21 четное или нечетное: Четные и нечетные числа ✅ Блог IQsha.ru

Содержание

Четные и нечетные числа ✅ Блог IQsha.ru

Больше онлайн заданий по математике для детей от 2 до 11 лет. Начните прямо сейчас!

Уже в дошкольном возрасте ребята узнают, что бывают четные и нечетные числа. Определить абстрактно, четное число или нечетное, бывает непросто. Зато каждому понятно, получится ли некоторое количество разделить на двоих без остатка, или нет. Объяснить ребенку четные и нечетные числа помогут занимательные упражнения.

Что такое четные и нечетные числа


Четные числа — те, которые делятся на два без остатка. Но как же объяснить ребенку деление на два, если сложные математические операции осваивать еще рано? Самый простой способ — запомнить наизусть: на два делятся числа 2, 4, 6, 8 и все многозначные числа, которые оканчиваются на них же, а также на 0. 

Нечетные числа на 2 ровно не делятся , это числа 1, 3, 5, 7, 9 и те многозначные числа, которые оканчиваются на них же.

Таблица четных и нечетных чисел

Чтобы быстро определить, четным или нечетным является число, можно воспользоваться таблицей до 100. В ней четные и нечетные числа будут чередоваться. В нашей таблице выделены четные числа.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

 

Как объяснить ребенку четные и нечетные числа

Сначала расскажите ребенку, что такое четные и нечетные числа.

Проиллюстрируйте это на примерах – раскладывайте перед ребенком разное количество карандашей и попытайтесь разделить на две равные части. Если так получилось сделать, то число карандашей является четным. Если остался лишний карандаш – число нечетное.

Наглядно показать четность или нечетность можно на любых предметах — игрушках, фишках, ложечках. Если получились две равные группы и не осталось лишних предметов, то общее количество является четным. Если остался лишний предмет – число нечетное.

Закрепляем знание о четных и нечетных числах

Запоминание приходит с практикой. Вначале пусть ребенок продолжает ряды четных или нечетных чисел, начиная с указанного вами числа.  В этом упражнении пригодится навык счета через один. Следующим этапом предлагайте определить четность или нечетность любого числа. Поиграйте в игру: вы загадываете число в небольшом диапазоне и сообщаете, что оно находится между 4 и 7. А ребенок, используя вопрос: «Это четное или нечетное число?», пытается угадать задуманное число. Если ребенок угадал, то следующий вопрос задает он.

Выполните развивающие упражнения от Айкьюши

Свойства четных и нечетных чисел

Даже если ребенок не умеет складывать числа в уме, он может запомнить несколько простых правил:

  • при сложении двух четных чисел всегда получится тоже четное число. 24+32=56 — четное

  • при сложении двух нечетных чисел получается четное число. 13+17=30 — четное

  • при сложении одного четного и одного нечетного числа всегда получится нечетное число. 43+32=65 — нечетное

Какое число 0 – четное или нечетное?

Ноль – это четное число.

Некоторые взрослые до сих пор затрудняются правильно ответить на этот вопрос. Как же это доступно объяснить детям?

Во-первых, чтобы определить четность или нечетность, нужно вспомнить какие числа называются четными – те, которые делятся на 2 без остатка. Ноль делится на 2 без остатка. Значит, ноль – четное число.

Во-вторых, мы уже знаем, что четные и нечетные числа чередуются. После ноля стоит нечетное число 1. Значит ноль – четное число.

Также поможет запомнить четность ноля тот факт, что все числа, которые заканчиваются на 0 – четные. Значит и ноль тоже четное число.

Четные и нечетные числа до 20  


Чётные числа до 20:


Нечётные числа до 20:


Дошкольники в силу своего возраста и опыта лучше справляются с операциями в пределах 20. Поэтому постарайтесь не выходить за это число: придумывайте бытовые задачки и акцентируйте внимание на доступных примерах. После тренировок изучать четные и нечетные числа в пределах 20 дошкольники могут, уже абстрагируясь от конкретных предметов, учась оперировать только абстрактными числами.  

Можно провести занятие с таблицей Шульте, где четные и нечетные числа до 20 отличаются цветом:


Игры с четными и нечетными числами

Для того чтобы знания о четных и нечетных числах закрепились у малыша в памяти, регулярно используйте эти понятия в игре.

Например, в игре в магазин вы можете “печатать” для товаров ценники только с нечетными числами, выдумывая двузначные или трёхзначные числа из головы. Остается только вспомнить, на какие цифры должны оканчиваться эти числа.

Поиграйте в подвижную игру: если ты услышишь четное число, хлопни в ладоши. А если нечетное — топни ногой. 37, 18, 24, 53, 22, 95, 38, 14…

Еще можно играть в шпионов, которые передают друг другу информацию четными числами. Если каждое число ассоциировать с каким-то словом, то можно играть в сочинение предложений. Например, один шпион получил радиограмму: 2 8 4 6 10. А у него в ключе написано: 2 — апельсин, 4 — радость, 6 — бежит, 8 — красный, 10 — немедленно. Какое предложение можно составить, если по порядку расположить Апельсин Красный Радость Бежит Немедленно?

Напомнить знания о четных и нечетных поможет обычное русское лото. Когда вы с ребенком заполняете фишками карточки лото, проговаривайте вслух, является ли число четным.

Айкьюша поможет легко и в игровой форме познакомиться с математикой для детей 6-7 лет. Раздел включает задания и игры по арифметике для дошкольников: счет, сложение, вычитание, сравнение, умножение, деление, изучение геометрических фигур. Познавательные уроки и занятия для развития мальчиков и девочек.

Материалы для самостоятельных занятий по математике с дошкольником


Предложите ребенку раскрасить предметы с четными числами в зеленый цвет, а с нечетными – в красный.Распечатайте картинку и предложите ребенку продолжить последовательность четных и нечетных чисел, начиная с шеи жирафа.

Превратите изучение четных и нечетных чисел в увлекательное занятие – и ребенок без труда освоит эту непростую тему!

Надеемся, что с нашей помощью математика для дошкольников не станет для вас сложной наукой. Рекомендуем вам также обратить внимание на раздел Задания с геометрическими фигурами для детей. Тренируйтесь в игровой форме и почаще устраивайте увлекательные занятия дома. Тогда освоить сложение и вычитание будет просто в бытовых ситуациях, а разобраться, что такое умножение и деление вам всегда поможет Айкьюша.

Айкьюша и команда

Чётные — нечётные числа | Язык чисел

 

Что означают чётные и нечётные числа в духовной нумерологии? В изучении языка чисел это очень важная тема! Чем по своей СУТИ чётные числа отличаются от нечётных чисел?

Общеизвестно, что чётные числа — те числа, которые делятся на два. То есть, числа 2, 4, 6, 8, 10, 12, 14, 16, 18 и так далее.

А что означают чётные числа относительно духовной нумерологии? Какова нумерологическая суть деления на два? А суть в том, что все числа которые делятся на два, несут в себе некоторые свойства двойки.

У цифры 2 несколько значений. Во-первых, это самая «человечная» цифра в нумерологии. То есть, цифра 2 отражает в себе всю гамму человеческих слабостей, недостатков и достоинств — точнее, то, что в обществе принято считать достоинствами и недостатками, «правильностями» и «неправильностями».

А поскольку данные ярлыки «правильности» и «неправильности» отражают наши ограниченные взгляды на мир, то и двойка вправе считаться самым ограниченным, самым «тупым» числом в нумерологии. Отсюда понятно, что чётные числа гораздо более «твердолобы» и прямолинейны, чем их нечётные собратья, которые на два не делятся.

Это, впрочем, не говорит о том, что чётные числа хуже нечётных чисел. Просто они другие и отражают иные формы человеческого бытия и сознания в сравнении с нечётными числами. Чётные числа в духовной нумерологии всегда подчиняются законам обычной, материальной, «земной» логики. Почему?

Потому что другое значение двойки: стандартно-логическое мышление. И все чётные числа в духовной нумерологии так или иначе, подчиняются определённым логическим правилам восприятия действительности.

Элементарный пример: если камень подбросить вверх, он, набрав определённую высоту, устремится затем к земле. Так «думают» чётные числа. А нечётные числа запросто предположат, что камень улетит в космос; или не долетит, а застрянет где-нибудь в воздухе… надолго, на века. Или просто растворится! Чем нелогичнее гипотеза, тем ближе она к нечётным числам.

Нечётные числа

Нечётные числа — те, которые не делятся на два: числа 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 и так далее. С позиции духовной нумерологии нечётные числа подчиняются не материальной, а духовной логике.

Что, кстати, даёт пищу для размышления: почему число цветов в букете для живого человека нечётное, а для мёртвого — чётное… Не потому ли, что материальная логика (логика в рамках «да-нет») мертва относительно души человека?

 

 

Видимые совпадения материальной логики и духовной происходят очень часто. Но пусть это не вводит вас в заблуждение. Логика духа, то есть логика нечётных чисел, никогда в полной мере не прослеживается на внешних, физических уровнях человеческого бытия и сознания.

Возьмём для примера число 3 — число любви. Мы разглагольствуем о любви на каждом шагу. Мы признаёмся в ней, мечтаем о ней, украшаем ею свою жизнь и чужую жизнь.

Но что на самом деле мы знаем о любви? О той всепроникающей Любви, которая пронизывает собой все сферы Мироздания. Разве мы можем согласиться и принять, что в ней столько же холода, сколько и тепла, столько же ненависти, сколько доброты?! В состоянии ли мы осознать, что именно эти парадоксы составляют высшую, творческую суть Любви?!

Парадоксальность — вот одно из ключевых свойств нечётных чисел. В толковании нечётных чисел надо понимать: не всегда то, что кажется человеку, является действительно существующим. Но в то же время, если что-то кому-то кажется, значит оно уже существует. Есть различные уровни Существования, и иллюзия — один из них…

Кстати, зрелость ума характеризуется способностью воспринимать парадоксы. Поэтому для объяснения нечётных чисел требуется чуть больше «мозгов», чем для объяснения чётных чисел.

Чётные и нечётные числа в нумерологии

Подведём итоги. В чём главное отличие чётных чисел от нечётных?

Чётные числа более предсказуемы (кроме числа 10), основательны и последовательны. События и люди, связанные с чётными числами, более устойчивы и объяснимы. Вполне доступны для внешних изменений, но только для внешних! Внутренние перемены — область  нечётных чисел…

Нечётные числа — взбалмошны, свободолюбивы, неустойчивы, непредсказуемы. Они всегда преподносят сюрпризы. Вот вроде и знаешь смысл какого-то нечётного числа, а оно, это число, вдруг начинает вести себя так, что заставляет тебя заново пересмотреть чуть ли не всю твою жизнь…

Автор Статьи: Иосиф Лазарев

———————————————————————————————

Обратите внимание!

В магазины уже поступила моя книга под названием «Духовная нумерология. Язык чисел». На сегодняшний день это самое полное и востребованное из всех существующих эзотерических пособий о смысле чисел. Подробнее об этом, а также для заказа книги пройдите по следующей ссылке: «Духовная нумерология книга«

С теплом, автор книги и этого сайта Иосиф Лазарев

———————————————————————————————

от литературных затей до шахмат»

Сайт «Занимательные и методические материалы из книг Игоря Сухина: от литературных затей до шахмат»

 

 

Сайт «Занимательные и методические материалы из книг Игоря Сухина: от литературных затей до шахмат»

 

Избранные страницы из книги И. Г.Сухина «800 новых логических и математических головоломок» (часть 2)

 

 

ЧАСТЬ 1 РАСПОЛОЖЕНА ЗДЕСЬ

 

И.Г. СУХИН

НАТУРАЛЬНЫЕ, ПРОСТЫЕ, СОСТАВНЫЕ, ЧЁТНЫЕ, НЕЧЁТНЫЕ, КРУГЛЫЕ

 

Шпаргалка

Цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Однозначные числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Натуральные числа: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13…

Простые числа: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41…

Составные числа: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22…

Чётные числа: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26…

Нечётные числа: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25. ..

Круглые числа: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120…

 

Примечание: в задачах на вычитание уменьшаемое не должно быть меньше вычитаемого.

 

И.Г. СУХИН

Задачи из тетради гнома Загадалки

ОТ НУЛЯ ДО ДЕВЯТИ

(однозначные числа)

1. Что больше: наименьшее натуральное число или наименьшее простое?

2. Что меньше: самое маленькое натуральное число или самое маленькое однозначное?

3. Что больше: наименьшее чётное число или наименьшее нечётное?

4. Какое однозначное число не является натуральным?

5. Сумма двух неких однозначных чисел равна их разности. Назови одно из них.

6. Сумма двух слагаемых равна первому слагаемому. Назови второе слагаемое.

7. Сумма трёх одинаковых однозначных чисел равна их произведению. Что это за числа?

8. Какое из натуральных чисел наименьшее?

9. Произведение двух натуральных чисел равно частному от их деления. Назови один из сомножителей и делитель.

10. Произведение двух натуральных чисел меньше их суммы. Назови одно из чисел.

11. Если произведение двух натуральных чисел – простое число, то чему равен меньший сомножитель?

12. Сумма девяти натуральных чисел – однозначное число. Что это за числа?

13. Произведение двух неких натуральных чисел не является ни простым, ни составным числом. Что это за числа?

14. Какое натуральное число в 4 раза меньше самого маленького составного числа?

15. Сумма двух однозначных чисел в 2 раза больше их произведения. Какие это числа?

16. Какое чётное число является простым?

17. Чему равна наименьшая разность неодинаковых нечётных чисел?

18. Назови все чётные простые числа.

19. Сумма двух неких простых чисел есть нечётное число. Назови одно из слагаемых.

20. Произведение трёх простых чисел – однозначное число. Что это за числа?

21. Сумма четырёх чётных чисел – однозначное число. Какие это числа?

22. Произведение двух простых чисел равно их сумме. Что это за числа?

23. Сумма двух чётных чисел – однозначное число. Чему равно меньшее слагаемое?

24. Подсчитай сумму двух простых чётных чисел.

25. Вычти из наибольшего однозначного числа наименьшее простое.

Сколько получилось?

26. Какое однозначное простое число больше 5?

27. Вычти из самого большого однозначного числа самое маленькое натуральное. Каков ответ?

28. Сумма двух однозначных чисел равна 1. Назови эти числа.

29. Разность двух однозначных чисел равна 9. Что это за числа?

30. Сумма двух натуральных чисел равна 3. Назови слагаемые.

31. Сумма двух чисел равна 4, а разность – в 2 раза меньше. Что это за числа?

32. Частное от деления двух однозначных чисел равно 5. Назови эти числа.

33. Произведение двух однозначных чисел равно 7. Что это за числа?

34. Сумма двух натуральных чисел равна 9, а произведение есть число однозначное. Найди эти числа.

35. Разность двух неодинаковых однозначных чисел равна 8. Назови эти числа.

36. Разность двух нечётных однозначных чисел равна 8. Какие это числа?

37. Произведение каких различных простых чисел будет числом однозначным?

38. Если сумма двух чётных чисел равна 6, то каковы слагаемые?

39. Если произведение двух неодинаковых чётных однозначных чисел – также число однозначное, то что это за числа?

40. Произведение двух однозначных чисел в 4 раза больше их разности. Вычисли эти числа.

41. Сумма каких двух простых чисел равна наибольшему однозначному простому числу?

42. Разность двух чисел равна 4, а сумма – в 2 раза больше. Что это за числа?

43. Сумма двух простых чисел равна 9. Назови эти числа.

44. Разность двух однозначных чётных чисел равна 6. Что это за числа?

45. Сумма двух простых чисел равна 8. Какие это числа?

46. Какие два соседних числа натурального ряда надо сложить, чтобы получить наибольшее однозначное число?

47. Сумма каких трёх последовательных чисел натурального ряда равна их произведению?

48. Каким натуральным числам не может равняться сумма нескольких простых чисел?

49. Какие три последовательных числа натурального ряда надо сложить, чтобы получить наибольшее однозначное число?

50. Если частное от деления двух неодинаковых однозначных чётных чисел будет числом нечётным, то чему равны частное и эти чётные числа?

 

И.Г. СУХИН

ОТ НУЛЯ ДО ДВАДЦАТИ

(однозначные и двузначные числа)

51. Если сумма двух неодинаковых однозначных чисел равна 16, то чему равна их разность?

52. Разность двух чётных однозначных чисел равняется 6. Вычисли их сумму.

53. Если разность двух нечётных однозначных чисел равна 8, то чему равна их сумма?

54. Подсчитай сумму самого маленького простого числа и самого большого однозначного.

55. Найди наибольшую сумму двух однозначных чисел.

56. Произведение однозначного и двузначного чисел равно 15. Найди эти числа.

57. Произведение двух неодинаковых однозначных чисел равно 16. Что это за числа?

58. Произведение двух однозначных чисел равняется 15. Каковы сомножители?

59. Сумма двух неодинаковых простых чисел равна 14. Назови слагаемые.

60. Произведение двух однозначных чисел равно 20. Что это за числа?

61. Сумма двух разных чётных однозначных чисел равна 12. Какие это числа?

62. Сумма двух простых чисел равна 12. Каковы слагаемые?

63. Сумма двух разных нечётных однозначных чисел равна 14. Назови их.

64. Сумма двух однозначных чисел равна 15, а разность – 3. Вычисли эти числа.

65. Сумма двух однозначных чисел равна 17. Что это за числа?

66. Разность двузначного и однозначного чисел равна единице. Каковы уменьшаемое и вычитаемое?

67. Даны 4 разных однозначных числа. Первое – 9. Если умножить 9 на второе, то получим столько же, сколько и при умножении третьего на четвёртое. Назови неизвестные числа.

68. Даны 4 неодинаковых однозначных числа. Известно, что первое – 2, а числа 9 среди них нет. Если умножить 2 на второе, то получим столько же, сколько и при перемножении третьего и четвёртого. Каковы неизвестные числа?

69. Какие последовательные числа натурального ряда надо сложить, чтобы получить наименьшее двузначное число?

70. Сумма нескольких разных простых чисел равна 17. Назови эти числа.

71. Что меньше: сумма чётных однозначных чисел или сумма простых однозначных чисел?

 

И.Г. СУХИН

СЮЖЕТНЫЕ ЗАДАЧИ

156. Какую отметку впервые в жизни получил по математике Фома, если известно, что она является числом не простым, а составным?

157. Таня послала Игорю некоторое чётное число писем, а Игорь Тане – на 2 письма больше. При этом общее число писем есть число однозначное. Какое?

158. Сколько всего мячей оказалось на поле во время матча между командами «Зубило» и «Шайба», когда старик Хоттабыч наколдовал каждому футболисту по одному мячу?

159. Сколько яиц снесла за месяц курочка ряба, если известно, что число их не составное, а простое, больше 19, но меньше 29?

160. Сколько лет сиднем просидел на печи Илья Муромец? Известно, что если бы он просидел ещё 2 раза по столько, то его возраст составил бы наибольшее двузначное число.

161. В какой известной сказке богатырей можно было бы выстроить несколькими равными рядами по 11 в каждом ряду? Каково число богатырей?

162. Барон Мюнхгаузен по секрету сообщил нам, что он пересчитал число волшебных волос в бороде старика Хоттабыча. Оно оказалось равным сумме наименьшего трёхзначного числа и наибольшего двузначного. Что это за число?

163. Если наибольшее двузначное число ты умножишь на 4 и прибавишь 4, то узнаешь, сколько муравьёв послал Артемон, чтобы перегрызть верёвку, на которой разбойники повесили за ноги главного героя сказки А.Толстого «Золотой ключик, или Приключения Буратино».

164. Раздели самое маленькое четырёхзначное число на наименьшее простое и узнаешь, сколько лет не умывалась, не чистила зубы и даже пальцем не прикасалась к воде злая волшебница Гингема из повести-сказки А.Волкова «Волшебник Изумрудного города».

165. В русской народной сказке «Притворная болезнь» у трёх чудищ было разное однозначное число голов, кратное трём. Какое?

166. В русской народной сказке «Хрустальная гора» Иван-царевич сражался по очереди с тремя змеями. У первого из них было в 2 раза меньше голов, чем у второго, а у второго – в 2 раза меньше, чем у третьего. Общее число голов у змеев – 21. Сколько голов было у каждого змея до встречи с Иваном-царевичем?

167. Сколько голов у каждого чуда-юда из русской народной сказки «Иван – коровий сын», если известно, что у второго чуда-юда на три головы больше, чем у первого, а у третьего – на 3 больше, чем у второго, причём всего голов было – 27?

 

И. Г. СУХИН

ИСПРАВЛЕНИЕ, ЗАЧЁРКИВАНИЕ, ПРЕВРАЩЕНИЕ, ОТГАДЫВАНИЕ ЦИФР И ЧИСЕЛ

Задачи из тетради гнома Загадалки

 

1. Зачеркни одинаковые цифры. Какое число осталось?

5 3 7 1 8 3 5 8 7

 

2. Какую цифру надо зачеркнуть в числе 621, чтобы оставшееся число делилось на 3?

 

3. Это число от 2 до 10, но не 5; кроме того, оно нечётное и не делится на 3. Назови его.

 

4. Перед тобой однозначные числа. Вычеркни нечётные. Какая цифра осталась?

7 9 3 1 9 5 8 7

 

5. Зачеркни в следующем числе цифры, которые встречаются только один раз. Остальные цифры соедини. Что за число получилось?

7290342615

6. Угадай число от 1 до 28, если в его написание не входят цифры 1, 5 и 7; кроме того, оно нечётное и не делится на 3.

 

7. Отгадай число от 1 до 58, если в его написание не входят цифры 1, 2 и 3; кроме того, оно нечётное и не делится на 3, 5 и 7.

 

8. Угадай число от 1 до 88, если в его написание не входят цифры 1, 2, 3 и 7; кроме того, оно нечётное и не делится на 3, 5 и 7.

 

9. Отгадай число от 1 до 408, если в его написание не входят цифры 1, 2, 3, 5, 7; кроме того, оно нечётное и не делится на 3 и 7.

 

10. Перед тобой однозначные числа. Зачеркни чётные. Оставшиеся цифры соедини. Какое число осталось?

4 2 6 4 8 2 9 6 5

11. Преврати в числе 123 одну цифру в пятёрку так, чтобы получившееся число делилось на 9. Каково оно?

 

12. Исправь в числе 982 одну цифру на четвёрку так, чтобы получившееся число делилось на 3. Назови новое число.

 

13. Вычти из произвольного двузначного числа сумму его цифр. Всегда ли разность разделится на 3? А на 9?

 

И.Г. СУХИН

РАЗДЕЛ 4. ИГРЫ И ФОКУСЫ

 

И.Г. СУХИН

КАК ВСЕГДА ВЫИГРЫВАТЬ В ПОПУЛЯРНЫХ ИГРАХ МАТЕМАТИЧЕСКОГО СОДЕРЖАНИЯ

 

ИГРА В ДЕСЯТЬ

По очереди играют двое. Начинающий игру называет 1 или 2. Его товарищ прибавляет в уме к исходному числу 1 или 2 и сообщает сумму партнёру. Последний также увеличивает её на 1 или 2 и называет свой результат. Так игра продолжается, и побеждает тот, кто скажет число 10.

Чтобы выиграть, тебе нужно начать игру и независимо от ответов партнёра называть числа 1, 4, 7. Когда произнесено число 7, противнику приходится назвать 8 или 9. Ты говоришь: «Десять!» – и побеждаешь.

В другом варианте этой игры тот, кто скажет: «Десять», – проигрывает. Чтобы всегда выигрывать, здесь предложи товарищу начать игру. Как бы он ни играл, ты должен называть числа 3, 6, 9. Тут товарищу придётся сказать: «Десять». И снова ты победитель.

 

ИГРА В ПЯТНАДЦАТЬ

Массовики-затейники часто играют с желающими не в «Десять», а в «Пятнадцать», причём прибавляют также не больше двух. В первом варианте игры (сказавший 15 побеждает) предложи товарищу начать и называй числа 3, 6, 9, 12, 15. Во втором варианте игры (сказавший 15 проигрывает) первое число должно быть твоё. Ты называешь числа 2, 5, 8, 11, 14.

 

ИГРА В СТО

Играют в эту игру и до 100 (сказавший 100 выигрывает). Здесь первое число должно быть от 1 до 10, затем игроки по очереди прибавляют к предыдущему числу от 1 до 10. Чтобы победить, надо начать игру и называть 1, 12, 23, 34, 45, 56, 67, 78, 89, 100.

Конечно, можно запомнить все «выигрышные» числа в этих играх, но лучше установи закономерность, чтобы успешно играть не только в «Десять», «Пятнадцать» и «Сто», но и в другие варианты игры до любого числа, набавляя иные числа. Это пригодится тебе при решении заданий из тетради гнома Загадалки. Играй и побеждай!

 

И.Г. СУХИН

Задания гнома Загадалки

В следующих играх тот, кто скажет последнее число, выигрывает. Ты начинаешь. Какое первое число ты назовёшь, чтобы победить, если:

1. Вы с приятелем играете в «Десять», набавляете от 1 до 3?

2. Играете в «Десять», набавляете от 1 до 5?

3. Играете в «Десять», набавляете от 1 до 6?

4. Вы с другом играете в «Пятнадцать», набавляете от 1 до 3?

5. Играете в «Пятнадцать», набавляете от 1 до 5?

6. Играете в «Пятнадцать», набавляете от 1 до 6?

7. Играете в «Пятнадцать», набавляете от 1 до 7?

8. Играете в «Пятнадцать», набавляете от 1 до 8?

9. Вы с другом играете в «Сто», набавляете от 1 до 2?

10. Играете в «Сто», набавляете от 1 до 5?

11. Играете в «Сто», набавляете от 1 до 20?

12. Вы с товарищем играете в «Сто», набавляете от 1 до 30?

13. Играете в «Сто», набавляете от 1 до 40?

14. Играете в «Сто», набавляете от 1 до 50?

 

В следующих играх тот, кто скажет последнее число, проигрывает. Ты начинаешь. Какое первое число ты назовёшь, чтобы победить, если:

15. Вы с приятелем играете в «Десять», набавляете от 1 до 3?

16. Играете в «Десять», набавляете от 1 до 4?

17. Играете в «Десять», набавляете от 1 до 5?

18. Играете в «Десять», набавляете от 1 до 6?

19. Вы с другом играете в «Пятнадцать», набавляете от 1 до 3?

20. Играете в «Пятнадцать», набавляете от 1 до 4?

21. Играете в «Пятнадцать», набавляете от 1 до 5?

22. Играете в «Пятнадцать», набавляете от 1 до 7?

23. Играете в «Пятнадцать», набавляете от 1 до 8?

24. Вы с другом играете в «Сто», набавляете от 1 до 3?

25. Играете в «Сто», набавляете от 1 до 4?

26. Играете в «Сто», набавляете от 1 до 5?

27. Играете в «Сто», набавляете от 1 до 20?

28. Вы с товарищем играете в «Сто», набавляете от 1 до 30?

29. Играете в «Сто», набавляете от 1 до 40?

30. Играете в «Сто», набавляете от 1 до 50?

 

ИГРА В ШЕСТЬ ФАНТИКОВ

Ты и твой товарищ выкладываете на столе 2 горизонтальных ряда фантиков, по 3 фантика в каждом ряду. Вместо фантиков могут быть камешки, конфеты, копейки, пуговицы, спички или счётные палочки.

I I I

I I I

Пусть начинает партнёр-товарищ. Он должен взять любое число фантиков из первого или из второго ряда. Нельзя брать фантики одновременно из обоих рядов. Затем ты берёшь фантики – тоже из одного ряда (первого или второго). Так по очереди продолжаете игру. Кто возьмёт последний фантик, тот проиграл.

Условия игры просты, но, чтобы победить, нужно проявить смекалку.

Предположим, противник берёт все 3 фантика из любого ряда. Тогда ты возьмёшь 2 из другого ряда. На столе останется последний фантик.

Партнёр проиграет, ведь пропускать очередь хода нельзя.

Если же первым ходом он возьмёт 2 фантика из одного ряда, то ты выберешь все 3 из другого. Опять твоя победа.

Твоему товарищу лучше всего первым ходом взять 1 фантик. Чтобы не проиграть, ты тоже возьмёшь 1, но из другого ряда. Теперь в обоих рядах останется по 2 фантика. Поражение твоего противника неизбежно.

Ведь если он берёт 2 фантика, то ты возьмёшь 1.

А если он выберет 1, ты возьмёшь 2.

В обоих случаях перед товарищем останется лежать 1 фантик. Победа за тобой.

Запомни: в этой игре тот, кто начинает, проигрывает (при точной игре обоих противников).

 

ИГРА В ДЕВЯТЬ ФАНТИКОВ

Здесь фантики расположены в 3 ряда. В первом ряду – 1 фантик, во втором – 3, в третьем – 5.

I

I I I

I I I I I

Это расположение можно записать так: 1 3 5.

Условия игры такие же, как и в предыдущей игре.

При безошибочной игре партнёров здесь побеждает тот, кто начинает. Договорись с другом, чтобы первый ход был твоим, и возьми 3 фантика из третьего ряда. Оставшиеся фантики будут расположены так: 1 3 2.

Теперь, если твой товарищ заберёт единственный фантик из первого ряда, то ты возьмёшь 1 фантик из следующего ряда и получится расположение: 2 2, которое мы проанализировали в предыдущей игре. Ход за противником, и он проигрывает.

Твой партнёр терпит поражение и при других взятиях.

Если он возьмёт все 3 фантика из второго ряда, то ты заберёшь оба из третьего.

Если соперник выберет 2 фантика из второго ряда, ты возьмёшь 1 из третьего и получится положение: 1 1 1. Победа останется за тобой.

Если он возьмёт 1 фантик из второго ряда, ты заберёшь единственный фантик из первого ряда и снова получится выгодное для тебя положение: 2 2.

Если противник заберёт 2 фантика из третьего ряда, ты возьмёшь все 3 из второго.

Если он заберёт 1 фантик из третьего ряда, ты возьмёшь 2 из второго, и снова получится выигрышное для тебя положение: 1 1 1.

Всё, твоя победа, других вариантов нет.

 

И.Г. СУХИН

Положения для игры в девять фантиков из тетради гнома Загадалки

Представь, что игру начинает твой товарищ и своим ходом в исходном положении 1 3 5 берёт:

31. Единственный фантик из первого ряда: 3 5. Сколько фантиков и из какого ряда сейчас надо взять, чтобы победить?

32. 3 фантика из второго ряда: 1 5. Как выиграть?

33. 2 фантика из второго ряда: 1 1 5. Как сыграть теперь?

34. 1 фантик из второго ряда: 1 2 5. Сколько фантиков из какого ряда ты возьмёшь?

35. Все 5 фантиков из третьего ряда: 1 3. Как победить?

36. 4 фантика из третьего ряда: 1 3 1. Как сыграть?

37. 3 фантика из третьего ряда: 1 3 2. Можно ли тебе избежать поражения?

38. 2 фантика из третьего ряда: 1 3 3. Что делать?

39. 1 фантик из третьего ряда: 1 3 4. Каков твой ответ?

 

Итак, проанализировав игры в шесть и девять фантиков, мы установили 4 важных расположения, к которым должны стремиться. В них очередь хода за противником, но он неизбежно проигрывает. Запомни их!

N1: 2 2.

N2: 3 3.

N3: 1 1 1.

N4: 1 2 3.

Чтобы побеждать в этих играх, нельзя забывать: если остался всего один ряд с числом фантиков не менее двух, то своим ходом тебе надо забрать все фантики, кроме одного. А если осталось 2 ряда, в первом из которых находится 1 фантик, а во втором – любое количество фантиков, то нужно взять все фантики из второго ряда.

Всё это пригодится тебе в следующей игре.

 

ИГРА В ШЕСТНАДЦАТЬ ФАНТИКОВ

Мы постепенно подвели тебя к одной из самых интересных игр на свете, которую иногда называют «Мариенбад».

Здесь фантики расположены в 4 ряда. В первом ряду – 1 фантик, во втором – 3, в третьем – 5, в четвёртом – 7.

I

I I I

I I I I I

I I I I I I I

Это расположение можно записать так: 1 3 5 7.

Условия игры такие же, как и в предыдущих играх.

Проанализировать все варианты игры «Мариенбад» гораздо сложнее, чем для случаев с меньших числом фантиков.

Кроме положений: N1 – N4 своим ходом надо создавать ещё и такие: N5: 4 4, N6: 5 5 (эти 2 положения сводятся к: 2 2), N7: 1 4 5, N8: 2 4 6, N9: 2 5 7, N10: 3 4 7, N11: 3 5 6, N12: 1 1 х х (где х>1), N13: 1 2 4 7, N14: 1 2 5 6, N15: 1 3 4 6.

И наконец N16: 1 3 5 7. То есть в «Мариенбаде»тот, кто начинает, проигрывает!

Итак, если ты хочешь наверняка победить в этой игре, начать её должен твой товарищ. Чтобы быстро не проиграть, ему лучше всего взять один фантик из любого ряда. Теперь у тебя 3 равноценных ответа: надо взять один фантик в любом из трёх остальных рядов, получив расположения N9 – N11 или N13 – N15. Затем партнёр возьмёт фантик в одном из двух рядов, из которых фантики ещё не брали. А ты выберешь фантик из последнего такого ряда, и получится положение N8. Далее в зависимости от хода партнёра ты создашь расположения N1, N4, N5 или N7 и быстро выиграешь.

Всё это не так-то уж и трудно. Приобретя игровой опыт, ты убедишься: достаточно помнить 4 важных положения: N4, N7, N8 и N12, чтобы быстро находить лучший ход.

 

И.Г. СУХИН

Положения для игры в «Мариенбад» из тетради гнома Загадалки

Представь, что игру начинает твой товарищ и своим ходом в исходном положении 1 3 5 7 берёт:

40. 2 фантика из второго ряда: 1 1 5 7. Сколько фантиков и из какого ряда сейчас надо взять, чтобы победить?

41. 3 фантика из второго ряда: 1 5 7. Как выиграть?

42. 2 фантика из третьего ряда: 1 3 3 7. Как сыграть теперь?

43. 3 фантика из третьего ряда: 1 3 2 7. Сколько фантиков из какого ряда ты возьмёшь?

44. 4 фантика из третьего ряда: 1 3 1 7. Как победить?

45. Все 5 фантиков из третьего ряда: 1 3 7. Как сыграть?

46. 2 фантика из четвёртого ряда: 1 3 5 5. Твой ход?

47. 3 фантика из четвёртого: 1 3 5 4. Что делать?

48. 4 фантика из четвёртого: 1 3 5 3. Каков твой ответ?

49. 5 фантиков из четвёртого: 1 3 5 2. Как сыграть?

50. 6 фантиков из четвёртого: 1 3 5 1. Что делать?

51. Все 7 фантиков из четвёртого: 1 3 5. Каков твой ответ?

 

ИГРА В ДВАДЦАТЬ ПЯТЬ ФАНТИКОВ

Здесь фантики в пяти рядах. Это расположение можно записать так: 1 3 5 7 9.

Условия игры такие же, как и в предыдущих играх.

Чтобы выиграть, тебе надо начать и первым ходом забрать все 9 фантиков из последнего ряда. Получается игра «Мариенбад», в которой тот, кто начинает, проигрывает.

 

И.Г. СУХИН

ИГРЫ, ГДЕ ВЗЯВШИЙ ПОСЛЕДНИЙ ФАНТИК ВЫИГРЫВАЕТ

В игры с фантиками можно играть и иначе: тот, кто берёт последний фантик, считается победителем. Самое интересное здесь то, что тебе всё равно нужно стремиться в основном к тем же промежуточным положениям, которые мы уже рассмотрели. Т.е. старайся, чтобы после твоего хода создавались положения: N1 – N2, N4 – N16. Если сможешь сделать это, выиграешь. Стратегическое различие проявляется в самом конце. К примеру, если в положении: 2 2 партнёр возьмёт один фантик, то здесь и ты выберешь не два фантика, как в первом варианте игры, а 1 из другого ряда и получится: 1 1, что обеспечит тебе победу. А если соперник возьмёт 2 фантика, то и ты заберёшь оба оставшихся и выиграешь.

Что теперь? Научи товарища правилам игры в такие фантики и обыгрывай. Можешь провести чемпионат класса, турнир во дворе.

 

МАТЕМАТИЧЕСКИЕ ФОКУСЫ

Старинные фокусы из тетради гнома Загадалки

1. Напиши такое трёхзначное число, чтобы первая цифра была по крайней мере на 2 больше, чем третья. Например: 311. Запиши его цифрами в обратном порядке: 113. Из первого вычти второе: получится 198. Это число снова напиши наоборот: 891. И два последние числа сложи.

891 + 198 = 1089.

Удивительное дело: какие бы числа мы ни брали, в ответе всегда будет 1089!

Теперь предложи провести все эти действия с числами кому-то из друзей. Представляешь, как он удивится, когда ты, не спрашивая у него, сколько получилось в результате (как это бывает в других математических фокусах), сам назовёшь ответ! Для эффекта можешь сообщить его не сразу, а через несколько секунд, как-бы что-то подсчитывая в уме.

2. Попроси товарища задумать какое-нибудь двузначное число, вычесть из него сумму его цифр, зачеркнуть в полученном результате одну цифру и сообщить, какое число осталось. После этого ты тотчас скажешь, какая цифра зачёркнута! Для этого ты всего навсего из 9 вычтешь оставшееся однозначное число.

Пример: 97 – 16 = 81, 8 зачёркивается и друг говорит, что осталось 1. Ты выполняешь в уме вычитание и получаешь в результате зачёркнутую цифру: 9 – 1 = 8.

 

Для информации: СОДЕРЖАНИЕ КНИГИ

Предисловие для учителя

РАЗДЕЛ 1. ГНОМЫ ЗАГАДАЛКА, ПУТАЛКА И ЗАБЫВАЛКА

Знакомство с гномами Математические приключения гномов (в шутку и всерьёз) Говорят гномы Зачёркиваем буквы – получаем числа Задачи из тетради гнома Загадалки Переставляем буквы – получаем числа Задачи из тетради гнома Забывалки Числа прячутся в предложениях Задачи из тетради гнома Загадалки Задачи-шутки из тетради гнома Загадалки

РАЗДЕЛ 2. ЧИСЛА В КЛЕТКАХ

Шпаргалка Числовая горизонталь гнома Забывалки (задачи с дополнительными условиями и подсказками) Задачи из тетради гнома Забывалки Задачи на вычитание Задачи на сложение Задачи на умножение Задачи на деление Сочетание арифметических действий Числовая горизонталь гнома Путалки (задачи с дополнительными условиями и подсказками) Задачи из тетради гнома Путалки Математические дорожки Задачи из тетради гнома Забывалки Цифры в буквах Задачи из тетради гнома Забывалки Цифры в цифрах Задачи из тетради гнома Забывалки Волшебные квадраты Задачи из тетради гнома Загадалки

РАЗДЕЛ 3. НЕОБЫЧНЫЕ ЗАДАЧИ И ГОЛОВОЛОМКИ

Подумай и ответь Задачи из тетради гнома Загадалки Натуральные, простые, составные, чётные, нечётные, круглые Шпаргалка Задачи из тетради гнома Загадалки От нуля до девяти (однозначные числа) От нуля до двадцати (однозначные и двузначные числа) От нуля до девяноста девяти (однозначные и двузначные числа) От нуля до тысячи Чётные и нечётные числа Круглые числа Сюжетные задачи Исправление, зачёркивание, превращение, отгадывание цифр и чисел Задачи из тетради гнома Загадалки

РАЗДЕЛ 4. ИГРЫ И ФОКУСЫ

Как всегда выигрывать в популярных играх математического содержания Игра в десять Игра в пятнадцать Игра в сто Задания гнома Загадалки Игра в шесть фантиков Игра в девять фантиков Положения для игры в девять фантиков из тетради гнома Загадалки Игра в шестнадцать фантиков Положения для игры в «Мариенбад» из тетради гнома Загадалки Игра в двадцать пять фантиков Игры, где взявший последний фантик выигрывает Математические фокусы Старинные фокусы из тетради гнома Загадалки

ОТВЕТЫ

 

ОТВЕТЫ

РАЗДЕЛ 1. ГНОМЫ ЗАГАДАЛКА, ПУТАЛКА И ЗАБЫВАЛКА

МАТЕМАТИЧЕСКИЕ ПРИКЛЮЧЕНИЯ ГНОМОВ

1. Двух. 2. У Забывалки одна, а у Путалки две. 3. У Забывалки две, у Загадалки одна, у Путалки три. 4. По две у Загадалки и Путалки и одна у Забывалки. 5. У Загадалки – 2, у Забывалки – 1, у Путалки – 3 (он 2 носка натянул на одну ногу). 6. За 11 секунд. 7. 12+3+45 = 60. 8. 54+3+2+1 = 60. 9. Одна. 10. Две. 17. Ни одного. 18. Он забил гол в свои ворота. 19. Это был тренер команды соперника. 20. Его товарищи играли за команду «Дырка». 23. Потому что, возвращаясь из магазина, Путалка снова свернул направо. Загадалка и Забывалка пошли по дороге прямо, не сворачивая у перекрёстка. 24. Он перепутал рубашки, надел без колокольчиков. 25. Он забыл надеть рубашку. 26. Забывалка зачитался в доме книгой о Мюнхгаузене и забыл пойти за грибами. 27. Ни от одной. 28. Трое (гномов).

ГОВОРЯТ ГНОМЫ

5. Две и четыре. 6. Нет, 15.

ЗАЧЁРКИВАЕМ БУКВЫ – ПОЛУЧАЕМ ЧИСЛА

1. Нуль. 2. Один. 3. Два. 4. Три. 5. Пять. 13. Тысяча.

ПЕРЕСТАВЛЯЕМ БУКВЫ – ПОЛУЧАЕМ ЧИСЛА

1. Три. 2. Нуль. 3. Сорок. 4. Один. 5. Два. 13-15. Двенадцать. 19. Тридцать. 22. Пятьдесят. 25. Семьдесят. 28. Восемьдесят. 71. Миллиард.

ЗАДАЧИ-ШУТКИ ИЗ ТЕТРАДИ ГНОМА ЗАГАДАЛКИ

1. Один. 2. Двадцать. 3. Нуль, потому что у осла нет рогов. 4. Одна. 5. Ни одного. 6. В норе Кролика. 7. Стон.

 

НАТУРАЛЬНЫЕ, ПРОСТЫЕ, СОСТАВНЫЕ, ЧЁТНЫЕ, НЕЧЁТНЫЕ, КРУГЛЫЕ

1. Простое. 2. Однозначное. 3. Чётное. 4-7. 0. 8-15. 1. 16-23. 2. 24. 4. 25-26. 7. 27. 8. 28. 1 и 0. 29. 9 и 0. 30. 1 и 2. 31. 3 и 1. 32. 5 и 1. 33. 1 и 7. 34. 8 и 1. 35-36. 9 и 1. 37. 2 и 3. 38-40. 4 и 2. 41. 2 и 5. 42. 6 и 2. 43. 2 и 7. 44. 8 и 2. 45. 3 и 5. 46. 4 и 5. 47-48. 1, 2, 3. 49. 2, 3 и 4. 50. 3, 6 и 2. 51. 2; (9 – 7). 52. 10; (8 + 2). 53. 10; (9 + 1). 54. 11. 55. 18. 56. 1 и 15. 57. 2 и 8. 58. 3 и 5. 59. 3 и 11. 60. 4 и 5. 61. 4 и 8. 62. 5 и 7. 63. 5 и 9. 64. 9 и 6. 65. 8 и 9. 66. 10 и 9. 67. 2, 3 и 6. 68. 6, 3 и 4. 69. 1, 2, 3 и 4. 70. 2, 3, 5, 7. 71. Простых.

156. Четвёрку. 157. 6; (2 + 4). 158. 23 (1 уже был, а 22 упали с неба). 159. 23. 160. 33. 161. А.Пушкин «Сказка о царе Салтане…»; 33. 162. 199. 163. 400. 164. 500. 165. 3, 6, 9. 166. 3, 6, 12. 167. 6, 9, 12.

ИСПРАВЛЕНИЕ, ЗАЧЁРКИВАНИЕ, ПРЕВРАЩЕНИЕ,

ОТГАДЫВАНИЕ ЦИФР И ЧИСЕЛ

1. 1. 2. 6. 3. 7. 4. 8. 5. 22. 6. 23. 7. 47. 8. 59. 9. 89. 10. 95. 11. 153. 12. 942. 13. Да.

РАЗДЕЛ 4. ИГРЫ И ФОКУСЫ

КАК ВСЕГДА ВЫИГРЫВАТЬ В ПОПУЛЯРНЫХ ИГРАХ МАТЕМАТИЧЕСКОГО СОДЕРЖАНИЯ

1. 2. 2. 4. 3-5. 3. 6. 1. 7. 7. 8. 6. 9. 1. 10. 4. 11. 16. 12. 7. 13. 18. 14. 49. 15. 1. 16. 4. 17. 3. 18-19. 2. 20. 4. 21. 2. 22. 6. 23. 5. 24. 3. 25. 4. 26. 3. 27. 15. 28. 6. 29. 17. 30. 48. 31. 2 из последнего ряда. 32. Взять все 5 фантиков из последнего ряда. 33. Забрать 4 из третьего ряда. 34. 2 из третьего. 35. Взять все 3 из второго ряда. 36. Забрать 2 из второго ряда. 37. Нет. 38. Взять 1 фантик из любого ряда. 39. Забрать 2 из третьего ряда. 40. 2 из четвёртого ряда. 41. Взять 3 фантика из последнего ряда. 42. Забрать 6 из четвёртого ряда. 43. Все 7 из четвёртого. 44. Взять 4 из четвёртого ряда. 45. Забрать 5 из последнего ряда. 46. Взять 2 из второго ряда. 47. Взять все 3 фантика из второго ряда. 48. Взять 4 из третьего ряда. 49. Взять все 5 фантиков из третьего ряда. 50. Взять 2 из третьего ряда. 51. Взять 3 из третьего ряда.

 

О ЛИТЕРАТУРНЫХ ПРИКЛЮЧЕНИЯХ ГНОМОВ МОЖНО ПРОЧИТАТЬ ЗДЕСЬ

 

 

ОСНОВНЫЕ РУБРИКИ САЙТА

 

ЛИТЕРАТУРНЫЕ ЗАТЕИ

Лучшие книги:

«Литературные викторины, тесты и сказки-загадки для дошкольников и младших школьников» (1998) и «Незнайка, Хоттабыч, Карлсон и все-все-все: литературные викторины, кроссворды и чайнворды для детей».

 

ЗАГАДКИ, ЗАГАДКИ-ШУТКИ, СКАЗКИ-ЗАГАДКИ, ЗАНИМАТЕЛЬНЫЕ ЗАДАНИЯ

Лучшая книга:

«Новые 500 загадок – 70 кроссвордов».

 

ЛОГОПЕДИЯ И СКОРОГОВОРКИ

Лучшие книги:

«Чистоговорки, наоборотки, запрятки на звук «С» и «Весёлые скороговорки для «непослушных» звуков».

 

ЗАНИМАТЕЛЬНАЯ МАТЕМАТИКА

Лучшие книги:

«800 новых логических и математических головоломок» и «Весёлая математика: 1500 головоломок для математических олимпиад, уроков, досуга: 1-7 класс».

 

ШАХМАТЫ ДЛЯ ДЕТЕЙ

Лучшие книги:

«Волшебные фигуры, или Шахматы для детей 2–5 лет» и «Удивительные приключения в Шахматной стране» (для детей 5-–8 лет).

 

ЗАНИМАТЕЛЬНАЯ БИБЛИОГРАФИЯ

Занимательная библиография

 

ЧТО УЖЕ РАЗМЕЩЕНО НА САЙТЕ КНИГИ, РУКОПИСИ, СТАТЬИ И.Г.СУХИНА КТО ЗАЩИТИТ АВТОРА, ИЛИ ОХОТА НА ПЛАГИАТОРА ИЗ ПЕРЕПИСКИ С ЧИТАТЕЛЯМИ Калейдоскоп интересных ссылок

 

НА ГЛАВНУЮ СТРАНИЦУ

 

 

mailto:[email protected]

Home Page URL: http://suhin.narod.ru

© 2001-2006 Сухин И.Г. Все права защищены.

Обновление от 13 марта 2006 года.

Сайт управляется системой uCoz

Четные и нечетные числа

Знакомство с четными и нечетными числами обычно происходит в старшем дошкольном возрасте. Если ваше чадо уже умеет считать в пределах двадцати, знает сложение и вычитание, то пришло время объяснить ему, как можно определить, четное число или нет. Это поможет в дальнейшем изучении арифметики и математики.

Содержание:

  • Четные числа
  • Нечетные числа
  • Четность и нечетность: основные свойства
  • Таблица четных и нечетных чисел
  • 0 – это четное число или нет
  • Игровые упражнения

Четные числа

Из школьного курса мы знаем, что четные числа – это те, которые делятся на два нацело. Малыши дошкольного возраста с делением чисел еще не знакомы, им лучше всего объяснять понятие четности и нечетности не в теории, а на примерах с конфетами, яблоками или игрушками.

Возьмите четыре конфеты и предложите ребенку поделить их на две равные кучки – для себя и для мамы. Обратите внимание малыша, что в этом случае каждому достанется по две конфеты.

Попросите малыша сделать то же самое с другими предметами для закрепления понимания. Можно раскладывать, например, карандаши, фишки, кубики и любое другое четное количество вещей.

Нечетные числа

Нечетные числа делятся на два с остатком. Возьмите три яблока и попросите кроху поделить их поровну между вами. Очень скоро малыш придет к выводу, что это невозможно.

Четность и нечетность: основные свойства

Объясните ребенку несколько простых лайфхаков:

  • Нечетные и четные числа чередуются. Единица – нечетное, поэтому двойка – четное, тройка – нечетное и так далее.
  • Понять, относится двузначное или многозначное число к четным, можно по последней цифре. Она должна быть 0, 2, 4, 6 или 8.
  • У нечетных чисел в конце стоит 1, 3, 5, 7 или 9.

Если ребенок уже знаком с арифметикой, ему будет интересно узнать следующие свойства:

  • При сложении двух четных чисел получается четное число: 4+2 = 6.
  • Если к четному числу прибавить нечетное, то и результат будет нечетным: 2+1 = 3.
  • Если умножить четное число на любое другое результат тоже будет четным: 2 х 3 = 6.
  • Если умножить два нечетных числа, то получится нечетный результат: 3 х 5 = 15.

Таблица четных и нечетных чисел

Чтобы ребенок мог быстро определять, какое число перед вами, удобно использовать таблицу четных и нечетных чисел. В ней жирным в каждом ряду выделены четные элементы.

Дошкольники обычно умеют уверенно считать в пределах 20. Большая таблица будет их путать.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20

Для школьников подойдет таблица от 1 до 100.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

0 – это четное число или нет

Математическая теория утверждает, что ноль относится к четным числам. Ребенку этот факт можно объяснить тремя способами:

  • Нечетные и четные числа чередуются, а ноль стоит перед единицей, которая является нечетным числом. Поэтому 0 – четное число.
  • Если число оканчивается на ноль, то это признак четности. Соответственно и сам 0 относится к четным.
  • Ноль делится на два без остатка. Поэтому его относят к четным числам.

Игровые упражнения

Чтобы закрепить знания, используйте понятия о четных и нечетных числах в играх и задачках. Например, сыграйте в «чет-нечет». Называйте числа и просите малыша хлопать в ладошки, если оно четное. А если вы назовете нечетное, он должен топать ногой.

На прогулке выясняйте у ребенка, четный или нечетный номер дома, автомобиля, городского автобуса или маршрутки. Распечатайте из интернета картинки с воздушными шариками или другими предметами, на которых изображены числа. Попросите закрасить предметы с четными числами синим цветом, а с нечетными – красным.