Как решать диффуры – .

Дифференциальные уравнения, допускающие понижение порядка

Рассмотрим три частных случая решения дифференциальных уравнений с возможностью понижения порядка. Во всех случаях понижение порядка производится с помощью замены переменной. То есть, решение дифференциального уравнения сводится к решению уравнения более низкого порядка. В основном мы рассмотрим способы понижения порядка дифференциальных уравнений второго порядка, однако их можно применять многократно и понижать порядок уравнений изначально более высокого порядка. Так, в примере 2 решается задача понижения порядка дифференциального уравнения третьего порядка.

Это дифференциальное уравнение вида . Произведём замену переменной: введём новую функцию и тогда . Следовательно, и исходное уравнение превращается в уравнениие первого порядка

с искомой функцией .

Решая его, находим . Так как , то .

Отсюда, интегрируя ещё раз, получаем решение исходного уравнения:

,

где и — произвольные константы интегрирования.

Пример 2. Решить дифференциальное уравнение третьего порядка

.

Решение. Дифференциальное уравнение не содержит y и y‘ в явном виде. Для понижения порядка применяем подстановку:

.

Тогда и получаем линейное дифференциальное уравнение первого порядка:

.

Заменяя z произведением функций u и v, получим

Тогда получим выражения с функцией v:

Выражения с функцией u:

Дважды интегрируем и получаем:

.

Для интегрирования по частям обозначаем:

.

Интегрируем по частям и получаем:

.

Итак, общее решение данного дифференциального уравения:

.

Это дифференциальное уравнение вида . Произведём замену переменной как в предыдущем случае: введём , тогда , и уравнение преобразуется в уравнение первого порядка . Решая его, найдём . Так как , то . Отсюда, интегрируя ещё раз, получаем решение исходного уравнения:

,

где и — произвольные константы интегрирования.

Пример 4. Решить дифференциальное уравнение

.

Решение. Дифференциальное уравнение не содержит y в явном виде. Поэтому

для понижения порядка применяем подстановку:

.

Получим дифференциальное уравнение первого порядка:

.

Это уравение с разделяющимися переменными. Решим его:

Интегрируем полученную функцию:

Мы пришли к цели — общему решению данного дифференциального уравения:

.

Пример 5. Найти общее решение дифференциального уравнения

.

Решение. Дифференциальное уравнение не содержит y в явном виде. Поэтому для понижения порядка применяем подстановку:

.

Получим дифференциальное уравнение первого порядка:

.

или

Это однородное уравение, которое решается при помощи подстановки . Тогда , :

Далее потребуется интегрировать по частям. Введём обозначения:

Интегрируем:

Таким образом, получили общее решение данного дифференциального уравения:

.

Это уравнение вида . Вводим новую функцию , полагая . Тогда

.

Подставляя в уравнение выражения для и , понижаем порядок уравнения. Получаем уравнение первого порядка относительно z как функции от y:

.

Решая его, найдём . Так как , то . Получено дифференциальное уравнение с разделяющимися переменными, из которого находим общее решение исходного уравнения:

,

где и — произвольные константы интегрирования.

Пример 6. Найти общее решение дифференциального уравнения

.

Решение. Полагая и учитывая, что , получаем . Понизив порядок исходного уравнения, получаем уравнение первого порядка с разделяющимися переменными. Приводя его к виду и интегрируя, получаем , откуда . Учитывая, что , находим , откуда получаем решение исходного дифференциального уравнения второго порядка:

или

.

При сокращении на z было потеряно решение уравнения , т.е. . В данном случае оно содержится в общем решении, так как получается из него при (за исключением решения y = 0).

Пример 7. Найти общее решение дифференциального уравнения

.

Решение. Дифференциальное уравнение не содержит x в явном виде. Для понижения порядка применяем подстановку:

.

Получим дифференциальное уравнение первого порядка:

.

Это уравение с разделяющимися переменными. Решим его:

Используя вновь подстановку

,

получим ещё одно уравнение с разделяющимися переменными. Решим и его:

Таким образом, общее решение данного дифференциального уравения:

.

Пример 8. Найти частное решение дифференциального уравнения

,

удовлетворяющее начальному условию y(0) = 1, y‘(0) = −1.

Решение. Дифференциальное уравнение не содержит

x в явном виде. Поэтому применяем подстановку:

.

Таким образом, понизили порядок уравнения и получили уравнение первого порядка

.

Это дифференциальное уравнение с разделяющимися переменными. Разделяем переменные и интегрируем:

Чтобы определить C1, используем данные условия y(0) = 1, y‘(0) = −1 или p(0) = −1. В полученное выражение подставим y = 1, p = −1:

.

Получаем

и

.

Разделяя переменные и интегрируя, получаем

.

Из начального условия y(0) = 1 следует

.

Получаем окончательное решение данного дифференциального уравнения

.

Пример 9. Найти частное решение дифференциального уравнения

,

удовлетворяющее начальному условию y(1) = 1, y‘(1) = −1.

Решение. Дифференциальное уравнение не содержит x в явном виде. Для понижения порядка применяем подстановку:

.

Таким образом, получили уравнение первого порядка

.

Это дифференциальное уравнение с разделяющимися переменными. Разделив обе части уравнения на p, получим

Интегрируем обе части уравнения

Получим

или

Используем начальные условия и определим

C1. Если x = 1, то y = 1 и p = y‘ = −1, поэтому

.

Тогда

Из начального условия y(1) = 1 следует

.

Получаем окончательное решение данного дифференциального уравнения

.

Всё по теме «Дифференциальные уравнения»

Поделиться с друзьями

function-x.ru

Дифференциальные уравнения в полных дифференциалах

Дифференциальное уравнение первого порядка в полных дифференциалах – это уравнение вида:
(1)   ,
где левая часть уравнения является полным дифференциалом некоторой функции U(x, y) от переменных x, y:
.
При этом   .

Если найдена такая функция U(x, y), то уравнение принимает вид:
dU(x, y) = 0.
Его общий интеграл:
U(x, y) = C,
где C – постоянная.

Если дифференциальное уравнение первого порядка записано через производную:
,
то его легко привести к форме (1). Для этого умножим уравнение на dx. Тогда   . В результате получаем уравнение, выраженное через дифференциалы:
(1)   .

Свойство дифференциального уравнения в полных дифференциалах

Для того, чтобы уравнение (1) было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось соотношение:
(2)   .

Доказательство

Далее мы полагаем, что все функции, используемые в доказательстве, определены и имеют соответствующие производные в некоторой области значений переменных x и y. Точка x0, y0 также принадлежит этой области.

Докажем необходимость условия (2).
Пусть левая часть уравнения (1) является дифференциалом некоторой функции U(x, y):
.
Тогда
;
.
Поскольку вторая производная не зависит от порядка дифференцирования, то
;
.
Отсюда следует, что   . Необходимость условия (2) доказана.

Докажем достаточность условия (2).
Пусть выполняется условие (2):
(2)   .
Покажем, что можно найти такую функцию U(x, y), что ее дифференциал:
.
Это означает, что существует такая функция U(x, y), которая удовлетворяет уравнениям:
(3)   ;
(4)   .
Найдем такую функцию. Проинтегрируем уравнение (3) по x от x0 до x, считая что y – это постоянная:
;
;
(5)   .
Дифференцируем по y считая, что x – это постоянная и применим (2):

.
Уравнение (4) будет выполнено, если
.
Интегрируем по y от y0 до y:
;
;
.
Подставляем в (5):
(6)   .
Итак, мы нашли функцию, дифференциал которой
.
Достаточность доказана.

В формуле (6), U(x0, y0) является постоянной – значением функции U(x, y) в точке x0, y0. Ей можно присвоить любое значение.

Как распознать дифференциальное уравнение в полных дифференциалах

Рассмотрим дифференциальное уравнение:
(1)   .
Чтобы определить, является ли это уравнение в полных дифференциалах, нужно проверить выполнение условия (2):
(2)   .
Если оно выполняется, то это уравнение в полных дифференциалах. Если нет – то это не уравнение в полных дифференциалах.

Пример

Проверить, является ли уравнение в полных дифференциалах:
.

Решение

Здесь
,   .
Дифференцируем по y, считая x постоянной:


.
Дифференцируем по x, считая y постоянной:


.
Поскольку:
,
то заданное уравнение – в полных дифференциалах.

Методы решения дифференциальных уравнений в полных дифференциалах

Метод последовательного выделения дифференциала

Наиболее простым методом решения уравнения в полных дифференциалах является метод последовательного выделения дифференциала. Для этого мы применяем формулы дифференцирования, записанные в дифференциальной форме:
du ± dv = d(u ± v);
v du + u dv = d(uv);
;
.
В этих формулах u и v – произвольные выражения, составленные из любых комбинаций переменных.

Пример 1

Решить уравнение:
.

Решение

Ранее мы нашли, что это уравнение – в полных дифференциалах. Преобразуем его:
(П1)   .
Решаем уравнение, последовательно выделяя дифференциал.
;
;
;
;

.
Подставляем в (П1):
;
.

Ответ

.

Метод последовательного интегрирования

В этом методе мы ищем функцию U(x, y), удовлетворяющую уравнениям:
(3)   ;
(4)   .

Проинтегрируем уравнение (3) по x, считая y постоянной:
.
Здесь φ(y) – произвольная функция от y, которую нужно определить. Она является постоянной интегрирования. Подставляем в уравнение (4):
.
Отсюда:
.
Интегрируя, находим φ(y) и, тем самым, U(x, y).

Пример 2

Решить уравнение в полных дифференциалах:
.

Решение

Ранее мы нашли, что это уравнение – в полных дифференциалах. Введем обозначения:
,   .
Ищем Функцию U(x, y), дифференциал которой является левой частью уравнения:
.
Тогда:
(3)   ;
(4)   .
Проинтегрируем уравнение (3) по x, считая y постоянной:
(П2)  
.
Дифференцируем по y:

.
Подставим в (4):
;
.
Интегрируем:
.
Подставим в (П2):

.
Общий интеграл уравнения:
U(x, y) = const.
Объединяем две постоянные в одну.

Ответ

.

Метод интегрирования вдоль кривой

Функцию U, определяемую соотношением:
dU = p(x, y) dx + q(x, y) dy,
можно найти, если проинтегрировать это уравнение вдоль кривой, соединяющей точки (x0, y0) и (x, y):
(7)   .
Поскольку
(8)   ,
то интеграл зависит только от координат начальной (x0, y0) и конечной (x, y) точек и не зависит от формы кривой. Из (7) и (8) находим:
(9)   .
Здесь x0 и y0 – постоянные. Поэтому U(x0, y0) – также постоянная.

Пример такого определения U был получен при доказательстве свойства уравнения в полных дифференциалах:
(6)   .
Здесь интегрирование производится сначала по отрезку, параллельному оси y, от точки (x0 , y0) до точки (x0 , y) . Затем интегрирование производится по отрезку, параллельному оси x, от точки (x0 , y) до точки (x, y) .

В более общем случае, нужно представить уравнение кривой, соединяющей точки (x0 , y0) и (x, y) в параметрическом виде:
x1 = s(t1);   y1 = r(t1);
x0 = s(t0);   y0 = r(t0);
x = s(t);   y = r(t);
и интегрировать по t1 от t0 до t.

Наиболее просто выполняется интегрирование по отрезку, соединяющим точки (x0 , y0) и (x, y). В этом случае:
x1 = x0 + (x – x0) t1; y1 = y0 + (y – y0) t1;
t0 = 0;   t = 1;
dx1 = (x – x0) dt1; dy1 = (y – y0) dt1.
После подстановки, получается интеграл по t от 0 до 1.
Данный способ, однако, приводит к довольно громоздким вычислениям.

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.

Автор: Олег Одинцов.     Опубликовано:   Изменено:

1cov-edu.ru

Дифференциальные уравнения, формулы и примеры

Понятие дифференциального уравнения

Например.

Толчком к развитию теории дифференциальных уравнений послужили различного рода механические задачи, в которых находились координаты тел, их скорости и ускорения. Названные величины зависели от времени при различных воздействиях.

Основой теории дифференциальных уравнений стало дифференциальное исчисление, которое было предложено немецким философом, логиком, математиком, механиком, физиком, юристом, историком, дипломатом, изобретателем и языковедом Готфридом Вильгельмом Лейбницем (1646-1716) и английским физиком, математиком, механиком и астрономом сэром Исааком Ньютоном (1642-1727). Термин «дифференциальное уравнение» предложил Готфрид Лейбниц в 1676 г.

18 век стал вправе переломным для развития теории дифференциальных уравнений. Появилось огромное количество работ, среди которых особо выделялись труды швейцарского, немецкого и российского математика и механика Леонардо Эйлера (1707-1783) и французского математика, астронома и механика Жозефа Луи Лагранжа (1736-1813). В их работах получила свое развитие теория малых колебаний, которая основывалась на теории линейных систем дифференциальных уравнений. Методы теории возмущения были разработаны французским математиком, механиком, физиком и астрономом Пьером-Симоном, маркизом де Лапласом (1749-1827), Ж. Лагранжем и немецким математиком, механиком, физиком, астрономом и геодезистом Иоганном Карлом Фридрихом Гауссом (1777-1855).

Французский математик Жозеф Лиувиль (1809-1882) установил неразрешимость ряда дифференциальных уравнений в элементарных функциях и квадратурах. «Качественная теория дифференциальных уравнений» (или теория динамических систем), предложенная французским математиком, механиком, физиком, астрономом и философом Жюлем Анри Пуанкаре (1854-1912), стала новой вехой в развитии теории дифференциальных уравнений.

От истории развития дифференциальных уравнений вернемся к ее основным определениям и понятиям.

Если неизвестная функция, входящая в дифференциальное уравнение, зависит только от одной независимой переменной, то такое уравнение называется обыкновенным дифференциальным уравнением.

Например. .

Порядок дифференциального уравнения

Например. Уравнение – дифференциальное уравнение третьего порядка, поскольку старший порядок производной, входящей в него, равен трем (данная производная подчеркнута).

Обыкновенное дифференциальное уравнение n-го порядка имеет вид:

   

Обыкновенное дифференциальное уравнение первого порядка – или, если оно разрешимо относительно производной, – .

Решение дифференциального уравнения

Решением или общим интегралом дифференциального уравнения называется функция , удовлетворяющая указанному уравнению.

Кривая , соответствующая решению дифференциального уравнения, называется интегральной кривой этого уравнения.

Общее и частное решение дифференциального уравнения

Общим решением дифференциального уравнения называется соотношение

   

или

   

здесь C – произвольная постоянная или константа интегрирования. Это решение обладает следующим свойством: если разрешить выражение (или ) относительно y, то в результате получим функцию , являющуюся решением рассматриваемого дифференциального уравнения.

Уравнения (2) задают семейство интегральных кривых дифференциального уравнения (1).

Частное решение дифференциального уравнения – это решение, полученное из общего решения вида (2) при некотором значении произвольной постоянной C.

Например. Для дифференциального уравнения функция является общим решением, а при получаем частное решение .

Произвольную постоянную C можно определить из начальных условий – это такие условия, при которых ищется решение дифференциального уравнения, чтобы оно (решение) принимало значение при некотором заданном значении независимой переменной , то есть выполняется равенство

   

Если задано дифференциальное уравнение (1) с начальными условиями (3), то такая задача называется задачей Коши.

Например. .

ru.solverbook.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *