Общий знаменатель дробей онлайн | umath.ru
Калькулятор приводит несколько дробей к общему знаменателю. Просто введите дроби и получите подробное решение и ответ. Можно вводить две, три дроби и более. Числители и знаменатели дробей должны быть натуральными числами.
Как привести дроби к общему знаменателю?
Чтобы выполнить с дробями такие операции, как сравнение, сложение и вычитание, дроби нужно привести к общему знаменателю.
Рассмотрим алгоритм приведения дробей к общему знаменателю. Пусть даны две дроби и Чтобы привести их к общему знаменателю, надо:
- Найти наименьшее общее кратное знаменателей дробей. Пусть оно равно .
- Числитель и знаменатель первой дроби умножить на число
- Числитель и знаменатель второй дроби умножить на число
В результате мы получим две дроби со знаменателем, равным
Пример.
Решение. Находим наименьшее общее кратное знаменателей дробей. НОК(12, 8) = 24. Это число и будет новым знаменателем.
Чтобы знаменатели обеих дробей стали равны 24, числитель и знаменатель первой дроби нужно домножить на 2 = 24:12, а числитель и знаменатель второй дроби — на 3 = 24:8.
Приводим к общему знаменателю первую дробь:
Приводим к общему знаменателю вторую дробь:
Общий знаменатель трёх дробей
Если к общему знаменателю требуется привести три дроби и более, то алгоритм действий в таком случае аналогичен алгоритму для двух дробей.
- Находим наименьшее число , которое делится на знаменатели всех дробей (наименьшее общее кратное знаменателей всех дробей). Найденное число будет новым знаменателем.
- Домножаем числитель и знаменатель каждой дроби на частное
В результате знаменатели всех дробей будут равны .
Чтобы разобраться лучше, рассмотрим пример.
Пример. Привести к общему знаменателю три дроби и
Решение. Сначала найдём наименьшее общее кратное знаменателей дробей. Число 12 делится на знаменатели всех дробей, и это наименьшее такое число. Поэтому НОК(3, 4, 6) = 12. Число 12 будет новым знаменателем.
Чтобы знаменатели дробей стали равны 12, числитель и знаменатель первой дроби нужно домножить на 4 = 12:3, числитель и знаменатель второй дроби — на 3 = 12:4, а числитель и знаменатель третьей дроби — на 2 = 12:6.
Приводим дроби к общему знаменателю и получаем:
Всё — дроби приведены! Пожалуй, самая большая сложность — правильно найти (или угадать) число, которое будет новым знаменателем.
1 | Оценить с использованием заданного значения | квадратный корень из 50 | |
2 | Оценить с использованием заданного значения | квадратный корень из 45 | |
3 | Вычислить | 5+5 | |
4 | Вычислить | 7*7 | |
5 | Разложить на простые множители | 24 | |
6 | Преобразовать в смешанную дробь | 52/6 | |
7 | Преобразовать в смешанную дробь | 93/8 | |
8 | Преобразовать в смешанную дробь | 34/5 | |
9 | График | y=x+1 | |
10 | Оценить с использованием заданного значения | квадратный корень из 128 | |
11 | Найти площадь поверхности | сфера (3) | |
12 | Вычислить | 54-6÷2+6 | |
13 | График | y=-2x | |
14 | Вычислить | 8*8 | |
15 | Преобразовать в десятичную форму | 5/9 | |
16 | Оценить с использованием заданного значения | квадратный корень из 180 | |
17 | График | y=2 | |
18 | Преобразовать в смешанную дробь | 7/8 | |
19 | Вычислить | 9*9 | |
20 | Risolvere per C | C=5/9*(F-32) | |
21 | Упростить | 1/3+1 1/12 | |
22 | График | y=x+4 | |
23 | График | y=-3 | |
24 | График | x+y=3 | |
25 | График | x=5 | |
26 | Вычислить | 6*6 | |
27 | Вычислить | 2*2 | |
28 | Вычислить | 4*4 | |
29 | Вычислить | ||
30 | Вычислить | 1/3+13/12 | |
31 | Вычислить | 5*5 | |
32 | Risolvere per d | 2d=5v(o)-vr | |
33 | Преобразовать в смешанную дробь | 3/7 | |
34 | График | y=-2 | |
35 | Определить наклон | y=6 | |
36 | Перевести в процентное соотношение | 9 | |
37 | График | y=2x+2 | |
38 | График | y=2x-4 | |
39 | График | x=-3 | |
40 | Решить, используя свойство квадратного корня | x^2+5x+6=0 | |
41 | Преобразовать в смешанную дробь | 1/6 | |
42 | Преобразовать в десятичную форму | 9% | |
43 | Risolvere per n | 12n-24=14n+28 | |
44 | Вычислить | 16*4 | |
45 | Упростить | кубический корень из 125 | |
46 | Преобразовать в упрощенную дробь | 43% | |
47 | График | x=1 | |
48 | График | y=6 | |
49 | График | y=-7 | |
50 | График | y=4x+2 | |
51 | Определить наклон | y=7 | |
52 | График | y=3x+4 | |
53 | График | y=x+5 | |
54 | График | 3x+2y=6 | |
55 | Решить, используя свойство квадратного корня | x^2-5x+6=0 | |
56 | Решить, используя свойство квадратного корня | x^2-6x+5=0 | |
57 | Решить, используя свойство квадратного корня | x^2-9=0 | |
58 | Оценить с использованием заданного значения | квадратный корень из 192 | |
59 | Оценить с использованием заданного значения | квадратный корень из 25/36 | |
60 | Разложить на простые множители | 14 | |
61 | Преобразовать в смешанную дробь | 7/10 | |
62 | Risolvere per a | (-5a)/2=75 | |
63 | Упростить | x | |
64 | Вычислить | 6*4 | |
65 | Вычислить | 6+6 | |
66 | Вычислить | -3-5 | |
67 | Вычислить | -2-2 | |
68 | Упростить | квадратный корень из 1 | |
69 | Упростить | квадратный корень из 4 | |
70 | Найти обратную величину | 1/3 | |
71 | Преобразовать в смешанную дробь | 11/20 | |
72 | Преобразовать в смешанную дробь | 7/9 | |
73 | Найти НОК | 11 , 13 , 5 , 15 , 14 | , , , , |
74 | Решить, используя свойство квадратного корня | x^2-3x-10=0 | |
75 | Решить, используя свойство квадратного корня | x^2+2x-8=0 | |
76 | График | 3x+4y=12 | |
77 | График | 3x-2y=6 | |
78 | График | y=-x-2 | |
79 | График | y=3x+7 | |
80 | Определить, является ли полиномом | 2x+2 | |
81 | График | y=2x-6 | |
82 | График | y=2x-7 | |
83 | График | y=2x-2 | |
84 | График | y=-2x+1 | |
85 | График | y=-3x+4 | |
86 | График | y=-3x+2 | |
87 | График | y=x-4 | |
88 | Вычислить | (4/3)÷(7/2) | |
89 | График | 2x-3y=6 | |
90 | График | x+2y=4 | |
91 | График | x=7 | |
92 | График | x-y=5 | |
93 | Решить, используя свойство квадратного корня | x^2+3x-10=0 | |
94 | Решить, используя свойство квадратного корня | x^2-2x-3=0 | |
95 | Найти площадь поверхности | конус (12)(9) | |
96 | Преобразовать в смешанную дробь | 3/10 | |
97 | Преобразовать в смешанную дробь | 7/20 | |
98 | Преобразовать в смешанную дробь | 2/8 | |
99 | Risolvere per w | V=lwh | |
100 | Упростить | 6/(5m)+3/(7m^2) |
Вычисление наименьшего общего кратного
Введите цифры
- Три автобуса
Три автобуса общественного транспорта отправляются вместе с автовокзала утром. Первый автобус возвращается на станцию через 18 минут, второй – через 12 минут, а третий – через 24 минуты. Как долго снова будем вместе на вокзале? Пожалуйста, экспресс - Портниха
Портниха оставила кусок холста короче 5 метров. Она решает, сшить ли ей юбку или платье. Холста было ровно столько, сколько они израсходовали, разрезав юбку до 120 см, или 180 сантиметров. Какой кусок холста оставил ей? - НОК двух чисел
Найдите наименьшее кратное 63 и 147 - Напоминание и частное
Даны числа A = 135, B = 315. Найдите наименьшее натуральное число R больше единицы так, чтобы отношения R:A, R:B с остатком 1. - Вокруг клумбы
Вокруг прямоугольной клумбы размерами 5,25 м и 3,5 м высадить розы через равные промежутки так, чтобы розы находились в каждом углу клумбы и потреблялись как можно меньше возможный. а) На каком расстоянии посажены розы? б) Сколько роз - Автобусы
На остановке в 10 часов встретились автобусы №2 и №9. Автобус №2 ходит с интервалом 4 минуты, а автобус №9 с интервалом 9 минут. Сколько раз автобус встречается в 18:00 по местному времени? - Зубчатая передача
Зубчатая передача состоит из двух колес. У одного 88, а у второго 56 зубов. Сколько раз поверните меньшее колесо, чтобы попасть в те же зубья, что и в начале? Сколько раз мы повернём самое большое колесо? - Автобусы 4
Интервалы: 1-й автобус 40 мин. 2-й автобус 2 часа 3-й бутон 20 минут Через какое время они встретятся — как можно скорее? - Четыре класса
Учащиеся всех 7, 8 и 9 классов одной школы могут занять 4, 5, 6 и 7 ряды, и никого не останется. Сколько в среднем учеников в одном классе, если в каждом классе всегда четыре класса? - Gcd и lcm
Вычислить наибольший общий делитель и наименьшее общее кратное чисел. a) 16 и 18 b) 24 и 22 c) 45 и 60 d) 36 и 30 - Вычислить 2976
Вычислить наименьшее общее кратное чисел 120, 660 и 210. - Укажите: 4001
Укажите: a = D (240,320) b = n (40,64) - Веревка
Пол может разрезать веревку на равные части, не оставив ни одной веревки. Длина может быть 15 см, 18 см или 25 см. Какова наименьшая возможная длина веревки? - Газеты 5601
Четыре доставляют газеты. Один занимает 60 минут, второй 40 минут, третий 120 минут и четвертый 80 минут. Если они ушли одновременно, в 8 часов, то когда они снова встретятся на том месте, откуда ушли? - Динозавры
На пруду встречались более 30 и менее 60 динозавров. Четверть из них купались и 1/7 пилы, а остальные хватались. Сколько их было у пруда? Сколько их было? - Размеры 6201
Земельный участок мистера Джона имеет размеры 252 дм и 28 м. На каком расстоянии друг от друга он должен поставить столбы забора, чтобы они были на одинаковом расстоянии с обеих сторон? Сколько ему понадобится, чтобы огородить весь участок?
другие математические задачи »
Наименьший общий знаменатель (LCD) из 9/10 и 7/6
Итак, вы хотите найти наименьший общий знаменатель 9/10 и 7/6? К счастью для вас, это именно то, что эта страница здесь, чтобы помочь вам! В этом кратком руководстве мы расскажем вам, как вычислить наименьший общий знаменатель для любых дробей, которые вам нужно проверить. Вот так!
Спешите и просто хотите получить ответ? Без проблем! ЖК-дисплей 9/10 и 7/6 равен 30. В виде дроби это 1/30 .
LCD(9/10, 7/6) = 30
В форме дроби:
1 / 30
Читайте дальше, чтобы узнать, как мы это сделали!
Как мы всегда делаем в этих статьях, стоит очень быстро повторить терминологию дробей. Число над чертой называется числителем, а число над чертой — знаменателем. Итак, в этом примере наши числители равны 9 и 7, а знаменатели — 10 и 6.
Чтобы вычислить наименьший общий знаменатель, проще всего посмотреть на множители этих чисел и найти наименьшее общее кратное. Вот как это выглядит для 10 и 6:
- Множители для 10: 1, 2, 5 и 10
- Множители для 6: 1, 2, 3 и 6
Поскольку в числах 10 и 6 нет общих множителей, проще всего получить наименьшее общий знаменатель — умножить их:
10 x 6 = 30
Следующим шагом является вычисление числителя и завершение нашей дроби. Для этого нам нужно найти наибольший общий делитель числителей, равных 9 и 7.0006 Множители для 7: 1 и 7
Как мы видим, наибольший общий множитель между числителями равен 1, поэтому он становится нашим числителем дроби:
1 / 30
Надеюсь, эта статья помогла вам понять, как вычислить наименьший общий знаменатель двух дробей. Разве математика не забавна? Если вы хотите бросить себе вызов, попробуйте самостоятельно найти наименьший общий знаменатель некоторых дробей и используйте наш ЖК-калькулятор, чтобы проверить свои ответы!
Процитируйте, дайте ссылку или ссылку на эту страницу
Если вы нашли этот контент полезным в своем исследовании, пожалуйста, сделайте нам большую услугу и используйте приведенный ниже инструмент, чтобы убедиться, что вы правильно ссылаетесь на нас, где бы вы его ни использовали. Мы очень ценим вашу поддержку!
Наименьший общий знаменатель (LCD) из 9/ 10 и 7/6
«Наименьший общий знаменатель (ЖК) из 9/10 и 7/6».