Упрощение алгебраических выражений онлайн: Упрощение выражений · Калькулятор Онлайн

Содержание

Онлайн урок: Упрощение выражений по предмету Математика 5 класс

Нам уже известно, что одну и ту же информацию можно представить в различных формах: в словесной форме и в символьной.

Кроме того, в словесной форме одну и ту же информацию можно произнести или записать по-разному.

Рассмотрим поясняющий пример.

Прочитаем внимательно следующие три предложения:

1. «Лида- сестра Марины».

2. «Марина- сестра Лиды».

3. «Лида с Мариной сестры».

Заметим следующее: сказаны и записаны данные утверждения по-разному, однако имеют один и тот же смысл.

Рассмотрим еще одно утверждение.

«Девочка Наташа и девочка Света учатся в одном классе.»

Попробуем записать данное предложение короче и проще, сохранив при этом его смысл.

Объединим два словосочетания «девочка Наташа» и «девочка Света» в одно.

Запишем «девочки Наташа и Света».

В результате получим такую фразу: «Девочки Наташа и Света учатся в одном классе».

В целом смысл предложения остался прежним, а предложение стало короче.

Наташа и Света- имена женского рода, и так ясно, что Наташа и Света девочки.

Уберем из предложения слово «девочки» и посмотрим, что получится.

«Наташа и Света учатся в одном классе».

Предложение заметно сократилось, а смысл исходного утверждения сохранился.

Фразу «учатся в одном классе» можно заменить одним словом «одноклассницы».

В таком случае получаем следующее предложение: «Наташа и Света- одноклассницы».

С помощью некоторых преобразований у нас получилось сократить и упростить исходное предложение.

Другими словами, нам удалось заменить исходное предложение эквивалентным ему, сохранив при это его смысл.

Аналогичная ситуация складывается с высказываниями, записанными с помощью математического языка.

Математическое утверждение, записанное в символьной форме, с помощью некоторых преобразований, можно из сложного и громоздкого превратить в простое и короткое.

Сегодня на уроке мы выясним, что значит упростить математическое выражение.

Вспомним, что такое числовое и буквенное выражение.

Познакомимся с различными методами преобразования арифметических и алгебраических выражений.

Разберем большое количество примеров, помогающих понять и усвоить материал по данной теме.

Осмысленная комбинация математических символов, букв и знаков, как нам уже известно, называется математическим выражением.

Выражение не может представлять собой случайный набор математических символов и знаков.

Математические выражения делят на числовые и буквенные.

Числовое выражение- это запись, состоящая из чисел, арифметических операций, скобок и иных специальных математических символов.

Числовые выражения еще по-другому называют арифметическими выражениями.

Число, которое получается после выполнения всех арифметических операций, входящих в выражение, называют значением этого числового выражения.

В таком случае, чтобы найти значение числового выражения, необходимо выполнить в определенном порядке все арифметические операции, указанные в выражении.

Числовое выражение всегда имеет одно верное решение.

Решить арифметическое выражение- значит найти его значение, которое превращает это выражение в верное равенство.

В буквенных выражениях, наряду с числами, знаками математических операций и другими специальными математическими символами содержатся еще и буквы- переменные.

Числовое выражение, в котором числа обозначены цифрами и буквами, называют буквенным выражением.

Буквенные выражения часто называют алгебраическими выражениями.

Алгебраические выражения должны быть составлены в соответствии со всеми математическими правилами и по тому же принципу, что и числовые выражения.

Значение выражения с переменными зависит от значения переменных, входящих в него.

Последовательность выполнения арифметических операций в выражениях с переменными такая же, что и для числовых выражений.

Вычисления в алгебраических выражениях выполняют после подстановки вместо букв их численные значения.

Найти значение алгебраического выражения- значит найти значение выражения при заданном значении переменной.

Значение переменной, при котором алгебраическое выражение обращается в верное равенство, называют допустимым значением этой переменной.

Простые арифметические и алгебраические выражения вам уже хорошо знакомы, значения таких выражений находили не раз, выполняя в определенной последовательности математические операции.

Однако, часто можно встретить выражения, которые имеют сложный и громоздкий вид, значение, которых сложно найти, используя только правила выполнения математических операций.

Чтобы привести математическое выражение к виду, удобному для дальнейшего решения, используют различные тождественные преобразования.

Тождественным преобразованием называют замену одного выражения на другое, тождественно равное исходному.

Часто в словосочетании «тождественные преобразования выражения» слово «тождественные» опускают и произносят просто «преобразования выражения».

Пройти тест

Закрыть тест