Производная y cosx: Производная косинуса (cosx)’

Содержание

Дистанционное обучение

Раздел 6: Тригонометрические функции.

Тема 6.1 Понятие тригонометрических функций. Знаки. Значения.
Тема 6.2 Основные тригонометрические тождества.
Тема 6.3 Чётность тригонометрических функций.
Тема 6.4 Периодичность тригонометрических функций.
Тема 6.5 Формулы приведения.
Тема 6.6 Формулы сложения.
Тема 6.7 Формулы двойного аргумента.
Тема 6.8 Формулы половинного аргумента.
Тема 6.9 Преобразование произведения в сумму и суммы в произведение.
Тема 6.10-6.11 Функции y=sinx , y=cosx, y=tgx, y=ctgx, их свойства, графики.
Тема 6.12 Обратные тригонометрические функции.
Тема 6.13 Простейшие тригонометрические уравнения.
Тема 6.14 Простейшие тригонометрические неравенства.

Раздел 7: Предел функции.

Тема 7.1 Последовательность. Понятие о пределе последовательности.
Тема 7.2 Предел функции в точке.
Тема 7.3 Бесконечно малые и бесконечно большие функции.
Тема 7.4 Теоремы о пределах.
Тема 7.5 Предел иррациональной функции.
Тема 7.6 Число “e”. “Замечательные пределы”.

Раздел 8: Производная, ее приложение.

Тема 8.1 Понятие производной.
Тема 8.2-8.5 Правила дифференцирования.
Тема 8.6 Производная сложной функции.
Тема 8.7 Производная тригонометрических функций.
Тема 8.8 Производная логарифмической функции.
Тема 8.9 Производная показательной функции.
Тема 8.10 Вторая производная, ее физический смысл.
Тема 8.11 Понятие дифференциала.
Тема 8.12 Геометрический смысл производной.
Тема 8.13 Возрастание и убывание функции.
Тема 8.14 Экстремумы функции.
Тема 8.15 Наибольшее и наименьшее значения функции на промежутке.
Тема 8.16 Выпуклость графика функции.
Тема 8.17 Точки перегиба.
Тема 8.18 Асимптоты.
Тема 8.19 Построение графиков.

Раздел 9: Интеграл, его приложение.

Тема 9.
1 Первообразная.
Тема 9.2 Неопределенный интеграл, его свойства.
Тема 9.3 Основные формулы интегрирования.
Тема 9.4 Непосредственное интегрирование.
Тема 9.5 Интегрирование методом подстановки.
Тема 9.6 Интегрирование по частям.
Тема 9.7 Определенный интеграл, его свойства.
Тема 9.8 Формула Ньютона-Лейбница:
Тема 9.9 Вычисление определённого интеграла методом подстановки (замены переменной).
Тема 9.10 Интегрирование по частям для определённого интеграла.
Тема 9.11 Вычисление площадей плоских фигур
Тема 9.12 Применение определенного интеграла при решении физических задач.

Раздел 10: Геометрические тела и их поверхности.

Тема 10.1 Тело и поверхность. Многогранники.
Тема 10.2 Призма.
Тема 10.3 Параллелепипед.
Тема 10.4-10.5 Пирамида. Усеченная пирамида.
Тема 10.6 Правильные многогранники.
Тема 10.7 Поверхность вращения. Цилиндр.
Тема 10.8 Конус.
Тема 10.9 Шар. Сфера.
Тема 10.10 Вписанная и описанная сфера.

Раздел 11: Объемы и площади геометрических тел.

Тема 11.1 Объем тела. Объем параллелепипеда.
Тема 11.2 Объем призмы
Тема 11.3 Объем пирамиды. Объем усеченной пирамиды
Тема 11.4 Площадь поверхности многогранников
Тема 11.5 Объем тел вращения.
Тема 11.6 Площадь поверхности цилиндра.
Тема 11.7 Площадь поверхности конуса.
Тема 11.8 Площадь поверхности усеченного конуса.
Тема 11.9 Площадь поверхности шара.

Раздел 12: Элементы теории вероятности.

Тема 12.1 Введение в теорию вероятности. Комбинаторика.
Тема 12.2. Размещения.
Тема 12.3. Перестановки.
Тема 12.4. Сочетания.
Тема 12.5 Бином Ньютона.
Тема 12.6 Треугольник Паскаля.
Тема 12.7 Случайные события.
Тема 12.8. Классическое определение вероятности.
Тема 12.9 Теоремы сложения вероятностей.
Тема 12.
10 Условная вероятность.
Тема 12.11 Теоремы умножения вероятностей.

Как найти период функции примеры. Урок «Периодичность функций y=sinx, y=cosx»

Видеоурок «Периодичность функций у = sin х, у = cos х» раскрывает понятие периодичности функции, рассматривает описание примеров решения задач, в которых используется понятие периодичности функции. Данный видеоурок является наглядным пособием для объяснения темы ученикам. Также данное пособие может стать самостоятельной частью урока, освобождая учителя для проведения индивидуальной работы с учениками.

Наглядность в представлении данной темы очень важна. Чтобы представить поведение функции, построение графика, ее необходимо визуализировать. Произвести построения с помощью классной доски и мела не всегда удается так, чтобы они были понятны всем ученикам. В видеоуроке есть возможность при построении выделять части рисунка цветом, производить преобразования с помощью анимации. Таким образом, построения становятся более понятными большинству учеников.

Также возможности видеоурока способствуют лучшему запоминанию материала.

Демонстрация начинается с представления темы урока, а также напоминания ученикам материала, изученного на прошлых уроках. В частности, подытоживается перечень свойств, которые были выявлены в функциях у = sin х, а также у = cos х. Среди свойств рассматриваемых функций отмечены область определения, область значений, четность (нечетность), другие особенности — ограниченность, монотонность, непрерывность, точки наименьшего (наибольшего) значения. Ученикам сообщается, что на данном уроке изучается еще одно свойство функции — периодичность.

Представлено определение периодичной функции y=f(x), где xϵX, в которой выполняется условие f(x-Т)= f(x)= f(x+Т) для некоторого Т≠0. Иначе число Т называют периодом функции.

Для рассматриваемых функций синуса и косинуса выполнение условия проверяется, применяя формулы приведения. Очевидно, что вид тождества sin(x-2π)=sinx=sin(x+2π) соответствует виду выражения определяющего условие периодичности функции.

Такое же равенство можно отметить для косинуса cos (x-2π)= cos x= cos (x+2π). Значит, данные тригонометрические функции являются периодическими.

Далее отмечается, как свойство периодичности помогает строить графики периодичных функций. Рассматривается функция у = sin х. На экране строится координатная плоскость, на которой отмечены абсциссы от -6π до 8π с шагом π. На плоскости строится часть графика синуса, представленный одной волной на отрезке . На рисунке демонстрируется, как график функции формируется на всей области определения сдвигом построенного фрагмента, и получая длинную синусоиду.

Строится график функции у = cos х, используя свойство ее периодичности. Для этого на рисунке строится координатная плоскость, на которой изображается фрагмент графика. Отмечается, что обычно такой фрагмент строится на отрезке [-π/2;3π/2]. Аналогично графику функции синуса, построение графика косинуса выполняется сдвигом фрагмента. В результате построения образуется длинная синусоида.

Построение графика периодичной функции имеет особенности, которые можно использовать. Поэтому они даются в обобщенном виде. Отмечается, что для построения графика такой функции сначала строят ветвь графика на некотором промежутке длиной Т. затем необходимо сдвинуть построенную ветвь вправо и влево на Т, 2Т, 3Т и т.д. при этом указывается еще на одну особенность периода — для любого целого k≠0 число kТ также является периодом функции. Однако Т называется основным периодом, так как он наименьших из всех. Для тригонометрических функций синуса и косинуса основным периодом является 2π. Однако также являются периодами 4π, 6π и т.д.

Далее предлагается рассмотреть нахождение основного периода функции у = cos 5х. Решение начинается с предположением, что Т — период функции. Значит, необходимо выполнение условия f(x-Т)= f(x)= f(x+Т). В данном тождестве f(x)= cos 5х, а f(x+Т)=cos 5(x+Т)= cos (5x+5Т). При этом cos (5x+5Т)= cos 5х, следовательно 5Т=2πn. Теперь можно найти Т=2π/5. Задача решена.

Во второй задаче необходимо найти основной период функции y=sin(2x/7). Предполагается, что основной период функции Т. для данной функции f(x)= sin(2x/7), а через период f(x+Т)=sin(2x/7)(х+Т)= sin(2x/7+(2/7)Т). после приведения получаем (2/7)Т=2πn. Однако нам необходимо найти основной период, поэтому берем наименьшее значение (2/7)Т=2π, из которого находим Т=7π. Задача решена.

В конце демонстрации результаты примеров обобщаются, сформировав правило для определения основного периода функции. Отмечается, что для функций у=sinkxи y=coskx основными периодами являются 2π/k.

Видеоурок «Периодичность функций у = sin х, у = cos х» может применяться на традиционном уроке математики для повышения эффективности урока. Также данный материал рекомендуется использовать учителю, осуществляющему дистанционное обучение для повышения наглядности объяснения. Видео может быть рекомендовано отстающему ученику для углубления понимания темы.

ТЕКСТОВАЯ РАСШИФРОВКА:

«Периодичность функций у = cos x, y =sin x».

Для построения графиков функций y =sin x и у = cos x были использованы свойства функций:

1 область определения,

2 область значения,

3 четность или нечетность,

4 монотонность,

5 ограниченность,

6 непрерывность,

7 наибольшее и наименьшее значение.

Сегодня мы изучим еще одно свойство: периодичность функции.

ОПРЕДЕЛЕНИЕ. Функцию у = f (x), где х ϵ Х(игрек равно эф от икс, где икс принадлежит множеству икс), называют периодической, если существует отличное от нуля число Т такое, что для любого х из множества Х выполняется двойное равенство: f (x — Т)= f (x) = f (x + Т)(эф от икс минус тэ равно эф от икс и равно эф от икс плюс тэ). Число Т, которое удовлетворяет такому двойному равенству, называют периодом функции

А так как синус и косинус определены на всей числовой прямой и для любого х выполняются равенства sin(x — 2π)= sin x= sin(x+ 2π) (синус от икс минус два пи равен синусу икс и равен синусу от икс плюс два пи) и

cos (x- 2π)= cos x = cos (x+ 2π) (косинус от икс минус два пи равен косинусу икс и равен косинусу от икс плюс два пи), то синус и косинус — это периодические функции с периодом 2π.

Периодичность позволяет быстро построить график функции. Ведь для того, что бы построить график функции y = sin x , достаточно построить одну волну (чаще всего на отрезке (от нуля до двух пи), а затем с помощью сдвига построенной части графика вдоль оси абсцисс вправо и влево на 2π, затем на 4π и так далее получить синусоиду.

(показать сдвиг вправо и влево на 2π, 4π)

Аналогично для графика функции

у = cos x, только строим одну волну чаще всего на отрезке [; ] (от минус пи на два до трех пи на два).

Обобщим выше сказанное и сделаем вывод: для построения графика периодической функции с периодом Т сначала нужно построить ветвь(или волну, или часть) графика на любом промежутке длины Т(чаще всего это промежуток с концами в точках 0 и Т или же — и (минус тэ на два и тэ на два), а затем сдвинуть эту ветвь вдоль оси х(икс) вправо и влево на Т, 2Т, 3Т и т. д.

Очевидно, что если функция периодическая с периодом Т, то при любом целом k0(ка не равном нулю) число вида kT(ка тэ) тоже период этой функции. Обычно стараются выделить наименьший положительный период, который называют основным периодом.

В качестве периода функций у = cos x, y = sin x можно было бы взять — 4π, 4π,- 6π, 6π и т.д.(минус четыре пи, четыре пи, минус шесть пи, шесть пи и так далее). Но число 2π является основным периодом и той, и другой функции.

Рассмотрим примеры.

ПРИМЕР 1.Найти основной период функции у = сos5x (игрек равно косинус пяти икс).

Решение. Пусть Т — основной период функции у = сos5x. Положим

f (x) = сos5x, тогда f (x + Т)= сos5(x + Т)= сos (5x + 5Т) (эф от икс плюс тэ равно косинусу пяти, умноженного на сумму икса и тэ равно косинусу от суммы пяти икс и пяти тэ).

сos (5x + 5Т)= сos5x. Отсюда 5Т= 2πn (пять тэ равно два пи эн), но по условию нужно найти основной период, значит, 5Т= 2π. Получаем Т=

(период данной функции равен два пи, деленное на пять).

Ответ: Т=.

ПРИМЕР 2. Найти основной период функции у = sin (игрек равно синус частного двух икс на семь).

Решение. Пусть Т — основной период функции у = sin . Положим

f (x) = sin , тогда f (x + Т)= sin (x + Т) = sin (x + Т) (эф от икс плюс тэ равно синусу произведения двух седьмых и суммы икса и тэ равно синусу от суммы двух седьмых икс и двух седьмых тэ).

Чтобы число Т было периодом функции, должно выполнятся тождество

sin (x + Т) = sin . Отсюда Т= 2πn (две седьмые тэ равно два пи эн), но по условию нужно найти основной период, значит, Т= 2π. Получаем Т=7

(период данной функции равен семи пи).

Ответ: Т=7.

Обобщая результаты, полученные в примерах, можно сделать вывод: основной период функций y =sin kx или у = cos kx (игрек равно синус ка икс или игрек равно косинус ка икс) равен (два пи, деленное на ка).

Аргумента x, то она называется периодической, если есть число T, что для любого x F(x + T) = F(x). Это число T и называется периодом функции.

Периодов может быть и несколько. Например, функция F = const для любых значений аргумента принимает одно и то же значение, а потому любое число может считаться ее периодом.

Обычно интересует наименьший не равный нулю период функции. Его для краткости и называют просто периодом.

Классический пример периодических функций — тригонометрические: синус, косинус и тангенс. Их период одинаков и равен 2π, то есть sin(x) = sin(x + 2π) = sin(x + 4π) и так далее. Однако, разумеется, тригонометрические функции — не единственные периодические.

Относительно простых, базовых функций единственный способ установить их периодичность или непериодичность — вычисления. Но для сложных функций уже есть несколько простых правил.

Если F(x) — с периодом T, и для нее определена производная, то эта производная f(x) = F′(x) — тоже периодическая функция с периодом T. Ведь значение производной в точке x равно тангенсу угла касательной графика ее первообразной в этой точке к оси абсцисс, а поскольку первообразная периодически повторяется, то должна повторяться и производная. Например, производная от функции sin(x) равна cos(x), и она периодична. Беря производную от cos(x), вы получите –sin(x). Периодичность сохраняется неизменно.

Однако обратное не всегда верно. Так, функция f(x) = const периодическая, а ее первообразная F(x) = const*x + C — нет.

Если F(x) — периодическая функция с периодом T, то G(x) = a*F(kx + b), где a, b, и k — константы и k не равно нулю — тоже периодическая функция, и ее период равен T/k. Например sin(2x) — периодическая функция, и ее период равен π. Наглядно это можно представить так: умножая x на какое-нибудь число, вы как бы сжимаете график функции по горизонтали именно в столько раз

Если F1(x) и F2(x) — периодические функции, и их периоды равны T1 и T2 соответственно, то сумма этих функций тоже может быть периодической. Однако ее период не будет простой суммой периодов T1 и T2. Если результат деления T1/T2 — рациональное число, то сумма функций периодична, и ее период равен наименьшему общему кратному (НОК) периодов T1 и T2. Например, если период первой функции равен 12, а период второй — 15, то период их суммы будет равен НОК (12, 15) = 60.

Наглядно это можно представить так: функции идут с разной «шириной шага», но если отношение их ширин рационально, то рано или поздно (а точнее, именно через НОК шагов), они снова сравняются, и их сумма начнет новый период.

Однако если соотношение периодов иррационально, то суммарная функция не будет периодической вовсе. Например, пусть F1(x) = x mod 2 (остаток от деления x на 2), а F2(x) = sin(x). T1 здесь будет равен 2, а T2 равен 2π. Соотношение периодов равняется π — иррациональному числу. Следовательно, функция sin(x) + x mod 2 не является периодической.

>> Периодичность функций у = sin х, у = cos х

§ 11. Периодичность функций у = sin х, у = cos х

В предыдущих параграфах мы использовали семь свойств функций : область определения, четность или нечетность, монотонность, ограниченность, наибольшее и наименьшее значения, непрерывность, область значений функции. Использовали мы эти свойства либо для того, чтобы построить график функции (так было, например, в § 9), либо для того, чтобы прочитать построенный график (так было, например, в § 10). Теперь настал благоприятный момент для введения еще одного (восьмого) свойства функций, которое прекрасно просматривается на построенных выше графиках функций у = sin х(см. рис. 37), у=соs х(см. рис. 41).

Определение. Функцию называют периодической, если существует такое отличное от нуля число T, что для любого х из множествах выполняется двойное равенство :

Число Т, удовлетворяющее указанному условию, называют периодом функции у = f(х).
Отсюда следует, что, поскольку для любого х справедливы равенства:


то функции у = sin х, у=соs х являются периодическими и число 2п служит периодом и той, и другой функции.
Периодичность функции — это и есть обещанное восьмое свойство функций.

А теперь посмотрите на график функции у = sin х (рис. 37). Чтобы построить синусоиду, достаточно построить одну ее волну (на отрезке а затем сдвинуть эту волну по оси х на В итоге с помощью одной волны мы построим весь график.

Посмотрим с этой же точки зрения на график функции у =соs х (рис. 41). Видим, что и здесь для построения графика достаточно сначала построить одну волну (например, на отрезке

А затем сдвинуть ее по оси х на
Обобщая, делаем следующий вывoд.

Если функция у = f(х) имеет период Т, то для построения графика функции нужно сначала построить ветвь (волну, часть) графика на любом промежутке длины Т (чаще всего берут промежуток с концами в точках а затем сдвинуть эту ветвь по оси х вправо и влево на Т, 2Т, ЗТ и т.д.
У периодической функции бесконечно много периодов: если Т — период, то и 2Т — период, и ЗТ — период, и -Т — период; вообще периодом является любое число вида KТ, где к = ±1, ±2, ± 3… Обычно стараются, если это возможно, выделить наименьший положительный период, его называют основным периодом.
Итак, любое число вида 2пк, где к = ±1, ± 2, ± 3,является периодом функций у = sinп х, у=соs х; 2п- основной период и той, и другой функции.

Пример. Найти основной период функции:


а) Пусть Т — основной период функции у = sin х. Положим

Чтобы число Т было периодом функции, должно выполняться тождество Но, поскольку речь идет об отыскании основного периода, получаем
б) Пусть Т — основной период функции у =соs 0,5х. Положим f(х)=соs 0,5х. Тогда f(х + Т)=соs 0,5(х + Т)=соs (0,5х + 0,5Т).

Чтобы число Т было периодом функции, должно выполняться тождество соs (0,5х + 0,5Т)=соs 0,5х.

Значит, 0,5т = 2пп. Но, поскольку речь идет об отыскании основного периода, получаем 0.5Т = 2 л, Т =4л.

Обобщением результатов, полученных в примере, является следующее утверждение: основной период функции

А.Г. Мордкович Алгебра 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие

Совершенствование учебников и уроков

исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

В июле 2020 года NASA запускает экспедицию на Марс. Космический аппарат доставит на Марс электронный носитель с именами всех зарегистрированных участников экспедиции.

Регистрация участников открыта. Получите свой билет на Марс по этой ссылке .


Если этот пост решил вашу проблему или просто понравился вам, поделитесь ссылкой на него со своими друзьями в социальных сетях.

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами

и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Очередной канун Нового Года… морозная погода и снежинки на оконном стекле… Все это побудило меня вновь написать о… фракталах, и о том, что знает об этом Вольфрам Альфа. По этому поводу есть интересная статья , в которой имеются примеры двумерных фрактальных структур. Здесь же мы рассмотрим более сложные примеры трехмерных фракталов.

Фрактал можно наглядно представить (описать), как геометрическую фигуру или тело (имея ввиду, что и то и другое есть множество, в данном случае, множество точек), детали которой имеют такую же форму, как и сама исходная фигура. То есть, это самоподобная структура, рассматривая детали которой при увеличении, мы будем видеть ту же самую форму, что и без увеличения. Тогда как в случае обычной геометрической фигуры (не фрактала), при увеличении мы увидим детали, которые имеют более простую форму, чем сама исходная фигура. Например, при достаточно большом увеличении часть эллипса выглядит, как отрезок прямой. С фракталами такого не происходит: при любом их увеличении мы снова увидим ту же самую сложную форму, которая с каждым увеличением будет повторяться снова и снова.

Бенуа Мандельброт (Benoit Mandelbrot), основоположник науки о фракталах, в своей статье Фракталы и искусство во имя науки написал: «Фракталы — это геометрические формы, которые в равной степени сложны в своих деталях, как и в своей общей форме. То есть, если часть фрактала будет увеличена до размера целого, она будет выглядеть, как целое, или в точности, или, возможно, с небольшой деформацией».

Мэтуэй | Популярные задачи

92) 9(3x) по отношению к x 92+1
1 Найти производную — d/dx бревно натуральное х
2 Оценить интеграл интеграл натурального логарифма x относительно x
3 Найти производную — d/dx
21 Оценить интеграл интеграл от 0 до 1 кубического корня из 1+7x относительно x
22 Найти производную — d/dx грех(2x)
23 Найти производную — d/dx
41 Оценить интеграл интеграл от cos(2x) относительно x
42 Найти производную — d/dx 1/(корень квадратный из х)
43 Оценка интеграла 9бесконечность
45 Найти производную — d/dx х/2
46 Найти производную — d/dx -cos(x)
47 Найти производную — d/dx грех(3x)
68 Оценить интеграл интеграл от sin(x) по x
69 Найти производную — d/dx угловой синус(х)
70 Оценить предел ограничение, когда x приближается к 0 из (sin(x))/x 92 по отношению к х
85 Найти производную — d/dx лог х
86 Найти производную — d/dx арктан(х)
87 Найти производную — d/dx бревно натуральное 5х92

Найдите производную от y=cos x из первого принципа.

МАКСИМАЛЬНЫЙ ОГРАНИЧЕНИЕ ПУБЛИКАЦИИ И ПРОИЗВОДНЫЕ ПРИМЕР

20 видео

РЕКЛАМА

Ab Padhai каро бина объявления ке

Khareedo DN Про и дехо сари видео бина киси объявление ки рукаават ке!

Войдите, если вы уже купили


Похожие видео

Найдите производную от cos x из первого принципа.

934

03:03

Найдите производную от cos x из первого принципа.

32540095

03:06

Найдите производную cos2x из первого принципа.

135918240

04:33.

456495626

Текст Решение

Найдите производную cosx из первого принципа.

515787737

03:11

Найдите производную cosx из первого принципа.

516948799

03:15

Найдите производную cosx из первого принципа.

560945636

01:53

Найдите производную от cos x из первого принципа.

571220223

04:03

Найдите производную от cos(2x+1) w.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *