабе.

Уравнение множественной регрессии может быть представлено в стандартизированном масштабе , где — называются стандартизированными переменными, которые вычисляются по формулам

; .

При таком определении стандартизированных переменных их средние значения равны 0, т.е. , а средние квадратические отклонения – 1, т.е. .

Коэффициенты называются стандартизированными коэффициентами множественной регрессии.



Применяя МНК к уравнению множественной регрессии в стандартизированном масштабе после преобразований получают следующую систему нормальных уравнений:

решая которую находим значение стандартизованных коэффициентов .

При составлении системы уравнений использовались следующие коэффициенты парной корреляции и , причем коэффициенты называются коэффициентами межфакторной связи.

Коэффициенты парной корреляции можно найти аналогично по формулам для определения коэффициентов корреляции линейной парной регрессии.

Стандартизованные коэффициенты множественной регрессии показывают насколько изменится в среднем результат при изменении соответствующего фактора на , при изменении уровня остальных факторов. В силу того, что при составлении уравнения множественной регрессии в стандартизованном масштабе все переменные заданы как централизованные и нормированные стандартизованные коэффициенты сравнимы между собой.

Сравнивая значения коэффициентов можно определить степень воздействия каждого фактора на результативный признак, при этом необходимо отметить, что коэффициенты чистой регрессии не сравнимы между собой.

Например, если задано уравнение множественной регрессии в натуральном масштабе , то из этого уравнения следует, что при изменении фактора на 1 единицу своего измерения результат изменится на 2,1 единицы своего измерения. При этом фактор считается неизменной величиной.

Аналогично при изменении на 1 единицу при неизменном уровне фактор меняется на 3,5 единиц.

Вышесказанное не означает, что фактор сильнее влияет на результат .

Если получено уравнение множественной регрессии в стандартизованном масштабе для этой же задачи , то в этом случае можно сказать, что с ростом на при неизменном уровне результативный признак изменится на , а с ростом на при неизменном уровне увеличится на . Следовательно, в данном случае на результативный признак более сильное воздействие оказывает фактор .

Замечание

Для линейной парной зависимости стандартизованный коэффициент регрессии является линейным коэффициентом корреляции: .

Между коэффициентами «чистой регрессии» и стандартизованным коэффициентом регрессии существует соотношение: .

Последнее соотношение позволяет от уравнения множественной регрессии в стандартизованном масштабе переходить к уравнению множественной регрессии в натуральном масштабе, при чем свободный член может быть найден из формулы: .

Если задано уравнение нелинейной множественной регрессии, то аналогично нелинейной парной регрессии данное уравнение либо с помощью замены переменного, либо с помощью процедуры логарифмирования преобразовывают к линейному виду множественной регрессии, т.е. линеаризуют. Затем параметры линеаризованной линейной модели определяют с помощью МНК; после определения параметра необходимо вернуться к первоначальной нелинейной модели множественной регрессии.

megaobuchalka.ru