Корни четвертой степени онлайн: Онлайн калькулятор корня 4 степени числа

Содержание

Решить уравнение пятой степени онлайн. Решение показательных уравнений

Онлайн калькулятор для нахождения корней кубического уравнения. Вы вводите коэффициенты кубического уравнения и получаете его решение.

Требования к браузеру: требуется поддержка javascript 1.8.1 .

Калькулятор корней кубического уравнения

Описание онлайн калькулятора

Калькулятор производит вычисление корней кубического уравнения:
(1) .
Чтобы найти корни этого уравнения, введите значения коэффициентов A, B, C, D в поля формы и нажмите кнопку “Рассчитать корни”. После этого ниже появятся результаты расчета. Если коэффициенты введены не правильно, то поле ввода подсвечивается красным цветом и корни не рассчитываются. Исправьте подсвеченное значение и снова нажмите кнопку “Рассчитать корни”.

Правила ввода чисел

Чтобы ввести число , в поле ввода введите следующее:
-6.626e-34
То есть разделителем целой и дробной части числа является точка .
Порядок числа вводится после латинской буквы e .

Метод расчета

Пусть мы имеем кубическое уравнение:
.
Разделим его на :

(1) ,
где , , . Сделаем подстановку:
.
Получаем уравнение неполного вида:
(4) ,
где
(5) ; .
Вычисляем детерминант:
.

Если , то вычисляем корни по формуле Кардано:
(6) , ,
где
(7) ; .

При корни действительные. Вычисляем их по формуле Виета:
(9) ;
(10) ;
(11) ,
где
(12) ; .

Приложение

Решение любого типа уравнений онлайн на сайт для закрепления изученного материала студентами и школьниками.. Решение уравнений онлайн. Уравнения онлайн. Различают алгебраические, параметрические, трансцендентные, функциональные, дифференциальные и другие виды уравнений.. Некоторые классы уравнений имеют аналитические решения, которые удобны тем, что не только дают точное значение корня, а позволяют записать решение в виде формулы, в которую могут входить параметры.

Аналитические выражения позволяют не только вычислить корни, а провести анализ их существования и их количества в зависимости от значений параметров, что часто бывает даже важнее для практического применения, чем конкретные значения корней. Решение уравнений онлайн.. Уравнения онлайн. Решение уравнения — задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.). Решение уравнений онлайн.. Уравнения онлайн. Вы сможете решить уравнение онлайн моментально и с высокой точностью результата. Аргументы заданных функций (иногда называются «переменными») в случае уравнения называются «неизвестными». Значения неизвестных, при которых это равенство достигается, называются решениями или корнями данного уравнения. Про корни говорят, что они удовлетворяют данному уравнению. Решить уравнение онлайн означает найти множество всех его решений (корней) или доказать, что корней нет.
Решение уравнений онлайн.. Уравнения онлайн. Равносильными или эквивалентными называются уравнения, множества корней которых совпадают. Равносильными также считаются уравнения, которые не имеют корней. Эквивалентность уравнений имеет свойство симметричности: если одно уравнение эквивалентно другому, то второе уравнение эквивалентно первому. Эквивалентность уравнений имеет свойство транзитивности: если одно уравнение эквивалентно другому, а второе эквивалентно третьему, то первое уравнение эквивалентно третьему. Свойство эквивалентности уравнений позволяет проводить с ними преобразования, на которых основываются методы их решения. Решение уравнений онлайн.. Уравнения онлайн. Сайт позволит решить уравнение онлайн. К уравнениям, для которых известны аналитические решения, относятся алгебраические уравнения, не выше четвёртой степени: линейное уравнение, квадратное уравнение, кубическое уравнение и уравнение четвёртой степени. Алгебраические уравнения высших степеней в общем случае аналитического решения не имеют, хотя некоторые из них можно свести к уравнениям низших степеней.
Уравнения, в которые входят трансцендентные функции называются трансцендентными. Среди них аналитические решения известны для некоторых тригонометрических уравнений, поскольку нули тригонометрических функций хорошо известны. В общем случае, когда аналитического решения найти не удаётся, применяют численные методы. Численные методы не дают точного решения, а только позволяют сузить интервал, в котором лежит корень, до определённого заранее заданного значения. Решение уравнений онлайн.. Уравнения онлайн.. Вместо уравнения онлайн мы представим, как то же самое выражение образует линейную зависимость и не только по прямой касательной, но и в самой точке перегиба графика. Этот метод незаменим во все времена изучения предмета. Часто бывает, что решение уравнений приближается к итоговому значению посредством бесконечных чисел и записи векторов. Проверить начальные данные необходимо и в этом суть задания. Иначе локальное условие преобразуется в формулу. Инверсия по прямой от заданной функции, которую вычислит калькулятор уравнений без особой задержки в исполнении, взаимозачету послужит привилегия пространства.
Речь пойдет о студентах успеваемости в научной среде. Впрочем, как и все вышесказанное, нам поможет в процессе нахождения и когда вы решите уравнение полностью, то полученный ответ сохраните на концах отрезка прямой. Линии в пространстве пересекаются в точке и эта точка называется пересекаемой линиями. Обозначен интервал на прямой как задано ранее. Высший пост на изучение математики будет опубликован. Назначить значению аргумента от параметрически заданной поверхности и решить уравнение онлайн сможет обозначить принципы продуктивного обращения к функции. Лента Мебиуса, или как её называет бесконечностью, выглядит в форме восьмерки. Это односторонняя поверхность, а не двухсторонняя. По принципу общеизвестному всем мы объективно примем линейные уравнения за базовое обозначение как есть и в области исследования. Лишь два значения последовательно заданных аргументов способны выявить направление вектора. Предположить, что иное решение уравнений онлайн гораздо более, чем просто его решение, обозначает получение на выходе полноценного варианта инварианта.
Без комплексного подхода студентам сложно обучиться данному материалу. По-прежнему для каждого особого случая наш удобный и умный калькулятор уравнений онлайн поможет всем в непростую минуту, ведь достаточно лишь указать вводные параметры и система сама рассчитает ответ. Перед тем, как начать вводить данные, нам понадобится инструмент ввода, что можно сделать без особых затруднений. Номер каждой ответной оценки будет квадратное уравнение приводить к нашим выводам, но этого сделать не так просто, потому что легко доказать обратное. Теория, в силу своих особенностей, не подкреплена практическими знаниями. Увидеть калькулятор дробей на стадии опубликования ответа, задача в математике не из легких, поскольку альтернатива записи числа на множестве способствует увеличению роста функции. Впрочем, не сказать про обучение студентов было бы некорректным, поэтому выскажем каждый столько, сколько этого необходимо сделать. Раньше найденное кубическое уравнение по праву будет принадлежать области определения, и содержать в себе пространство числовых значений, а также символьных переменных.
Выучив или зазубрив теорему, наши студенты проявят себя только с лучшей стороны, и мы за них будем рады. В отличие от множества пересечений полей, наши уравнения онлайн описываются плоскостью движения по перемножению двух и трех числовых объединенных линий. Множество в математике определяется не однозначно. Лучшее, по мнению студентов, решение — это доведенная до конца запись выражения. Как было сказано научным языком, не входит абстракция символьных выражений в положение вещей, но решение уравнений дает однозначный результат во всех известных случаях. Продолжительность занятия преподавателя складывается из потребностей в этом предложении. Анализ показал как необходимость всех вычислительных приемов во многих сферах, и абсолютно ясно, что калькулятор уравнений незаменимый инструментарий в одаренных руках студента. Лояльный подход к изучению математики обуславливает важность взглядов разных направленностей. Хотите обозначить одну из ключевых теорем и решите уравнение так, в зависимости от ответа которого будет стоять дальнейшая потребность в его применении.
Аналитика в данной области набирает все мощный оборот. Начнем с начала и выведем формулу. Пробив уровень возрастания функции, линия по касательной в точке перегиба обязательно приведет к тому, что решить уравнение онлайн будет одним из главных аспектов в построении того самого графика от аргумента функции. Любительский подход имеет право быть применен, если данное условие не противоречит выводам студентов. На задний план выводится именно та подзадача, которая ставит анализ математических условий как линейные уравнения в существующей области определения объекта. Взаимозачет по направлению ортогональности взаимоуменьшает преимущество одинокого абсолютного значения. По модулю решение уравнений онлайн дает столько же решений, если раскрыть скобки сначала со знаком плюс, а затем со знаком минус. В таком случае решений найдется в два раза больше, и результат будет точнее. Стабильный и правильный калькулятор уравнений онлайн есть успех в достижении намеченной цели в поставленной преподавателем задаче.
Нужный метод выбрать представляется возможным благодаря существенным отличиям взглядов великих ученых. Полученное квадратное уравнение описывает кривую линий так называемую параболу, а знак определит ее выпуклость в квадратной системе координат. Из уравнения получим и дискриминант, и сами корни по теореме Виета. Представить выражение в виде правильной или неправильной дроби и применить калькулятор дробей необходимо на первом этапе. В зависимости от этого будет складываться план дальнейших наших вычислений. Математика при теоретическом подходе пригодится на каждом этапе. Результат обязательно представим как кубическое уравнение, потому что его корни скроем именно в этом выражении, для того, чтобы упростить задачу учащемуся в ВУЗе. Любые методы хороши, если они пригодны к поверхностному анализу. Лишние арифметические действия не приведут к погрешности вычислений. С заданной точностью определит ответ. Используя решение уравнений, скажем прямо — найти независимую переменную от заданной функции не так-то просто, особенно в период изучения параллельных линий на бесконечности.
В виду исключения необходимость очень очевидна. Разность полярностей однозначна. Из опыта преподавания в институтах наш преподаватель вынес главный урок, на котором были изучены уравнения онлайн в полном математическом смысле. Здесь речь шла о высших усилиях и особых навыках применения теории. В пользу наших выводов не стоит глядеть сквозь призму. До позднего времени считалось, что замкнутое множество стремительно возрастает по области как есть и решение уравнений просто необходимо исследовать. На первом этапе мы не рассмотрели все возможные варианты, но такой подход обоснован как никогда. Лишние действия со скобками оправдывают некоторые продвижения по осям ординат и абсцисс, чего нельзя не заметить невооруженным глазом. В смысле обширного пропорционального возрастания функции есть точка перегиба. В лишний раз докажем как необходимое условие будет применяться на всем промежутке убывания той или иной нисходящей позиции вектора. В условиях замкнутого пространства мы выберем переменную из начального блока нашего скрипта. За отсутствие главного момента силы отвечает система, построенная как базис по трем векторам. Однако калькулятор уравнений вывел, и помогло в нахождении всех членов построенного уравнения, как над поверхностью, так и вдоль параллельных линий. Вокруг начальной точки опишем некую окружность. Таким образом, мы начнем продвигаться вверх по линиям сечений, и касательная опишет окружность по всей ее длине, в результате получим кривую, которая называется эвольвентой. Кстати расскажем об этой кривой немного истории. Дело в том, что исторически в математике не было понятия самой математики в чистом понимании как сегодня. Раньше все ученые занимались одним общим делом, то есть наукой. Позже через несколько столетий, когда научный мир наполнился колоссальным объемом информации, человечество все-таки выделило множество дисциплин. Они до сих пор остались неизменными. И все же каждый год ученые всего мира пытаются доказать, что наука безгранична, и вы не решите уравнение, если не будете обладать знаниями в области естественных наук. Окончательно поставить точку не может быть возможным. Об этом размышлять также бессмысленно, как согревать воздух на улице. Найдем интервал, на котором аргумент при положительном своем значении определит модуль значения в резко возрастающем направлении. Реакция поможет отыскать как минимум три решения, но необходимо будет проверить их. Начнем с того, что нам понадобиться решить уравнение онлайн с помощью уникального сервиса нашего сайта. Введем обе части заданного уравнения, нажмем на кнопу «РЕШИТЬ» и получим в течение всего нескольких секунд точный ответ. В особых случаях возьмем книгу по математике и перепроверим наш ответ, а именно посмотрим только ответ и станет все ясно. Вылетит одинаковый проект по искусственному избыточному параллелепипеду. Есть параллелограмм со своими параллельными сторонами, и он объясняет множество принципов и подходов к изучению пространственного отношения восходящего процесса накопления полого пространства в формулах натурального вида. Неоднозначные линейные уравнения показывают зависимость искомой переменной с нашим общим на данный момент времени решением и надо как-то вывести и привести неправильную дробь к нетривиальному случаю. На прямой отметим десять точек и проведем через каждую точку кривую в заданном направлении, и выпуклостью вверх. Без особых трудностей наш калькулятор уравнений представит в таком виде выражение, что его проверка на валидность правил будет очевидна даже в начале записи. Система особых представлений устойчивости для математиков на первом месте, если иного не предусмотрено формулой. На это мы ответим подробным представление доклада на тему изоморфного состояния пластичной системы тел и решение уравнений онлайн опишет движение каждой материальной точки в этой системе. На уровне углубленного исследования понадобится подробно выяснить вопрос об инверсиях как минимум нижнего слоя пространства. По возрастанию на участке разрыва функции мы применим общий метод великолепного исследователя, кстати, нашего земляка, и расскажем ниже о поведении плоскости. В силу сильных характеристик аналитически заданной функции, мы используем только калькулятор уравнений онлайн по назначению в выведенных пределах полномочий. Рассуждая далее, остановим свой обзор на однородности самого уравнения, то есть правая его часть приравнена к нулю. Лишний раз удостоверимся в правильности принятого нами решения по математике. Во избежание получения тривиального решения, внесем некоторые корректировки в начальные условия по задаче на условную устойчивость системы. Составим квадратное уравнение, для которого выпишем по известной всем формуле две записи и найдем отрицательные корни. Если один корень на пять единиц превосходит второй и третий корни, то внесением правок в главный аргумент мы тем самым искажаем начальные условия подзадачи. По своей сути нечто необычное в математике можно всегда описать с точностью до сотых значений положительного числа. В несколько раз калькулятор дробей превосходит свои аналоги на подобных ресурсах в самый лучший момент нагрузки сервера. По поверхности растущего по оси ординат вектора скорости начертим семь линий, изогнутых в противоположные друг другу направления. Соизмеримость назначенного аргумента функции опережает показания счетчика восстановительного баланса. В математике этот феномен представим через кубическое уравнение с мнимыми коэффициентами, а также в биполярном прогрессе убывания линий. Критические точки перепада температуры во много своем значении и продвижении описывают процесс разложения сложной дробной функции на множители. Если вам скажут решите уравнение, не спешите это делать сию минуту, однозначно сначала оцените весь план действий, а уже потом принимайте правильный подход. Польза будет непременно. Легкость в работе очевидна, и в математике то же самое. Решить уравнение онлайн. Все уравнения онлайн представляют собой определенного вида запись из чисел или параметров и переменной, которую нужно определить. Вычислить эту самую переменную, то есть найти конкретные значения или интервалы множества значений, при которых будет выполняться тождество. Напрямую зависят условия начальные и конечные. В общее решение уравнений как правило входят некоторые переменные и константы, задавая которые, мы получим целые семейства решений для данной постановки задачи. В целом это оправдывает вкладываемые усилия по направлению возрастания функциональности пространственного куба со стороной равной 100 сантиметрам. Применить теорему или лемму можно на любом этапе построения ответа. Сайт постепенно выдает калькулятор уравнений при необходимости на любом интервале суммирования произведений показать наименьшее значение. В половине случаев такой шар как полый, не в большей степени отвечает требованиям постановки промежуточного ответа. По крайней мере на оси ординат в направлении убывания векторного представления эта пропорция несомненно будет являться оптимальнее предыдущего выражения. В час, когда по линейным функциям будет проведен полный точечный анализ, мы, по сути, соберем воедино все наши комплексные числа и биполярные пространства плоскостной. Подставив в полученное выражение переменную, вы решите уравнение поэтапно и с высокой точностью дадите максимально развернутый ответ. Лишний раз проверить свои действия в математике будет хорошим тоном со стороны учащегося студента. Пропорция в соотношении дробей зафиксировала целостность результата по всем важным направлениям деятельности нулевого вектора. Тривиальность подтверждается в конце выполненных действий. С простой поставленной задачей у студентов не может возникнуть сложностей, если решить уравнение онлайн в самые кратчайшие периоды времени, но не забываем о всевозможных правилах. Множество подмножеств пересекается в области сходящихся обозначений. В разных случаях произведение не ошибочно распадается на множители. Решить уравнение онлайн вам помогут в нашем первом разделе, посвященном основам математических приемов для значимых разделов для учащихся в ВУЗах и техникумах студентов. Ответные примеры нас не заставят ожидать несколько дней, так как процесс наилучшего взаимодействия векторного анализа с последовательным нахождением решений был запатентован в начале прошлого века. Выходит так, что усилия по взаимосвязям с окружающим коллективом были не напрасными, другое очевидно назрело в первую очередь. Спустя несколько поколений, ученые всего мира заставили поверить в то, что математика это царица наук. Будь-то левый ответ или правый, все равно исчерпывающие слагаемые необходимо записать в три ряда, поскольку в нашем случае речь пойдет однозначно только про векторный анализ свойств матрицы. Нелинейные и линейные уравнения, наряду с биквадратными уравнениями, заняли особый пост в нашей книге про наилучшие методы расчета траектории движения в пространстве всех материальных точек замкнутой системы. Воплотить идею в жизнь нам поможет линейный анализ скалярного произведения трех последовательных векторов. В конце каждой постановки, задача облегчается благодаря внедрениям оптимизированных числовых исключений в разрез выполняемых наложений числовых пространств. Иное суждение не противопоставит найденный ответ в произвольной форме треугольника в окружности. Угол между двумя векторами заключает в себе необходимый процент запаса и решение уравнений онлайн зачастую выявляет некий общий корень уравнения в противовес начальным условиям. Исключение выполняет роль катализатора во всем неизбежном процессе нахождения положительного решения в области определения функции. Если не сказано, что нельзя пользоваться компьютером, то калькулятор уравнений онлайн в самый раз подойдет для ваших трудных задач. Достаточно лишь вписать в правильном формате свои условные данные и наш сервер выдаст в самые кратчайшие сроки полноценный результирующий ответ. Показательная функция возрастает гораздо быстрее, чем линейная. Об этом свидетельствую талмуды умной библиотечной литературы. Произведет вычисление в общем смысле как это бы сделало данное квадратное уравнение с тремя комплексными коэффициентами. Парабола в верхней части полуплоскости характеризует прямолинейное параллельное движение вдоль осей точки. Здесь стоит упомянуть о разности потенциалов в рабочем пространстве тела. Взамен неоптимальному результату, наш калькулятор дробей по праву занимает первую позицию в математическом рейтинге обзора функциональных программ на серверной части. Легкость использования данного сервиса оценят миллионы пользователей сети интернет. Если не знаете, как им воспользоваться, то мы с радостью вам поможем. Еще хотим особо отметить и выделить кубическое уравнение из целого ряда первостепенных школьнических задач, когда необходимо быстро найти его корни и построить график функции на плоскости. Высшие степени воспроизведения — это одна из сложных математических задач в институте и на ее изучение выделяется достаточное количество часов. Как и все линейные уравнения, наши не исключение по многих объективным правилам, взгляните под разными точками зрений, и окажется просто и достаточно выставить начальные условия. Промежуток возрастания совпадает с интервалом выпуклости функции. Решение уравнений онлайн. В основе изучения теории состоят уравнения онлайн из многочисленных разделов по изучению основной дисциплины. По случаю такого подхода в неопределенных задачах, очень просто представить решение уравнений в заданном заранее виде и не только сделать выводы, но и предсказать исход такого положительного решения. Выучить предметную область поможет нам сервис в самых лучших традициях математики, именно так как это принято на Востоке. В лучшие моменты временного интервала похожие задачи множились на общий множитель в десять раз. Изобилием умножений кратных переменных в калькулятор уравнений завелось приумножать качеством, а не количественными переменными таких значений как масса или вес тела. Во избежание случаев дисбаланса материальной системы, нам вполне очевиден вывод трехмерного преобразователя на тривиальном схождении невырожденных математических матриц. Выполните задание и решите уравнение в заданных координатах, поскольку вывод заранее неизвестен, как и неизвестны все переменные, входящие в пост пространственное время. На короткий срок выдвинете общий множитель за рамки круглых скобок и поделите на наибольший общий делитель обе части заранее. Из-под получившегося накрытого подмножества чисел извлечь подробным способом подряд тридцать три точки за короткий период. Постольку поскольку в наилучшем виде решить уравнение онлайн возможно каждому студенту, забегая вперед, скажем одну важную, но ключевую вещь, без которой в дальнейшем будем непросто жить. В прошлом веке великий ученый подметил ряд закономерностей в теории математики. На практике получилось не совсем ожидаемое впечатление от событий. Однако в принципе дел это самое решение уравнений онлайн способствует улучшению понимания и восприятия целостного подхода к изучению и практическому закреплению пройдённого теоретического материала у студентов. На много проще это сделать в свое учебное время.

=

Разберем два вида решения систем уравнения:

1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.

Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.

Чтобы решить систему методом почленного сложения (вычитания) нужно:
1. Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение . Находим решение системы.

Решением системы являются точки пересечения графиков функции.

Рассмотрим подробно на примерах решение систем.

Пример №1:

Решим методом подстановки

Решение системы уравнений методом подстановки

2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)

1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y

2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1

3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y. Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1

Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)

Пример №2:

Решим методом почленного сложения (вычитания).

Решение системы уравнений методом сложения

3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)

1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2

5y=32 | :5
y=6,4

3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6

Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно . Без шуток.

Сервис для решения уравнений онлайн поможет вам решить любое уравнение. Используя наш сайт, вы получите не просто ответ уравнения, но и увидите подробное решение, то есть пошаговое отображение процесса получения результата. Наш сервис будет полезен старшеклассникам общеобразовательных школ и их родителям. Ученики смогут подготовиться к контрольным, экзаменам, проверить свои знания, а родители – проконтролировать решение математических уравнений своими детьми. Умение решать уравнения – обязательное требование к школьникам. Сервис поможет вам самообучаться и повышать уровень знаний в области математических уравнений. С его помощью вы сможете решить любое уравнение: квадратное, кубическое, иррациональное, тригонометрическое и др. Польза онлайн сервиса бесценна, ведь кроме верного ответа вы получаете подробное решение каждого уравнения. Преимущества решения уравнений онлайн. Решить любое уравнение онлайн на нашем сайте вы можете абсолютно бесплатно. Сервис полностью автоматический, вам ничего не придется устанавливать на свой компьютер, достаточно будет только ввести данные и программа выдаст решение. Любые ошибки в расчетах или опечатки исключены. С нами решить любое уравнение онлайн очень просто, поэтому обязательно используйте наш сайт для решения любых видов уравнений. Вам необходимо только ввести данные и расчет будет выполнен за считанные секунды. Программа работает самостоятельно, без человеческого участия, а вы получаете точный и подробный ответ. Решение уравнения в общем виде. В таком уравнении переменные коэффициенты и искомые корни связаны между собой. Старшая степень переменной определяет порядок такого уравнения. Исходя из этого, для уравнений используют различные методы и теоремы для нахождения решений. Решение уравнений данного типа означает нахождение искомых корней в общем виде. Наш сервис позволяет решить даже самое сложное алгебраическое уравнение онлайн. 2-4ac. Если дискриминант меньше нуля, то уравнение не имеет действительных корней (корни находятся из поля комплексных чисел), если равен нулю, то у уравнения один действительный корень, и если дискриминант больше нуля, то уравнение имеет два действительных корня, которые находятся по формуле: D= -b+-sqrt/2а. Для решения квадратного уравнения онлайн вам достаточно ввести коэффициенты такого уравнения (целые числа, дроби или десятичные значения). При наличии знаков вычитания в уравнении необходимо поставить минус перед соответствующими членами уравнения. Решить квадратное уравнение онлайн можно и в зависимости от параметра, то есть переменных в коэффициентах уравнения. С этой задачей отлично справляется наш онлайн сервис по нахождению общих решений. Линейные уравнения. Для решения линейных уравнений (или системы уравнений) на практике используются четыре основных метода. Опишем каждый метод подробно. Метод подстановки. Решение уравнений методом подстановки требует выразить одну переменную через остальные. После этого выражение подставляется в другие уравнения системы. Отсюда и название метода решения, то есть вместо переменной подставляется ее выражение через остальные переменные. На практике метод требует сложных вычислений, хотя и простой в понимании, поэтому решение такого уравнения онлайн поможет сэкономить время и облегчить вычисления. Вам достаточно указать количество неизвестных в уравнении и заполнить данные от линейных уравнений, далее сервис сделает расчет. Метод Гаусса. В основе метода простейшие преобразования системы с целью прийти к равносильной системе треугольного вида. Из нее поочередно определяются неизвестные. На практике требуется решить такое уравнение онлайн с подробным описанием, благодаря чему вы хорошо усвоите метод Гаусса для решения систем линейных уравнений. Запишите в правильном формате систему линейных уравнений и учтите количество неизвестных, чтобы безошибочно выполнить решение системы. Метод Крамера. Этим методом решаются системы уравнений в случаях, когда у системы единственное решение. Главное математическое действие здесь – это вычисление матричных определителей. Решение уравнений методом Крамера проводится в режиме онлайн, результат вы получаете мгновенно с полным и подробным описанием. Достаточно лишь заполнить систему коэффициентами и выбрать количество неизвестных переменных. Матричный метод. Этот метод заключается в собрании коэффициентов при неизвестных в матрицу А, неизвестных – в столбец Х, а свободных членов в столбец В. Таким образом система линейных уравнений сводится к матричному уравнению вида АхХ=В. У этого уравнения единственное решение только если определитель матрицы А отличен от нуля, иначе у системы нет решений, либо бесконечное количество решений. Решение уравнений матричным методом заключается в нахождении обратной матрицы А.

для решения математики. Быстро найти решение математического уравнения в режиме онлайн . Сайт www.сайт позволяет решить уравнение почти любого заданного алгебраического , тригонометрического или трансцендентного уравнения онлайн . При изучении практически любого раздела математики на разных этапах приходится решать уравнения онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение уравнений онлайн займет несколько минут. Основное преимущество www.сайт при решении математических уравнений онлайн — это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические уравнения онлайн , тригонометрические уравнения онлайн , трансцендентные уравнения онлайн , а также уравнения с неизвестными параметрами в режиме онлайн . Уравнения служат мощным математическим аппаратом решения практических задач. C помощью математических уравнений можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины уравнений можно найти, сформулировав задачу на математическом языке в виде уравнений и решить полученную задачу в режиме онлайн на сайте www. сайт. Любое алгебраическое уравнение , тригонометрическое уравнение или уравнения содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения уравнений . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических уравнений онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических уравнений онлайн , тригонометрических уравнений онлайн , а также трансцендентных уравнений онлайн или уравнений с неизвестными параметрами. Для практических задач по нахождению корней различных математических уравнений ресурса www.. Решая уравнения онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение уравнений на сайте www.сайт. Необходимо правильно записать уравнение и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением уравнения. Проверка ответа займет не более минуты, достаточно решить уравнение онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении уравнений онлайн будь то алгебраическое , тригонометрическое , трансцендентное или уравнение с неизвестными параметрами.

Таблица корней | Онлайн калькуляторы, расчеты и формулы на GELEOT.RU

Корень – это обратное действие от степени, поэтому у него также имеется своя степень. Квадратный корень является обратным действием от второй степени, которая еще именуется квадратом, так как геометрически берет свое начало в вычислениях площади этой фигуры. Это самый распространенный корень по частоте использования, поэтому в его обозначении степень не пишется, а лишь подразумевается. Следующий по частоте запроса – это кубический корень, корень третьей степени. Третья степень называется кубом, так как ее посредством вычисляется объем куба, соответственно корень третьей степени также становится кубическим. В данном разделе приведены таблицы корней второй и третьей степени, где значение находится в центральных ячейках таблицы. Цифра десятков квадрата или куба записана по вертикали, а цифра единиц – по горизонтали, таким образом, пересечение нужной строки и столбца дает значение корня.

Таблица квадратных корней от 1 до 99


√x0123456789
0011,414211,7320522,236072,449492,645752,828433
13,162283,316623,46413,605553,741663,8729844,123114,242644,3589
24,472144,582584,690424,795834,8989855,099025,196155,29155,38516
35,477235,567765,656855,744565,830955,9160866,082766,164416,245
46,324566,403126,480746,557446,633256,70826,782336,855656,92827
57,071077,141437,21117,280117,348477,41627,483317,549837,615777,68115
67,745977,810257,874017,9372588,062268,124048,185358,246218,30662
78,36668,426158,485288,5448,602338,660258,71788,774968,831768,88819
88,9442799,055399,110439,165159,219549,273629,327389,380839,43398
99,486839,539399,591669,643659,695369,746799,797969,848869,899499,94987

Таблица кубических корней от 1 до 99


3√x0123456789
0011,259921,442251,58741,709981,817121,9129322,08008
12,154432,223982,289432,351332,410142,466212,519842,571282,620742,6684
22,714422,758922,802042,843872,88452,924022,962533,036593,07232
33,107233,141383,17483,207533,239613,271073,301933,332223,361983,39121
43,419953,448223,476033,50343,530353,556893,583053,608833,634243,65931
53,684033,708433,732513,756293,779763,802953,825863,84853,870883,893
63,914873,93653,957893,9790644,020734,041244,061554,081664,10157
74,121294,140824,160174,179344,198344,217164,235824,254324,272664,29084
84,308874,326754,344484,362074,379524,396834,4144,431054,447964,46475
94,48144,497944,514364,530654,546844,56294,578864,59474,610444,62607

Корни и степени — презентация онлайн

Похожие презентации:

Свойства корня n-ой степени. 11 класс

Корни натуральной степени из числа, их свойства

Свойства корня n-ой степени

Преобразование выражений, содержащих квадратные корни

Степени и корни

Свойства арифметического корня п–ой степени

Преобразование выражений, содержащих квадратные корни. 8 класс

Квадратные корни. Повторение. 9 класс

Степени и корни

Свойства корня n-й степени

\
\
1.Составляем очень краткий конспект (теоремы, формулы,
примеры). На экзамене можно пользоваться своим конспектом,
поэтому пишите только ту информацию, которая пригодится при
решении экзаменационных заданий. Большая часть теории дана
для общего обозрения.
2.Многие примеры даны с решением, необходимо самостоятельно
их решать и только потом сверяться с ответом. При
необходимости провести работу над ошибками. Примеры, в
которых дано решение на проверку отправлять не надо,
остальные надо отправлять.
Корнем n-ой степени из числа a называется
такое число, n-я степень которого равна a.
n
x,
a
то есть x n a
Устно:
Вычислите:
16 2
5
32 2
10
1 1
4
4
81 3
0 256 0 2 2
3
4
125 81 5 3 8
64 5 243 8 3 5
7
6
8
64 4 625 2 5 7
Теорема 1. Корень n-ой степени (n = 2, 3, 4, …)
из произведения двух неотрицательных чисел
равен произведению корней n-ой степени из
этих чисел.
n
1.
3
ab a b
27 64
2. 4 108 192
n
n
Теорема 1. Корень n-ой степени (n = 2, 3, 4, …)
из произведения двух неотрицательных чисел
равен произведению корней n-ой степени из
этих чисел.
n
1.
2.
3
ab a b
n
n
27 64 3 27 3 64 3 4 12
4
108 192 4 34 4 4 3 43
4 33 4 3 43 4 34 4 4
4
3 4
4
3 4 12
Теорема 2. Корень n-ой степени из отношения
неотрицательного числа a и положительного
числа b равен отношению корней n-ой степени
из этих чисел.
n
3.
3
27
8
4
405
4. 4
80
19
5. 7 32
5
a
b
n
a
n
b
Теорема 2. Корень n-ой степени из отношения
неотрицательного числа a и положительного
числа b равен отношению корней n-ой степени
из этих чисел.
n
3.
3
27
8
a
b
n
a
n
b
27 3
1,5
3
2
8
3
4. 405 4 405 4 5 81 4 81 3 1,5
4
4
80
80
5. 5 7 19 5 243
32
32
5 16
16
2
243 3
1,5
5
2
32
5
Теорема 3. Чтобы возвести корень n-ой
степени из неотрицательного числа a в
натуральную степень k, надо в эту степень
возвести подкоренное выражение.
a
n
6.
2
3
6
k
a
n
k
Теорема 3. Чтобы возвести корень n-ой
степени из неотрицательного числа a в
натуральную степень k, надо в эту степень
возвести подкоренное выражение.
a
k
n
6.
2
3
6
2
3
6
a
n
3
2
2 3
k
3 43 4
Теорема 4. Чтобы извлечь корень n-ой
степени из корня k-ой степени из
неотрицательного числа a, надо извлечь
корень kn-ой степени из этого числа.
n k
a
nk
a
Упростить выражение:
а)
б)
3
4 3
а
а
Теорема 4. Чтобы извлечь корень n-ой
степени из корня k-ой степени из
неотрицательного числа a, надо извлечь
корень kn-ой степени из этого числа.
a
n k
nk
a
Упростить выражение:
а)
б)
3
4 3
а 3 2 а 6 а
а 4 3 а 12 а
Теорема 5. Если показатели корня и
подкоренного выражения умножить
или разделить на одно и то же число,
то значение корня не изменится.
mp
a
а)
kp
12
a
m
а16 б )
k
3
а
с) а 3 а 4 а
Теорема 5. Если показатели корня и
подкоренного выражения умножить
или разделить на одно и то же число,
то значение корня не изменится.
mp
а)
12
a
kp
a
а16 3 а 4
m
б)
k
3
а 6 а2
с) а 3 а 4 а 12 а 6 12 а 4 12 а 3
12 а 6 а 4 а 3 12 а13
Действия над степенями.
1
2
49 7
2
2
8 8 1
0,2 5 1
10
10 : 10 100
4
2
9
1 3
3
9
Выучить
Преобразование выражений.
(диктант )
3
27a
6
9x
4
2 3
6
a b
6
3
12
2c 4c
3
Верны ли равенства
3
27 3
100 10
32 2
5
4
32a 2a
8
24
2
9 3
3
3
I. «Повторенье – мать ученья!»
По горизонтали:
2
1.Так называют корень третьей
степени.
2. Есть у любого слова, у растения,
может быть у уравнения, может
быть n-й степени.
3.Так называют степень корня,
кратную двум.
4.Так называют степень корня вида
2k+1.
По вертикали:
1.Так называют корень второй
степени.
2.Действие, посредством которого
отыскивают корень.
3.Положительный корень.
4.Другое название корня.
Кроссворд выполнять по желанию
3
1
4
2
3
4
Кроссворд

з


о
у
б
и
ч
ё

л
р
е
с
к
и
й
в
ч
ф
а
е
м

д
н
е
а
и
т
д
е
и
и
ч
к
р
е
н
ь
а

в
т
н
ы
й
н
а
я
Молодцы!
Так
держать!

е
ч
е
с
к
и
й
т
н
а
л
я
Практика (сдать на проверку)
Задание-1
14
9 4 9
3
32
243
5
2 8 81
3
4
1
1
3 11 3
4 3
4
3 4 12
Практика (продолжение)
Вариант 1.
Вариант 2.
2. Вычислите:
а)
б)
3
3
3 3 9
;
4
16
а)
3
3 .
8
б)
3
4
2 3 4
;
4
81
1
5 .
16
3. Упростите выражение:
а а а .
3
2
4
3
3
а2 4 а 5 а3 .
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
http://png.clipart.me/previews/f71/abstract-geometric-shapes-colorful-background-vectorillustration-21227.jpg разноцветный фон
http://png.clipart.me/previews/8dd/abstract-bokeh-stars-background-22079.jpg звездный фон
http://png.clipart.me/previews/3c2/abstract-curves-spiral-lines-background-29040.jpg
спиральные линии
http://png.clipart.me/previews/55d/geometric-flower-colorful-geometric-flower-37615.jpg
разноцветный геометрический цветок
http://png.clipart.me/previews/613/full-blossom-bright-flower-with-bokeh-28910.jpg яркий
цветок желтый
http://forumsmile.ru/u/e/2/5/e254945922c4f1013d20ea0624e17a53. png девочка читает книгу
http://s22.postimg.org/igfto04a9/0_94205_c1a601b5_XL.png чертежные инструменты
http://pandia.ru/text/79/302/images/image005_98.jpg читают книгу девочка и мальчик
http://www.playcast.ru/uploads/2015/06/13/13966223.png глобус, учебники, звонок
http://150st-mnsc.edusite.ru/images/00696116.png будильник
http://flatik.ru/flax/620/619215/619215_html_569b7b33.jpg девочка измеряет
http://alexandrbykadorov.ru/wp-content/uploads/2013/12/15.jpg чертежнве инструменты 2
http://wallpapers1920.ru/img/picture/Dec/25/093f9009d19ebd9799e9cf8bc3737d24/5.jpg
карандашик
http://easyen.ru/load/math/11_klass/svojstva_kornja_n_oj_stepeni/42-1-0-34205
15. .http://fs1.ppt4web.ru/uploads/ppt/5418/4d938a2e82c192bf86491d3127175299.pptx
16..https://yandex.ru/search/?lr=54&clid=1989615&msid=1466610169.9554.22889.5478&text
=мартышова презентация арифметический корень

English     Русский Правила

Тесты по теме «Степень» онлайн

  1. Онлайн тесты
  2. Степень
  • Степень с натуральным показателем.

    06.12.2018 6569 0

    Тест для закрепления понятия степени с натуральным показателем. Учебник Ю.М. Колягина.

  • Степень с целым показателем

    05.04.2020 20823 0

    Тест по теме «Степень с целым показателем». Для учащихся 8 класса. Содержит 17 вопросов

  • Свойства степени с целым показателем

    20.04.2020 8412 0

    Тест предназначен для проверки знаний по теме «Свойства степени с целым показателем».

  • 7 класс.

    Алгебра. Свойства степени с натуральным показателем (теория).

    15.10.2017 10713

    Тест предназначен для учащихся 7 классов при изучении или повторении свойств степени с натуралным показателем.

  • 7 класс. Алгебра. Степень с целым показателем. Степень числа 2.

    05.08.2017 2430

    Тест предназначен для учащихся 7 (6) классов при отработке навыков устного счета. Тема «Целая степень числа 2»

  • Свойства степени с натуральным показателем.

    08.12.2018 5783

    Тест предназначен для закрепления свойств умножения и деления степеней с одинаковым основанием.

  • 7 класс. Алгебра. Степень с целым показателем. Степень числа 3.

    05.08.2017 1215

    Тест предназначен для учащихся 7 (6) классов при отработке навыков устного счета. Тема «Целая степень числа 2»

  • Корни, степени и логарифмы, 1 вариант

    01.11.2017 2137 0

    Тест разработан по теме корни, степени и логарифмы. Всего 30 заданий с выбором ответа, на соответствие, последовательность, задания с множеством выбора ответа. Каждый правильный ответ оценивается в 1 балл. Время прохождения 45 минут.

  • Степень.

    Свойства степени

    22.04.2020 2811 0

    Тест соответствует учебнику «Алгебра. 7 класс» под редакцией С.А. Теляковского. 

  • Зачетик 10-1А: «Арифметический корень натуральной степени»

    15.09.2019 824 0

    Данный тест предназначен для закрпления темы «Арифметический корень натуральной степени». Тест состоит из 5 вопросов образовательной программы школьного курса по математике.По результату теста выставляется отметка  с комментарием. 

  • Степень с рациональным показателем

    06.12.2020 623 0

    Тест предназначен для проверки умения выполнять действия со степенямия. применять свойства степеней.

  • «Показательная функция»

    02.12.2021 175 0

    Тест по теме «Показательная функция» направлен на проверку усвоения данной темы учениками 10 класса

  • Контрольная работа по теме «Свойства степени с натуральным показателем»

    13.02.2022 144 0

    Тест предназначен для закрепления изученного материала и его повторения. Удачи в прохождении!!!

  • 7 класс. Алгебра. Степень с целым показателем.

    Степени чисел 2; 3; 4; 5. №1

    06.08.2017 1942

    Тест предназначен для учащихся 7 (6) классов при отработке навыков устного счета. Тема «Целая степень числа»

  • Логарифм. Основное логарифмическое тождество

    19.04.2021 666 0

    Данный тест используется на этапе закрепления материала по теме «Логарифм. Основное логарифмическое тождество»

  • 7 класс. Алгебра. Степень с целым показателем. Степени чисел 4 и 5.

    06.08.2017 1057

    Тест предназначен для учащихся 7 (6) классов при отработке навыков устного счета. Тема «Целая степень числа»

  • 7 класс. Алгебра. Степень с целым показателем. Степени чисел 2; 3; 4; 5. №2

    06.08.2017 1161

    Тест предназначен для учащихся 7 (6) классов при отработке навыков устного счета. Тема «Целая степень числа»

  • 7 класс. Алгебра. Степень с целым показателем. Степени чисел 2; 3; 4; 5. №3

    06.08.2017 1473

    Тест предназначен для учащихся 7 (6) классов при отработке навыков устного счета. Тема «Целая степень числа»

  • Действия со степенями

    19. 09.2017 14 0

    Тест покажет уровень знаний и умений выполнять действия со степенями

  • Корни, степени и логарифмы, 2 вариант

    14.11.2017 1299 0

    Тест разработан по теме корни, степени и логарифмы. Всего 30 заданий с выбором ответа, на соответствие, последовательность, задания с множеством выбора ответа. Каждый правильный ответ оценивается в 1 балл. Время прохождения 45 минут.

  • Алгебра 7 класс Повторение 1 четверти

    12.11.2020 37 0

    Тест по теме «Степень с натуральным показателем» «Степень с целым показателем» Цель: повторение изученного, актуализация знаний. Уровень  заданий- к каждому заданию дано 4 варианта ответа, один из которых верный. За каждое верное выполнение задания начисляется один бал.  

  • Степень. Свойства степени.

    25.11.2020 25 0

    Тест предназначен для учащихся 7-х классов по теме «Степень с натуральным показателем. Свойства степени»

  • Степени и корни. Степенная функция.

    01.12.2020 364 0

    В ходе тестирования вы повторите свойства степеней с рациональным и иррациональным показателями, свойства степенной функции. Тест состоит из семи заданий. Задния представлены различного типа: открытого и закрытого типов, на установление порядка

  • Степень и ее свойства

    11. 12.2020 314 0

    Тест предназначен для повторения и закрепления темы Степень числа

  • Свойства степени

    29.01.2021 30 0

    Данный тест предназначен для поторения и закрепления тем Степень числа и Свойства степени

  • Упражнения по теме степень и ее свойства

    31.01.2021 39 0

    тест предназначен для закрепления и повторения темы Степень и ее свойства

  • Степень с натуральным показателем.

    вариант №1

    06.10.2021 540 0

    Тест предназначен для проверки знаний учащихся 5 класса по теме «Степень с натуральным показателем».

  • Степень. Свойства степени.

    16.12.2021 39 0

    степень с натуральным и нулевым показателями. Умножение и деление степеней. Возведение в степень произведения и степени.

  • Степень числа

    22.01.2022 26 0

    Вашему вниманию представлен тест по теме «Степень числа»

  • Правила дифференцирования

    18. 03.2022 137 0

    Тест предназначен для проверки знаний по теме «Правила дифференцирования». 

Квадратный корень тренажёр онлайн.

Тренажер создан для помощи старшекласникам, для изучения или повторения извлечения квадратного корня в режиме реального времени. Главная цель — закрепить навыки в обработке вычислительных действий извлечения квадратного корня. Имеется три уровня сложности. Первый уровень — числа до 10. Второй уровень — числа от 10 до 20. Третий уровень от 20 до 33. Найдите квадратный корень и введите правильный ответ.


  1. Квадратный корень тренажёр онлайн.
  2. Таблица корней натуральных чисел от 0 до 100.
  3. Калькулятор корней.

Уровень сложности  1   — числа с суммой до 10 — числа с суммой от 11 до 20 — числа с суммой от 20 до 100 — числа с суммой от 100 до 1000 таблица НАТаблица до   1234567891011121314151617181920 — числа до 10 — числа от 10 до 20 — числа от 20 до 33

Примеров  0  из  20

Правильно!
5·2 = 10
Следующий пример:

  ·   =

ТАБЛИЦА КОРНЕЙ натуральных чисел от 0 до 100.
ЕДИНИЦЫ
0 1 2 3 4 5 6 7 8 9
0011,4142141,73205122,2360682,449492,6457512,8284273
13,1622783,3166253,4641023,6055513,7416573,87298344,1231064,2426414,358899
Д 24,4721364,5825764,6904164,7958324,89897955,099025,1961525,2915035,385165
Е 35,4772265,5677645,6568545,7445635,8309525,9160866,0827636,1644146,244998
С 46,3245566,4031246,4807416,5574396,633256,7082046,782336,8556556,9282037
Я 57,0710687,1414287,2111037,280117,3484697,4161987,4833157,5498347,6157737,681146
Т 67,7459677,810257,8740087,93725488,0622588,1240388,1853538,2462118,306624
К 78,3666008,426158,4852818,5440048,6023258,6602548,7177988,7749648,8317618,888194
И 88,94427299,0553859,1104349,1651519,2195449,2736189,3273799,3808329,433981
99,4868339,5393929,5916639,6436519,695369,7467949,7979599,8488589,8994959,949874


Разбиваем цифры числа на пары, начиная с разряда единиц. Извлекаем корень из 5, самое близкое число из которого можно извлечь корень 4. Из 4 извлекаем корень получится 2, записываем в ответ. Из 5 вычитаем 4 получится 1 и как в делении сносим новые цифры. Нашу первую цифру из ответа нужно умножить на 2, два умножить на два получится 4. В красном квадрате находится новая цифра искомого числа. Число нужно так подобрать чтобы при умножении получилось максимальное число, не превосходящее число 129.
43 * 3 = 129. Второя цифра получилась 3, значит корень из числа 529 будет равен 23.


Калькулятор корней

= 0

Цифр после запятой  012345678910

5 методов вычисления квадратного корня

При решении различных задач из курса математики и физики ученики и студенты часто сталкиваются с необходимостью извлечения корней второй, третьей или n-ой степени. Конечно, в век информационных технологий не составит труда решить такую задачу при помощи калькулятора. Однако возникают ситуации, когда воспользоваться электронным помощником невозможно.

К примеру, на многие экзамены запрещено приносить электронику. Кроме того, калькулятора может не оказаться под рукой. В таких случаях полезно знать хотя бы некоторые методы вычисления радикалов вручную.

Содержание:

  • Извлечение квадратного корня при помощи таблицы квадратов
  • Разложение на простые множители
  • Метод Герона
  • Вычисление корня делением в столбик
  • Поразрядное вычисление значения квадратного корня
  • Видео

Извлечение квадратного корня при помощи таблицы квадратов

Один из простейших способов вычисления корней заключается в использовании специальной таблицы. Что же она собой представляет и как ей правильно воспользоваться?

При помощи таблицы можно найти квадрат любого числа от 10 до 99. При этом в строках таблицы находятся значения десятков, в столбах — значения единиц. Ячейка на пересечении строки и столбца содержит в себе квадрат двузначного числа. Для того чтобы вычислить квадрат 63, нужно найти строку со значением 6 и столбец со значением 3. На пересечении обнаружим ячейку с числом 3969.

Поскольку извлечение корня — это операция, обратная возведению в квадрат, для выполнения этого действия необходимо поступить наоборот: вначале найти ячейку с числом, радикал которого нужно посчитать, затем по значениям столбика и строки определить ответ. В качестве примера рассмотрим вычисление квадратного корня 169.

Находим ячейку с этим числом в таблице, по горизонтали определяем десятки — 1, по вертикали находим единицы — 3. Ответ: √169 = 13.

Аналогично можно вычислять корни кубической и n-ой степени, используя соответствующие таблицы.

Преимуществом способа является его простота и отсутствие дополнительных вычислений. Недостатки же очевидны: метод можно использовать только для ограниченного диапазона чисел (число, для которого находится корень, должно быть в промежутке от 100 до 9801). Кроме того, он не подойдёт, если заданного числа нет в таблице.

Разложение на простые множители

Если таблица квадратов отсутствует под рукой или с её помощью оказалось невозможно найти корень, можно попробовать разложить число, находящееся под корнем, на простые множители. Простые множители — это такие, которые могут нацело (без остатка) делиться только на себя или на единицу. Примерами могут быть 2, 3, 5, 7, 11, 13 и т. д.

Рассмотрим вычисление корня на примере √576. Разложим его на простые множители. Получим следующий результат: √576 = √(2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3) = √(2 ∙ 2 ∙ 2)² ∙ √3². При помощи основного свойства корней √a² = a избавимся от корней и квадратов, после чего подсчитаем ответ: 2 ∙ 2 ∙ 2 ∙ 3 = 24.

Что же делать, если у какого-либо из множителей нет своей пары? Для примера рассмотрим вычисление √54. После разложения на множители получаем результат в следующем виде: √54 = √(2 ∙ 3 ∙ 3 ∙ 3) = √3² ∙ √(2 ∙ 3) = 3√6. Неизвлекаемую часть можно оставить под корнем. Для большинства задач по геометрии и алгебре такой ответ будет засчитан в качестве окончательного. Но если есть необходимость вычислить приближённые значения, можно использовать методы, которые будут рассмотрены далее.

Метод Герона

Как поступить, когда необходимо хотя бы приблизительно знать, чему равен извлечённый корень (если невозможно получить целое значение)? Быстрый и довольно точный результат даёт применение метода Герона. Его суть заключается в использовании приближённой формулы:

√R = √a + (R — a) / 2√a,

где R — число, корень которого нужно вычислить, a — ближайшее число, значение корня которого известно.

Рассмотрим, как работает метод на практике, и оценим, насколько он точен. Рассчитаем, чему равен √111. Ближайшее к 111 число, корень которого известен — 121. Таким образом, R = 111, a = 121. Подставим значения в формулу:

√111 = √121 + (111 — 121) / 2 ∙ √121 = 11 — 10 / 22 ≈ 10,55.

Теперь проверим точность метода:

10,55² = 111,3025.

Погрешность метода составила приблизительно 0,3. Если точность метода нужно повысить, можно повторить описанные ранее действия:

√111 = √111,3025 + (111 — 111,3025) / 2 ∙ √111,3025 = 10,55 — 0,3025 / 21,1 ≈ 10,536.

Проверим точность расчёта:

10,536² = 111,0073.

После повторного применения формулы погрешность стала совсем незначительной.

Вычисление корня делением в столбик

Этот способ нахождения значения квадратного корня является чуть более сложным, чем предыдущие. Однако он является наиболее точным среди остальных методов вычисления без калькулятора.

Допустим, что необходимо найти квадратный корень с точностью до 4 знаков после запятой. Разберём алгоритм вычислений на примере произвольного числа 1308,1912.

  1. Разделим лист бумаги на 2 части вертикальной чертой, а затем проведём от неё ещё одну черту справа, немного ниже верхнего края. Запишем число в левой части, разделив его на группы по 2 цифры, двигаясь в правую и левую сторону от запятой. Самая первая цифра слева может быть без пары. Если же знака не хватает в правой части числа, то следует дописать 0. В нашем случае получится 13 08,19 12.
  2. Подберём самое большое число, квадрат которого будет меньше или равен первой группе цифр. В нашем случае это 3. Запишем его справа сверху; 3 — первая цифра результата. Справа снизу укажем 3×3 = 9; это понадобится для последующих расчётов. Из 13 в столбик вычтем 9, получим остаток 4.
  3. Припишем следующую пару чисел к остатку 4; получим 408.
  4. Число, находящееся сверху справа, умножим на 2 и запишем справа снизу, добавив к нему _ x _ =. Получим 6_ x _ =.
  5. Вместо прочерков нужно подставить одно и то же число, меньшее или равное 408. Получим 66×6 = 396. Напишем 6 справа сверху, т. к. это вторая цифра результата. Отнимем 396 от 408, получим 12.
  6. Повторим шаги 3—6. Поскольку снесённые вниз цифры находятся в дробной части числа, необходимо поставить десятичную запятую справа сверху после 6. Запишем удвоенный результат с прочерками: 72_ x _ =. Подходящей цифрой будет 1: 721×1 = 721. Запишем её в ответ. Выполним вычитание 1219 — 721 = 498.
  7. Выполним приведённую в предыдущем пункте последовательность действий ещё три раза, чтобы получить необходимое количество знаков после запятой. Если не хватает знаков для дальнейших вычислений, у текущего слева числа нужно дописать два нуля.

В результате мы получим ответ: √1308,1912 ≈ 36,1689. Если проверить действие при помощи калькулятора, можно убедиться, что все знаки были определены верно.

Поразрядное вычисление значения квадратного корня

Метод обладает высокой точностью. Кроме того, он достаточно понятен и для него не требуется запоминать формулы или сложный алгоритм действий, поскольку суть способа заключается в подборе верного результата.

Извлечём корень из числа 781. Рассмотрим подробно последовательность действий.

  1. Выясним, какой разряд значения квадратного корня будет являться старшим. Для этого возведём в квадрат 0, 10, 100, 1000 и т. д. и выясним, между какими из них находится подкоренное число. Мы получим, что 10² < 781 < 100², т. е. старшим разрядом будут десятки.
  2. Подберём значение десятков. Для этого будем по очереди возводить в степень 10, 20, …, 90, пока не получим число, превышающее 781. Для нашего случая получим 10² = 100, 20² = 400, 30² = 900. Значение результата n будет находиться в пределах 20 < n <30.
  3. Аналогично предыдущему шагу подбирается значение разряда единиц. Поочерёдно возведём в квадрат 21,22, …, 29: 21² = 441, 22² = 484, 23² = 529, 24² = 576, 25² = 625, 26² = 676, 27² = 729, 28² = 784. Получаем, что 27 < n < 28.
  4. Каждый последующий разряд (десятые, сотые и т. д. ) вычисляется так же, как было показано выше. Расчёты проводятся до тех пор, пока не будет достигнута необходимая точность.

Видео

Из видео вы узнаете, как извлекать квадратные корни без использования калькулятора.

Калькулятор четвертого корня — Впечатляющий Калькулятор четвертого корня

Калькулятор четвертого корня онлайн:

используйте наш Калькулятор четвертого корня онлайн.

Реклама

Пример 4 -го корня из x

  • 4 -й корень 9 составляет ± 1,7320
  • 4 -й корень 16 IS ± 2
  • 4th корень из 27 равен ± 2,279
  • 4 -й корень из 48 равен ± 2,632
  • 1111111111111111111 4 -й корень из 48 — ± 2,632
  • 111111111111111111 4-й корень из 64 равен ± 2,828
  • 4-й корень из 81 равен ± 3
  • 4-й корень из 216 равен ± 3,833
  • Корень 4 из 256 равен ± 4
  • Корень 4 из 625 равен ± 5
  • Корень 4 из 4096 равен ± 8

    ∜x = A

    Четвертая корневая формула

    Четвертый корень Определение:

    Определение четвертого корня :

    в математике, Четвертый root из номера x , четвертый . r что при возведении в степень 4 дает х :

    r 4 = х.

    Fourth Root Definition:

    Perfect 4th Roots:

    Fourth root of X 4√x 
    Fourth root of 1 1
    Fourth root of 16 2
    Корень четвертой степени из 81 3
    Корень четвертой степени из 256 4
    Fourth root of 625 5
    Fourth root of 1296 6
    Fourth root of 2401 7
    Fourth root of 4096 8
    Fourth root of 6561 9
    Fourth root of 10000 10
    Fourth root of 14641 11
    Fourth root of 20736 12
    Perfect 4th Roots

    Table of Fourth Root:

    Fourth root of X  4√x   Fourth root of X   4√x  
    Fourth root of 1 1 Fourth root of 26 2,2581
    Fourth root of 2 1,1892 Fourth root of 27 2,2795
    Fourth root of 3 1,3161 Fourth root of 28 2,3003
    Fourth root of 4 1,4142 Fourth root of 29 2,3206
    Fourth root of 5 1 ,4953 Fourth root of 30 2,3403
    Fourth root of 6 1,5651 Fourth root of 31 2,3596
    Fourth root of 7 1,6266 Корень четвертой степени из 32 2,3784
    Fourth root of 8 1,6818 Fourth root of 33 2,3968
    Fourth root of 9 1,7321 Fourth root of 34 2 4147
    Четвертый корень из 10 1 7783 Четвертый корень 35 2,4323
    Четвертый корень 10082
    Четвертый корень 1821212
    root 1821212
    root 1821212
    2982
    2982
    2982
    2982
    . 4495
    Fourth root of 12 1,8612 Fourth root of 37 2,4663
    Fourth root of 13 1,8988 Fourth root of 38 2,4828
    Fourth root of 14 1,9343 Fourth root of 39 2,499
    Fourth root of 15 1,968 Fourth root of 40 2,5149
    Fourth root of 16 2 Fourth root of 41 2,5304
    Fourth root of 17 2,0305 Fourth root of 42 2,5457
    Fourth root of 18 2,0598 Четвертый корень 43 2 5607
    Четвертый корень из 19 2 0878 . из 45 2,59
    Fourth root of 21 2,1407 Fourth root of 46 2,6043
    Fourth root of 22 2,1657 Fourth root of 47 2 ,6183
    Fourth root of 23 2,1899 Fourth root of 48 2,6321
    Fourth root of 24 2,2134 Fourth root of 49 2,6458
    Корень четвертой степени из 25 2,2361 Корень четвертой степени из 50 2,6591
    Таблица корней четвертой степени

    Если вы хотите вычислить другое число, воспользуйтесь нашим онлайн-калькулятором корня четвертой степени в верхней части страницы.

    Подробнее корневой калькулятор:

    • квадратный корневой калькулятор
    • Cube Croot Calculator
    • Пятый корневой калькулятор
    • Шестой корневой калькулятор
    • Седьмой корневой калькулятор
    • Eghth Croot Calculator
    • NINTH CROL CALCUTUTUTUTUTUTUTUTUTUTUTURON
    • EIGHTH ROY CALCUTUTUT0012
    • Десятый корневой калькулятор
    • N -й корневой калькулятор

    Ссылка: N TH ROOT из Wikipedia

    CROE Calculator — Получите NTH Radical of Number

    , созданный Maciej Kowalski, Phd Candidde

    By Byzyk и Phd. Джек Боуотер

    Последнее обновление: 6 апреля 2022 г.

    Содержание:
    • Что такое корень в математике?
    • Как вычислить квадратный корень
    • Кубический корень, корень четвертой степени, корень n-й степени
    • Пример: использование калькулятора корня

    Добро пожаловать в калькулятор корня , где мы рассмотрим теорию и практику как вычислить корень n-й степени числа , также называемый радикалом n-й степени , вместе. Мы начнем с краткого объяснения того, что такое корень в математике, и приведем несколько простых примеров, которые вы, возможно, уже видели, например, квадратный корень из 2, квадратный корень из 3 или кубический корень из 4. Но что, если это четвертый корень , который вы хотели бы найти? Предыдущие были довольно простыми, но что такое, скажем, корень 4-й степени из 81? Не беспокойтесь, мы покажем вам достаточно скоро!

    Устройтесь поудобнее, расслабьтесь и наслаждайтесь путешествием по миру радикалов !

    Что такое корень в математике?

    Все мы знаем умножение, верно? Как 12 * 4 = 48 ? Если мы хотим умножить одно и то же число несколько раз, то мы можем записать его в упрощенной форме :

    12 * 12 * 12 * 12 * 12 = 12⁵ ,

    , где маленькое 5 называется показателем степени и означает, сколько копий большого числа (в данном случае 12 ) мы берем. Мы также назовем эту операцию , взяв 5 -ю степень числа 12 .

    Корень — это обратная операция. Чтобы связать это с биологическим смыслом, когда мы смотрим на взрослое дерево, мы видим его листья и ствол, но все это построено на его корнях . И с цифрами история очень похожа: когда мы видим цифру 125 , то его корень покажет нам маленькое зерно , которое выросло из . В этом примере он покажет нам, что начальное значение равно 5 , потому что 5³ = 125 .

    Формально n -й корень числа a есть число b , такое что:

    bⁿ = a .

    Например, давайте подробнее рассмотрим число , которое является квадратным корнем некоторого числа . Предположим, вы копаете бассейн на заднем дворе. Вы бы хотели, чтобы он был такой же длины, как и широкий, и в целом покрывал площадь 256 квадратных фута. Как вычислить , какой длины должны быть стороны ? Правильно — путем расчета радикала! В данном случае это должен быть квадратный корень из площади, то есть квадратный корень из 256 .

    И чему равен квадратный корень из этого числа? Что ж, давайте посмотрим, как мы можем его найти и как вообще вычислить квадратный корень.

    Как вычислить квадратный корень

    Иногда вычисление корня в математике может напоминать игру в угадайку . Но это не то же самое, что бросать кости с закрытыми глазами и угадывать, что выпадет. Это больше расчетного предположения . В конце концов, как только мы узнаем, что 3⁴ = 81 , мы можем с уверенностью сказать, что корень четвертой степени из 81 равен 3 . Но мы должны знать это в первую очередь.

    Итак, что мы можем сделать, если мы забыли нашу удобную таблицу первых ста чисел и их первых нескольких степеней дома? Это безнадежное дело? К счастью, нет. Не совсем, но мы вернемся к этому через секунду.

    В качестве примера мы покажем , как вычислить квадратный корень из 72 . Нашим основным инструментом здесь будет первичная факторизация, то есть разбиение 72 на мельчайшие возможные части.

    В процедуре простой факторизации мы берем число (в нашем случае 72 ) и находим наименьшее простое число, которое делит его на . Напомним, что простое число — это целое число, имеющее только два делителя: 1 и само себя. Нетрудно заметить, что для нас это будет 2 с

    72/2 = 36 .

    Следующим шагом является нахождение наименьшего простого числа результата деления числа на простое число, т. е. числа 36 . Если мы продолжим это, пока не достигнем 1 , мы получим следующие простые числа: 2 , 2 , 2 , 3 , 3 . Это простая факторизация 72 , и это означает, что

    72 = 2 * 2 * 2 * 3 * 3 .

    Теперь, если мы найдем пары среди одинаковых чисел, мы увидим, что у нас есть пара 2 , пара 3 и осталась одна 2 . Это позволяет нам записать квадратный радикал 72 как

    √72 = √(2*2*2*3*3) = √(2²*3²*2) = 2*3 * √2 = 6√ 2 .

    Внимательный глаз заметит, что под корнем остаются только одиночных чисел, не нашедших пары .

    А как же 2 ? Чему равен квадратный корень из 2 ? Вот что значит « не совсем «. Квадратный корень из 2 , квадратный корень из 3 или любого другого простого числа возвращает нас к игре в угадайку. К счастью, мы можем использовать наш калькулятор корня , чтобы вычислить, что √2 ≈ 1,4142 , что дает нам

    √72 = 6√2 ≈ 6 * 1,4142 = 8,4852 .

    По сути, когда нас спрашивают » чему равен квадратный корень из …, «, мы должны сначала сделать разложение на простые множители , чтобы решить проблему, и если (как указано выше) у нас останется какая-то маленькая цифра в конце, нам просто нужно используйте такой инструмент, как калькулятор корня , чтобы найти его.

    » Но как насчет высших радикалов? Что делать, если мне нужен, например, корень четвертой степени числа? » Ну, как удобно с твоей стороны спросить! Именно этой задачей мы займемся в следующем разделе.

    Кубический корень, корень четвертой степени, корень n-й степени

    Вспомните, как вы хотели вырыть бассейн в первой секции. Теперь предположим, что вы хотите, чтобы все это было кубом, вмещающим 90 501 1 728 90 502 кубических фута воды. (Не спрашивайте нас, почему. Возможно, все вышеперечисленное облагается налогом по-другому?)

    Как найти сторону такого бассейна? Ага — путем вычисления кубического корня из числа (отсюда и название кубический корень ). Это скажет нам, что длина должна быть

    ∛1,728 = 12 футов в длину.

    Но как мы туда попали? К счастью, основной инструмент здесь тот же: простая факторизация . Если мы применим процедуру к 1,728 , мы получим

    1,728 = 2*2*2*2*2*2*3*3*3 .

    Теперь дело обстоит иначе — вместо пар мы группируем числа в тройки . На это намекает маленькое 3 в корневом символе — нам нужно третьих степеней . Обратите внимание, что квадратные корни на самом деле являются радикалами 9-го порядка.0501 2 , но 2 мы не пишем, потому что… Ну, , если нам не нужно делать это из одного типа корня, то это может быть и самый простой . Это просто условность и традиция. Думайте об этом как о математическом эквиваленте запекания индейки на День Благодарения.

    В любом случае, возвращаясь к нашей задаче, группировка позволяет нам записать

    ∛1,728 = ∛(2*2*2*2*2*2*3*3*3) = ∛(2³*2³*3³ ) = 2*2*3 = 12 .

    Если мы пойдем выше с порядком радикала, применяется то же правило . При вычислении четвертого корня мы группируем простые числа в четверок . Например, если вам нужен 4-й корень из 81 , вы сначала заметите, что

    81 = 3 * 3 * 3 * 3 ,

    , поэтому у нас есть четыре 3 . Это означает, что корень четвертой степени из 81 равен 3 . И если нам нужно n-й корень , мы берем группы из n элементов. И, если что-то останется после факторизации, мы просто найдем с помощью какого-нибудь внешнего инструмента, такого как наш калькулятор корня .

    Хорошо, после стольких раз прочтения теории пришло время взглянуть на пример из реальной жизни и увидеть калькулятор корня в действии , вам не кажется?

    Пример: с помощью калькулятора корня

    Поздравляем, родился мальчик! Теперь, когда вы стали родителем, , вы решили начать пораньше и отложить немного денег, когда он пойдет в колледж. Вы решаете взять большую часть своих сбережений и оставить ее в банке на следующие восемнадцать лет чтобы сумма росла вместе с вашим малышом.

    Предположим, вам удалось отложить солидные 8000 долларов . К сожалению, вы как-то забыли процентную ставку по вкладу, но что сделано, то сделано. Сумма в конце будет для вас такой же неожиданностью, как и для вашего сына .

    Проходит время, идут годы, и, наконец, пришло время подарить вашему ребенку деньги, которые вы сэкономили . Вы звоните в банк, и оказывается, что есть $12 477,27 на счету. Не так уж и плохо, не так ли? Кажется, ты сможешь воплотить мечты своего сына в реальность.

    Но, просто для себя, просто из чистого любопытства, можем ли мы рассчитать процентную ставку по имеющимся у нас числам?

    Конечно можем , и калькулятор корня нам поможет!

    Предположим, что проценты начислялись на счет в конце каждого года и что деньги вообще не облагались налогом (да, мы понимаем, что здесь мы немного преувеличиваем). Тогда сумма, которую мы получаем в итоге описывается формулой

    конечная_сумма = начальная_сумма * (1 + процентная_ставка)¹⁸ ,

    где 18 -я степень исходит из восемнадцати лет, в течение которых деньги были потрачены в банке. В нашем случае это означает

    12 477,27 долл. США = 8 000 долл. США * (1 + процентная_ставка)¹⁸ .

    Если мы разделим обе части на 8000 , мы получим

    12 477,27 долл. США / 8000 долл. США = (1 + процентная_ставка)¹⁸ ,

    или после приближения

    1,5597 = (1 + процентная_ставка)¹⁸ .

    Итак, если у нас есть 18 -я степень справа, нам нужно найти 18 -й радикал числа слева . Теперь, это что-то немного более сложное, чем квадратный корень из 3, не так ли?

    Обращаемся к нашему калькулятору корня . Там у нас есть два числа: a и n . Когда мы смотрим на символическую картинку, мы видим, что n равно порядку корня , поэтому мы вводим n = 18 . В свою очередь, а — это число под корнем , поэтому мы принимаем а = 1,5597 . Это заставляет калькулятор корня выдать ответ:

    1 + Interest_rate = 1.025 .

    Если перевести десятичную дробь в проценты, то получим

    Interest_rate = 0,025 = 2,5% .

    Кажется совсем маленьким, но ох, как он вырос за восемнадцать лет!

    Хорошо, любопытство удовлетворено , пора возвращаться к праздничному торту. Будем надеяться, что ваш сын с пользой воспользуется деньгами и продолжит учебу.

    Maciej Kowalski, PhD candidate

    Result

    Check out 60 similar arithmetic calculators ➗

    Absolute valueAdditionAssociative property… 57 more

    Fourth Root and 4th Exponent Table


    .0082
    Find the 4 th root of. .. The 4 th root
    1 1.0000
    2 1.1892
    3 1.3161
    4 1.4142
    5 1.4953
    6 1.5651
    7 1.6266
    8 1.6818
    9 1.7321
    10 1.7783
    11 1.8212
    12 1.8612
    13 1.8988
    14 1.9343
    15 1.9680
    16 2.0000
    17 2,0305
    18 2.0598
    2.0598
    98 2.0598
    98 2. 0598
    98 2.0598
    2.0878
    20 2.1147
    21 2.1407
    22 2.1657
    23 2.1899
    24 2.2134
    25 2.2361
    26 2.2581
    27 2.2795
    28 2.3003
    29 2.3206
    30 2.3403
    31 2.3596
    32 2.3784
    33 2.3968
    34 2.4147
    35 2.4323
    36 2.4495
    37 2.4663
    38 2.4828
    39 2. 4990
    40 2.5149
    41 2.5304
    42 2.5457
    43 2.5607
    44 2.5755
    45 2.5900
    46 2.6043
    47 2.6183
    48 2.6321
    49 2.6458
    50 2.6591
    51 2.6723
    52 2.6853
    53 2.6982
    54 2.7108
    55 2.7233
    56 2.7356
    57 2.7477
    58 2.7597
    59 2.7715
    60 2.7832
    61 2. 7947
    62 2.8061
    63 2.8173
    64 2.8284
    65 2.8394
    66 2.8503
    67 2.8610
    68 2.8716
    69 2.8821
    70 2.8925
    71 2.9028
    72 2.9130
    73 2.9230
    74 2.9330
    75 2.9428
    76 2.9526
    77 2.9623
    78 2.9718
    79 2.9813
    80 2.9907
    81 3.0000
    82 3.0092
    83 3. 0183
    84 3.0274
    85 3.0364
    86 3.0453
    87 3.0541
    88 3.0628
    89 3.0715
    90 3.0801
    91 3.0886
    92 3.0970
    93 3.1054
    94 3.1137
    95 3.1220
    96 3.1302
    97 3.1383
    98 3.1463
    99 3.1543
    100 3.1623


    25
    Find the exponent 4 of… The exponent 4
    1 1
    2 16
    3 81
    4 256
    5 625
    . 0901 8 4096
    9 6561
    10 10000
    11 14641
    12 20736
    13 28561
    14 38416
    15 50625
    16 65536
    17 83521
    18 104976
    19 130321
    20 160000
    21 194481
    22 234256
    23 279841
    24 331776
    25 3

    26 456976
    27 531441
    28 614656
    29 707281
    30 810000
    31

    1

    32 1048576
    33 1185921
    34 1336336
    35 1500625
    36 1679616
    37 1874161
    38 2085136
    39 2313441
    40 2560000
    41 2825761
    42 3111696
    43 3418801
    44 3748096
    45 4100625
    46 4477456
    47 4879681
    48 5308416
    49 5764801
    50 6250000
    51 6765201
    52 7311616
    53 78
    54 8503056
    55
    56 9834496
    57 10556001
    58 11316496
    59 12117361
    60 12960000
    61 13845841
    62 14776336
    63 15752961
    64 16777216
    65 17850625
    . 0087
    68 21381376
    69 22667121
    70 24010000
    71 25411681
    72 26873856
    73 28398241
    74 29986576
    75 31640625
    76 33362176
    77 35153041
    78 37015056
    79 38950081
    80 40960000
    81 43046721
    82 45212176
    83 47458321
    84 49787136
    85 52200625
    86 54700816
    87 57289761
    88 59969536
    89 62742241
    90 65610000
    91 68574961
    92 71639296
    93 74805201
    94 78074896
    95 81450625
    96 846
    97 88529281
    98 816
    99 96059601
    100 100000000

    Higher-Index Roots | Purplemath

    IntroSimplify / MultiplyAdd / Subtract Conjugates / DividingRationalizingEt cetera

    Purplemath

    Операции с кубическими корнями, корнями четвертой степени и другими корнями с более высоким индексом работают аналогично квадратным корням, хотя в некоторых местах нам нужно расширить наше мышление. немного. Я объясню, как мы идем.

    Упрощение терминов с более высоким индексом

    На предыдущих страницах мы упростили квадратные корни, убрав из радикала все множители, встречающиеся в наборах из двух. Для второго корня нам нужна была вторая копия.

    Для корней с более высоким индексом мышление такое же. Если у нас есть кубический корень, мы можем убрать любой множитель, который встречается в наборах по три; в четвертом корне мы убираем любой множитель, который встречается в наборах из четырех; в пятом корне мы убираем любой множитель, который встречается в наборах из пяти; и так далее. Например:

    Содержание продолжается ниже

    MathHelp.com

    Квадратные и кубические корни

    Раньше я мог извлечь из квадратного корня все, что у меня было в двух экземплярах. Точно так же теперь я могу извлечь из четвертого корня все, что у меня есть в четырех экземплярах. Так как 16 = 2 4 , тогда:


    Я извлекаю кубический корень. Затем я могу вытащить из радикала любой фактор, который встречается три раза. Так как 8 = 2 3 , то этот радикал полностью упростится.


    Мой первый шаг состоит в том, чтобы полностью разложить это на множители:

    54 = 2 · 27 = 2 · (3 · 3 · 3)

    У меня есть три копии числа 3, так что я могу извлечь 3 из кубический корень, оставив 2 внутри.


    Опять же, я начинаю с разложения на множители:

    48 = 3 · 16 = 3 · 2 · 2 · 2 · 2

    У меня есть четыре копии множителя 2, но это кубический корень, поэтому Я могу вытащить только 2 за три из этих копий. 3 и четвертая 2 останутся внутри корня.


    Я знаю, что 27 = 3 3 , поэтому кубический корень упростится до целого числа. Тогда я закончу умножением.


    • Упрощение:

    Внутри этого радикала мне дали переменные, но процесс работает так же, как и всегда. Я беру корень пятой степени, поэтому я могу вытащить из корня все, для чего у меня есть пять копий.

    32 равно 2 5 , так что это получится из радикала. x 10 = ( x 2 ) 5 , поэтому получится x 2 . y 6 = ( y 5 )( y 1 ), так что я смогу вытащить y , оставив внутри радикала 2 y . И z 7 = ( z 5 )( z 2 ), так что я смогу вытащить z , оставив z 2 внутри.

    Моя работа выглядит следующим образом:


    Примечание. Когда вы упрощаете подкоренные выражения с переменными, если подкоренным является корень с четным индексом (например, квадратный корень или корень из четвертой степени), они, вероятно, укажут, что вы следует «предполагать, что все переменные неотрицательны» (или «положительны»). Это делается для того, чтобы не принимать во внимание, нужны ли в вашем ответе столбцы абсолютных значений. Если вы не уверены, о чем я говорю, проверьте здесь.


    Умножение корней с более высоким индексом
    • Упростите выражение кубического корня:

    Это умножение работает так же, как умножение квадратных корней, в том смысле, что произведение двух одинаковых корней с более высоким индексом может быть преобразовано в корень с более высоким индексом произведения. Затем упрощаю обычным образом.


    • Упростите продукт:

    В данном случае мне дали произведение корней четвертой степени. Я могу превратить произведение радикалов в радикал произведения. Тогда я могу упростить.


    Добавление корней с более высоким индексом
    • Упрощение:

    Оба члена в этом выражении являются кубическими корнями, но я могу объединить их, только если они являются кубическими корнями одного и того же значения. Сейчас это не так. Так что я сначала упрощу радикалы, а потом посмотрю, смогу ли я пойти дальше.

    Замечу, что 8 = 2 3 и 64 = 4 3 , так что я действительно смогу полностью упростить радикалы.


    • Упрощение:

    Я никак не могу упростить второй корень. Но я могу упростить первый радикал, потому что 81 = 3 4 = (3 3 )(3). Таким образом, я получу сумму двух третьих корней из трех, которые я могу объединить.


    Dividing Higher-Index Roots

    The denominator is a cube, being 27 = 3 3 , so I can easily simplify and arrive at a «rationalized» denominator:


    Это похоже на предыдущее упражнение, но здесь в числителе стоит куб (то есть 27). Я не могу правильно упростить это выражение, потому что не могу упростить радикал в знаменателе до целых чисел:

    Чтобы рационализировать знаменатель, содержащий квадратный корень, мне понадобились две копии любых множителей внутри радикала. Для кубического корня мне понадобится три копии. Вот что я умножу на эту дробь.

    У меня один экземпляр с делителем 5 в знаменателе. Я умножу сверху и снизу на кубический корень из 25, что даст две дополнительные копии 5, которые мне нужны, чтобы рационализировать знаменатель.

    Возможно, это окончательное выражение ненамного «проще» исходного выражения. В этом контексте «упростить» означает «рационализировать знаменатель». Часто «правильный» ответ будет ненамного, если вообще «проще», чем то, с чего вы начали.


    Поскольку 72 = 8 × 9 = (2 × 2 × 2) × (3 × 3), у меня есть только три двойки и две тройки. Другими словами, при нынешнем состоянии дроби мне не хватит ни одного из множителей знаменателя, чтобы избавиться от радикала.

    Чтобы что-то вычесть из корня четвертой степени, мне понадобилось бы четыре копии каждого множителя. Для радикала этого знаменателя мне понадобятся еще две тройки и еще одна двойка. Итак, я умножу верхнюю и нижнюю части на корень четвертой степени из 3 · 3 · 2 = 18,


    Вы можете использовать виджет Mathway ниже, чтобы попрактиковаться в работе с выражениями с более высоким индексом. Попробуйте введенное упражнение или введите свое собственное упражнение. Затем нажмите кнопку, чтобы сравнить свой ответ с ответом Mathway.

    Пожалуйста, примите куки-файлы настроек, чтобы включить этот виджет.

    (Нажмите «Нажмите, чтобы просмотреть шаги», чтобы перейти непосредственно на сайт Mathway для платного обновления.)



    URL: https://www.purplemath.com/modules/radicals6.htm

    Стр. 1 Стр. 2 Стр. 3 Стр. 4 Стр. 5 Стр. 7

    Решение уравнений с корнями (видео и практика)