Решение неравенство – Решение неравенств · Калькулятор Онлайн · с подробным решением

Содержание

Решение показательных неравенств

Многие считают, что показательные неравенства — это что-то такое сложное и непостижимое. И что научиться их решать — чуть ли не великое искусство, постичь которое способны лишь Избранные...

Полная брехня! Показательные неравенства — это просто. И решаются они всегда просто. Ну, почти всегда.:)

Сегодня мы разберём эту тему вдоль и поперёк. Этот урок будет очень полезен тем, кто только начинает разбираться в данном разделе школьной математики. Начнём с простых задач и будем двигаться к более сложным вопросам. Никакой жести сегодня не будет, но того, что вы сейчас прочитаете, будет достаточно, чтобы решить большинство неравенств на всяких контрольных и самостоятельных работах. И на этом вашем ЕГЭ тоже.

Как всегда, начнём с определения. Показательное неравенство — это любое неравенство, содержащее в себе показательную функцию. Другими словами, его всегда можно свести к неравенству вида

\[{{a}^{x}} \gt b\]

Где в роли $b$ может быть обычное число, а может быть и что-нибудь пожёстче. Примеры? Да пожалуйста:

\[\begin{align} & {{2}^{x}} \gt 4;\quad {{2}^{x-1}}\le \frac{1}{\sqrt[3]{2}};\quad {{2}^{{{x}^{2}}-7x+14}} \lt 16; \\ & {{0,1}^{1-x}} \lt 0,01;\quad {{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}. \\\end{align}\]

Думаю, смысл понятен: есть показательная функция ${{a}^{x}}$, её с чем-то сравнивают, а затем просят найти $x$. В особо клинических случаях вместо переменной $x$ могут засунуть какую-нибудь функцию $f\left( x \right)$ и тем самым чуть-чуть усложнить неравенство.:)

Конечно, в некоторых случаях неравенство может выглядеть более сурово. Вот, например:

\[{{9}^{x}}+8 \gt {{3}^{x+2}}\]

Или даже вот:

\[5\cdot {{4}^{x}}+2\cdot {{25}^{x}} \gt 7\cdot {{10}^{x}}\]

В целом, сложность таких неравенств может быть самой разной, но в итоге они всё равно сводятся к простой конструкции ${{a}^{x}} \gt b$. А уж с такой конструкцией мы как-нибудь разберёмся (в особо клинических случаях, когда ничего не приходит в голову, нам помогут логарифмы). Поэтому сейчас мы научимя решать такие простые конструкции.

Решение простейших показательных неравенств

Рассмотрим что-нибудь совсем простое. Например, вот это:

\[{{2}^{x}} \gt 4\]

Очевидно, что число справа можно переписать в виде степени двойки: $4={{2}^{2}}$. Таким образом, исходное неравенство перепишется в очень удобной форме:

\[{{2}^{x}} \gt {{2}^{2}}\]

И вот уже руки чешутся «зачеркнуть» двойки, стоящие в основаниях степеней, дабы получить ответ $x \gt 2$. Но перед тем как что там зачёркивать, давайте вспомним степени двойки:

\[{{2}^{1}}=2;\quad {{2}^{2}}=4;\quad {{2}^{3}}=8;\quad {{2}^{4}}=16;...\]

Как видим, чем большее число стоит в показателе степени, тем больше получается число на выходе. «Спасибо, кэп!» — воскликнет кто-нибудь из учеников. Разве бывает по-другому? К сожалению, бывает. Например:

\[{{\left( \frac{1}{2} \right)}^{1}}=\frac{1}{2};\quad {{\left( \frac{1}{2} \right)}^{2}}=\frac{1}{4};\quad {{\left( \frac{1}{2} \right)}^{3}}=\frac{1}{8};...\]

Тут тоже всё логично: чем больше степень, тем больше раз число 0,5 умножается само на себя (т.е. делится пополам). Таким образом, полученная последовательность чисел убывает, а разница между первой и второй последовательностью состоит лишь в основании:

  • Если основание степени $a \gt 1$, то по мере роста показателя $n$ число ${{a}^{n}}$ тоже будет расти;
  • И наоборот, если $0 \lt a \lt 1$, то по мере роста показателя $n$ число ${{a}^{n}}$ будет убывать.

Суммируя эти факты, мы получаем самое главное утверждение, на котором и основано всё решение показательных неравенств:

Если $a \gt 1$, то неравенство ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $x \gt n$. Если $0 \lt a \lt 1$, то неравенство ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $x \lt n$.

Другими словами, если основание больше единицы, его можно просто убрать — знак неравенства при этом не поменяется. А если основание меньше единицы, то его тоже можно убрать, но при этом придётся поменять и знак неравенства.

Обратите внимание: мы не рассмотрели варианты $a=1$ и $a\le 0$. Потому что в этих случаях возникает неопределённость. Допустим, как решить неравенство вида ${{1}^{x}} \gt 3$? Единица в любой степени снова даст единицу — мы никогда не получим тройку или больше. Т.е. решений нет.

С отрицательными основаниями всё ещё интереснее. Рассмотрим для примера вот такое неравенство:

\[{{\left( -2 \right)}^{x}} \gt 4\]

На первый взгляд, всё просто:

\[4={{2}^{2}}\Rightarrow {{\left( -2 \right)}^{x}} \gt {{2}^{2}}\Rightarrow x \gt 2\]

Правильно? А вот и нет! Достаточно подставить вместо $x$ парочку чётных и парочку нечётных чисел, чтобы убедиться что решение неверно. Взгляните:

\[\begin{align} & x=4\Rightarrow {{\left( -2 \right)}^{4}}=16 \gt 4; \\ & x=5\Rightarrow {{\left( -2 \right)}^{5}}=-32 \lt 4; \\ & x=6\Rightarrow {{\left( -2 \right)}^{6}}=64 \gt 4; \\ & x=7\Rightarrow {{\left( -2 \right)}^{7}}=-128 \lt 4. \\\end{align}\]

Как видите, знаки чередуются. А ведь есть ещё дробные степени и прочая жесть. Как, например, прикажете считать ${{\left( -2 \right)}^{\sqrt{7}}}$ (минус двойка в степени корень из семи)? Да никак!

Поэтому для определённости полагают, что во всех показательных неравенствах (и уравнениях, кстати, тоже) $1\ne a \gt 0$. И тогда всё решается очень просто:

\[{{a}^{x}} \gt {{a}^{n}}\Rightarrow \left[ \begin{align} & x \gt n\quad \left( a \gt 1 \right), \\ & x \lt n\quad \left( 0 \lt a \lt 1 \right). \\\end{align} \right.\]

В общем, ещё раз запомните главное правило: если основание в показательном уравнении больше единицы, его можно просто убрать; а если основание меньше единицы, его тоже можно убрать, но при этом поменяется знак неравенства.

Примеры решения

Итак, рассмотрим несколько простых показательных неравенств:

\[\begin{align} & {{2}^{x-1}}\le \frac{1}{\sqrt[3]{2}}; \\ & {{0,1}^{1-x}} \lt 0,01; \\ & {{2}^{{{x}^{2}}-7x+14}} \lt 16; \\ & {{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}. \\\end{align}\]

Первостепенная задача во всех случаях одна и та же: свести неравенств к простейшему виду ${{a}^{x}} \gt {{a}^{n}}$. Именно это мы сейчас и сделаем с каждым неравенством, а заодно повторим свойства степеней и показательной функции. Итак, поехали!

\[{{2}^{x-1}}\le \frac{1}{\sqrt[3]{2}}\]

Что здесь можно сделать? Ну, слева у нас и так стоит показательное выражение — ничего менять не надо. А вот справа стоит какая-то хрень: дробь, да ещё и в знаменателе корень!

Однако вспомним правила работы с дробями и степенями:

\[\begin{align} & \frac{1}{{{a}^{n}}}={{a}^{-n}}; \\ & \sqrt[k]{a}={{a}^{\frac{1}{k}}}. \\\end{align}\]

Что это значит? Во-первых, мы легко можем избавиться от дроби, превратив её в степень с отрицательным показателем. А во-вторых, поскольку в знаменателе стоит корень, было бы неплохо превратить и его в степень — на этот раз с дробным показателем.

Применим эти действия последовательно к правой части неравенства и посмотрим, что получится:

\[\frac{1}{\sqrt[3]{2}}={{\left( \sqrt[3]{2} \right)}^{-1}}={{\left( {{2}^{\frac{1}{3}}} \right)}^{-1}}={{2}^{\frac{1}{3}\cdot \left( -1 \right)}}={{2}^{-\frac{1}{3}}}\]

Не забываем, что при возведении степени в степень показатели этих степеней складываются. И вообще, при работе с показательными уравнениями и неравенствами совершенно необходимо знать хотя бы простейшие правила работы со степенями:

\[\begin{align} & {{a}^{x}}\cdot {{a}^{y}}={{a}^{x+y}}; \\ & \frac{{{a}^{x}}}{{{a}^{y}}}={{a}^{x-y}}; \\ & {{\left( {{a}^{x}} \right)}^{y}}={{a}^{x\cdot y}}. \\\end{align}\]

Собственно, последнее правило мы только что и применили. Поэтому наше исходное неравенство перепишется следующим образом:

\[{{2}^{x-1}}\le \frac{1}{\sqrt[3]{2}}\Rightarrow {{2}^{x-1}}\le {{2}^{-\frac{1}{3}}}\]

Теперь избавляемся от двойки в основании. Поскольку 2 > 1, знак неравенства останется прежним:

\[\begin{align} & x-1\le -\frac{1}{3}\Rightarrow x\le 1-\frac{1}{3}=\frac{2}{3}; \\ & x\in \left( -\infty ;\frac{2}{3} \right]. \\\end{align}\]

Вот и всё решение! Основная сложность — вовсе не в показательной функции, а в грамотном преобразовании исходного выражения: нужно аккуратно и максимально быстро привести его к простейшему виду.

Рассмотрим второе неравенство:

\[{{0,1}^{1-x}} \lt 0,01\]

Так, так. Тут нас поджидают десятичные дроби. Как я уже много раз говорил, в любых выражениях со степенями следует избавляться от десятичных дробей — зачастую только так можно увидеть быстрое и простое решение. Вот и мы избавимся:

\[\begin{align} & 0,1=\frac{1}{10};\quad 0,01=\frac{1}{100}={{\left( \frac{1}{10} \right)}^{2}}; \\ & {{0,1}^{1-x}} \lt 0,01\Rightarrow {{\left( \frac{1}{10} \right)}^{1-x}} \lt {{\left( \frac{1}{10} \right)}^{2}}. \\\end{align}\]

Перед нами вновь простейшее неравенство, да ещё и с основанием 1/10, т.е. меньшим единицы. Что ж, убираем основания, попутно меняя знак с «меньше» на «больше», и получаем:

\[\begin{align} & 1-x \gt 2; \\ & -x \gt 2-1; \\ & -x \gt 1; \\& x \lt -1. \\\end{align}\]

Получили окончательный ответ: $x\in \left( -\infty ;-1 \right)$. Обратите внимание: ответом является именно множество, а ни в коем случае не конструкция вида $x \lt -1$. Потому что формально такая конструкция — это вовсе не множество, а неравенство относительно переменной $x$. Да, оно очень простое, но это не ответ!

Важное замечание. Данное неравенство можно было решить и по-другому — путём приведения обеих частей к степени с основанием, большим единицы. Взгляните:

\[\frac{1}{10}={{10}^{-1}}\Rightarrow {{\left( {{10}^{-1}} \right)}^{1-x}} \lt {{\left( {{10}^{-1}} \right)}^{2}}\Rightarrow {{10}^{-1\cdot \left( 1-x \right)}} \lt {{10}^{-1\cdot 2}}\]

После такого преобразования мы вновь получим показательное неравенство, но с основанием 10 > 1. А это значит, что можно просто зачеркнуть десятку — знак неравенства при этом не поменяется. Получим:

\[\begin{align} & -1\cdot \left( 1-x \right) \lt -1\cdot 2; \\ & x-1 \lt -2; \\ & x \lt -2+1=-1; \\ & x \lt -1. \\\end{align}\]

Как видите, ответ получился точь-в-точь такой же. При этом мы избавили себя от необходимости менять знак и вообще помнить какие-то там правила.:)

Идём далее. Рассмотрим чуть более сложное неравенство — в нём в показателе появляется квадратичная функция:

\[{{2}^{{{x}^{2}}-7x+14}} \lt 16\]

Однако пусть вас это не пугает. Чтобы ни находилось в показателях, технология решения самого неравенства остаётся прежней. Поэтому заметим для начала, что 16 = 24. Перепишем исходное неравенство с учётом этого факта:

\[\begin{align} & {{2}^{{{x}^{2}}-7x+14}} \lt {{2}^{4}}; \\ & {{x}^{2}}-7x+14 \lt 4; \\ & {{x}^{2}}-7x+10 \lt 0. \\\end{align}\]

Ура! Мы получили обычное квадратное неравенство! Знак нигде не менялся, поскольку в основании стоит двойка — число, большее единицы.

Далее можно воспользоваться теоремой Виета, либо просто решить уравнение ${{x}^{2}}-7x+10=0$ через дискриминант. В любом случае корни будут ${{x}_{1}}=2$ и ${{x}_{2}}=5$. Отметим их на числовой прямой:

Нули функции на числовой прямой

Расставляем знаки функции $f\left( x \right)={{x}^{2}}-7x+10$ — очевидно, её графиком будет парабола ветвями вверх, поэтому по бокам будут «плюсы». Нас интересует та область, где функция меньше нуля, т.е. $x\in \left( 2;5 \right)$ — это и есть ответ к исходной задаче.

Наконец, рассмотрим ещё одно неравенство:

\[{{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}\]

Опять видим показательную функцию с десятичной дробью в основании. Переводим эту дробь в обыкновенную:

\[\begin{align} & 0,2=\frac{2}{10}=\frac{1}{5}={{5}^{-1}}\Rightarrow \\ & \Rightarrow {{0,2}^{1+{{x}^{2}}}}={{\left( {{5}^{-1}} \right)}^{1+{{x}^{2}}}}={{5}^{-1\cdot \left( 1+{{x}^{2}} \right)}}\end{align}\]

В данном случае мы воспользовались приведённым ранее замечанием — свели основание к числу 5 > 1, чтобы упростить себе дальнейшее решение. Точно так же поступим и с правой частью:

\[\frac{1}{25}={{\left( \frac{1}{5} \right)}^{2}}={{\left( {{5}^{-1}} \right)}^{2}}={{5}^{-1\cdot 2}}={{5}^{-2}}\]

Перепишем исходное неравенство с учётом обоих преобразований:

\[{{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}\Rightarrow {{5}^{-1\cdot \left( 1+{{x}^{2}} \right)}}\ge {{5}^{-2}}\]

Основания с обеих сторон одинаковы и превосходят единицу. Никаких других слагаемых справа и слева нет, поэтому просто «зачёркиваем» пятёрки и получаем совсем простое выражение:

\[\begin{align} & -1\cdot \left( 1+{{x}^{2}} \right)\ge -2; \\ & -1-{{x}^{2}}\ge -2; \\ & -{{x}^{2}}\ge -2+1; \\ & -{{x}^{2}}\ge -1;\quad \left| \cdot \left( -1 \right) \right. \\ & {{x}^{2}}\le 1. \\\end{align}\]

Вот тут надо быть аккуратнее. Многие ученики любят просто извлечь квадратный корень их обеих частей неравенства и записать что-нибудь в духе $x\le 1\Rightarrow x\in \left( -\infty ;-1 \right]$. Делать этого ни в коем случае нельзя, поскольку корень из точного квадрата — это модуль, а ни в коем случае не исходная переменная:

\[\sqrt{{{x}^{2}}}=\left| x \right|\]

Однако работать с модулями — не самое приятное занятие, правда? Вот и мы не будем работать. А вместо этого просто перенесём все слагаемые влево и решим обычное неравенство методом интервалов:

$\begin{align} & {{x}^{2}}-1\le 0; \\ & \left( x-1 \right)\left( x+1 \right)\le 0 \\ & {{x}_{1}}=1;\quad {{x}_{2}}=-1; \\\end{align}$

Вновь отмечаем полученные точки на числовой прямой и смотрим знаки:

Обратите внимание: точки закрашены

Поскольку мы решали нестрогое неравенство, все точки на графике закрашены. Поэтому ответ будет такой: $x\in \left[ -1;1 \right]$ — не интервал, а именно отрезок.

В целом хотел бы заметить, что ничего сложного в показательных неравенствах нет. Смысл всех преобразований, которые мы сегодня выполняли, сводится к простому алгоритму:

  • Найти основание, к которому будем приводить все степени;
  • Аккуратно выполнить преобразования, чтобы получилось неравенство вида ${{a}^{x}} \gt {{a}^{n}}$. Разумеется вместо переменных $x$ и $n$ могут стоять гораздо более сложные функции, но смысл от этого не поменяется;
  • Зачеркнуть основания степеней. При этом может поменяться знак неравенства, если основание $a \lt 1$.

По сути, это универсальный алгоритм решения всех таких неравенств. А всё, что вам ещё будут рассказывать по этой теме — лишь конкретные приёмы и хитрости, позволяющие упростить и ускорить преобразования. Вот об одном из таких приёмов мы сейчас и поговорим.:)

Метод рационализации

Рассмотрим ещё одну партию неравенств:

\[\begin{align} & {{\text{ }\!\!\pi\!\!\text{ }}^{x+7}} \gt {{\text{ }\!\!\pi\!\!\text{ }}^{{{x}^{2}}-3x+2}}; \\ & {{\left( 2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1; \\ & {{\left( \frac{1}{3} \right)}^{{{x}^{2}}+2x}} \gt {{\left( \frac{1}{9} \right)}^{16-x}}; \\ & {{\left( 3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt 1. \\\end{align}\]

Ну и что в них такого особенного? Они же лёгкие. Хотя, стоп! Число π возводится в какую-то степень? Что за бред?

А как возвести в степень число $2\sqrt{3}-3$? Или $3-2\sqrt{2}$? Составители задач, очевидно, перепили «Боярышника» перед тем, как сесть за работу.:)

На самом деле ничего страшного в этих задачах нет. Напомню: показательной функцией называется выражение вида ${{a}^{x}}$, где основание $a$ — это любое положительное число, за исключением единицы. Число π положительно — это мы и так знаем. Числа $2\sqrt{3}-3$ и $3-2\sqrt{2}$ тоже положительны — в этом легко убедиться, если сравнить их с нулём.

Получается, что все эти «устрашающие» неравенства ничем не отличаются решаются от простых, рассмотренных выше? И решаются точно так же? Да, совершенно верно. Однако на их примере я хотел бы рассмотреть один приём, который здорово экономит время на самостоятельных работах и экзаменах. Речь пойдёт о методе рационализации. Итак, внимание:

Всякое показательное неравенство вида ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $\left( x-n \right)\cdot \left( a-1 \right) \gt 0$.

Вот и весь метод.:) А вы думали, что будет какая-нибудь очередная дичь? Ничего подобного! Но этот простой факт, записанный буквально в одну строчку, значительно упростит нам работу. Взгляните:

\[\begin{matrix} {{\text{ }\!\!\pi\!\!\text{ }}^{x+7}} \gt {{\text{ }\!\!\pi\!\!\text{ }}^{{{x}^{2}}-3x+2}} \\ \Downarrow \\ \left( x+7-\left( {{x}^{2}}-3x+2 \right) \right)\cdot \left( \text{ }\!\!\pi\!\!\text{ }-1 \right) \gt 0 \\\end{matrix}\]

Вот и нет больше показательных функций! И не надо помнить: меняется знак или нет. Но возникает новая проблема: что делать с грёбаным множителем \[\left( \text{ }\!\!\pi\!\!\text{ }-1 \right)\]? Мы ведь не знаем, чему равно точное значение числа π. Впрочем, капитан очевидность как бы намекает:

\[\text{ }\!\!\pi\!\!\text{ }\approx 3,14... \gt 3\Rightarrow \text{ }\!\!\pi\!\!\text{ }-1 \gt 3-1=2\]

В общем, точное значение π нас особо-то и не колышет — нам лишь важно понимать, что в любом случае $\text{ }\!\!\pi\!\!\text{ }-1 \gt 2$, т.е. это положительная константа, и мы можем разделить на неё обе части неравенства:

\[\begin{align} & \left( x+7-\left( {{x}^{2}}-3x+2 \right) \right)\cdot \left( \text{ }\!\!\pi\!\!\text{ }-1 \right) \gt 0 \\ & x+7-\left( {{x}^{2}}-3x+2 \right) \gt 0; \\ & x+7-{{x}^{2}}+3x-2 \gt 0; \\ & -{{x}^{2}}+4x+5 \gt 0;\quad \left| \cdot \left( -1 \right) \right. \\ & {{x}^{2}}-4x-5 \lt 0; \\ & \left( x-5 \right)\left( x+1 \right) \lt 0. \\\end{align}\]

Как видите, в определённый момент пришлось разделить на минус единицу — при этом знак неравенства поменялся. В конце я разложил квадратный трёхчлен по теореме Виета — очевидно, что корни равны ${{x}_{1}}=5$ и ${{x}_{2}}=-1$. Дальше всё решается классическим методом интервалов:

Решаем неравенство методом интервалов

Все точки выколоты, поскольку исходное неравенство строгое. Нас интересует область с отрицательными значениями, поэтому ответ: $x\in \left( -1;5 \right)$. Вот и всё решение.:)

Перейдём к следующей задаче:

\[{{\left( 2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1\]

Тут вообще всё просто, потому что справа стоит единица. А мы помним, что единица — это любое число в нулевой степени. Даже если этим числом является иррациональное выражение, стоящее в основании слева:

\[\begin{align} & {{\left( 2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1={{\left( 2\sqrt{3}-3 \right)}^{0}}; \\ & {{\left( 2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt {{\left( 2\sqrt{3}-3 \right)}^{0}}; \\\end{align}\]

Что ж, выполняем рационализацию:

\[\begin{align} & \left( {{x}^{2}}-2x-0 \right)\cdot \left( 2\sqrt{3}-3-1 \right) \lt 0; \\ & \left( {{x}^{2}}-2x-0 \right)\cdot \left( 2\sqrt{3}-4 \right) \lt 0; \\ & \left( {{x}^{2}}-2x-0 \right)\cdot 2\left( \sqrt{3}-2 \right) \lt 0. \\\end{align}\]

Осталось лишь разобраться со знаками. Множитель $2\left( \sqrt{3}-2 \right)$ не содержит переменной $x$ — это просто константа, и нам необходимо выяснить её знак. Для этого заметим следующее:

\[\begin{matrix} \sqrt{3} \lt \sqrt{4}=2 \\ \Downarrow \\ 2\left( \sqrt{3}-2 \right) \lt 2\cdot \left( 2-2 \right)=0 \\\end{matrix}\]

Получается, что второй множитель — не просто константа, а отрицательная константа! И при делении на неё знак исходного неравенства поменяется на противоположный:

\[\begin{align} & \left( {{x}^{2}}-2x-0 \right)\cdot 2\left( \sqrt{3}-2 \right) \lt 0; \\ & {{x}^{2}}-2x-0 \gt 0; \\ & x\left( x-2 \right) \gt 0. \\\end{align}\]

Теперь всё становится совсем очевидно. Корни квадратного трёхчлена, стоящего справа: ${{x}_{1}}=0$ и ${{x}_{2}}=2$. Отмечаем их на числовой прямой и смотрим знаки функции $f\left( x \right)=x\left( x-2 \right)$:

Случай, когда нас интересуют боковые интервалы

Нас интересуют интервалы, отмеченные знаком «плюс». Осталось лишь записать ответ:

\[x\in \left( -\infty ;0 \right)\bigcup \left( 2;+\infty \right)\]

Переходим к следующему примеру:

\[{{\left( \frac{1}{3} \right)}^{{{x}^{2}}+2x}} \gt {{\left( \frac{1}{9} \right)}^{16-x}}\]

Ну, тут совсем всё очевидно: в основаниях стоят степени одного и того же числа. Поэтому я распишу всё кратко:

\[\begin{matrix} \frac{1}{3}={{3}^{-1}};\quad \frac{1}{9}=\frac{1}{{{3}^{2}}}={{3}^{-2}} \\ \Downarrow \\ {{\left( {{3}^{-1}} \right)}^{{{x}^{2}}+2x}} \gt {{\left( {{3}^{-2}} \right)}^{16-x}} \\\end{matrix}\]

Далее «причёсываем» выражения с обеих частей неравенства и применяем метод рационализации:

\[\begin{align} & {{3}^{-1\cdot \left( {{x}^{2}}+2x \right)}} \gt {{3}^{-2\cdot \left( 16-x \right)}}; \\ & {{3}^{-{{x}^{2}}-2x}} \gt {{3}^{-32+2x}}; \\ & \left( -{{x}^{2}}-2x-\left( -32+2x \right) \right)\cdot \left( 3-1 \right) \gt 0; \\ & -{{x}^{2}}-2x+32-2x \gt 0; \\ & -{{x}^{2}}-4x+32 \gt 0;\quad \left| \cdot \left( -1 \right) \right. \\ & {{x}^{2}}+4x-32 \lt 0; \\ & \left( x+8 \right)\left( x-4 \right) \lt 0. \\\end{align}\]

Как видите, в процессе преобразований пришлось умножать на отрицательное число, поэтому поменялся знак неравенства. В самом конце я вновь применил теорему Виета для разложения на множители квадратного трёхчлена. В итоге ответ будет следующий: $x\in \left( -8;4 \right)$ — желающие могут убедиться в этом, нарисовав числовую прямую, отметив точки и посчитав знаки. А мы тем временем перейдём к последнему неравенству из нашего «комплекта»:

\[{{\left( 3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt 1\]

Как видим, в основании снова стоит иррациональное число, а справа снова стоит единица. Поэтому перепишем наше показательное неравенство следующим образом:

\[{{\left( 3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt {{\left( 3-2\sqrt{2} \right)}^{0}}\]

Применяем рационализацию:

\[\begin{align} & \left( 3x-{{x}^{2}}-0 \right)\cdot \left( 3-2\sqrt{2}-1 \right) \lt 0; \\ & \left( 3x-{{x}^{2}}-0 \right)\cdot \left( 2-2\sqrt{2} \right) \lt 0; \\ & \left( 3x-{{x}^{2}}-0 \right)\cdot 2\left( 1-\sqrt{2} \right) \lt 0. \\\end{align}\]

Однако совершенно очевидно, что $1-\sqrt{2} \lt 0$, поскольку $\sqrt{2}\approx 1,4... \gt 1$. Поэтому второй множитель — вновь отрицательная константа, на которую можно разделить обе части неравенства:

\[\begin{matrix} \left( 3x-{{x}^{2}}-0 \right)\cdot 2\left( 1-\sqrt{2} \right) \lt 0 \\ \Downarrow \\\end{matrix}\]

\[\begin{align} & 3x-{{x}^{2}}-0 \gt 0; \\ & 3x-{{x}^{2}} \gt 0;\quad \left| \cdot \left( -1 \right) \right. \\ & {{x}^{2}}-3x \lt 0; \\ & x\left( x-3 \right) \lt 0. \\\end{align}\]

Далее всё просто: находим корни, отмечаем их на числовой прямой, смотрим знаки. Ответ будет следующим: $x\in \left( 0;3 \right)$.

Переход к другому основанию

Отдельной проблемой при решении показательных неравенств является поиск «правильного» основания. К сожалению, далеко не всегда при первом взгляде на задание очевидно, что брать за основание, а что делать степенью этого основания.

Но не переживайте: здесь нет никакой магии и «секретных» технологий. В математике любой навык, который нельзя алгоритмизировать, можно легко выработать с помощью практики. Но для этого придётся решать задачи разного уровня сложности. Например, вот такие:

\[\begin{align} & {{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}; \\ & {{\left( \frac{1}{3} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}; \\ & {{\left( 0,16 \right)}^{1+2x}}\cdot {{\left( 6,25 \right)}^{x}}\ge 1; \\ & {{\left( \frac{27}{\sqrt[3]{3}} \right)}^{-x}} \lt {{9}^{4-2x}}\cdot 81. \\\end{align}\]

Сложно? Страшно? Да это же проще, чем цыплёнка об асфальт! Давайте попробуем. Первое неравенство:

\[{{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}\]

Ну, я думают, тут и ежу всё понятно:

\[4={{2}^{2}}\Rightarrow {{4}^{\frac{4}{x}}}={{\left( {{2}^{2}} \right)}^{\frac{4}{x}}}={{2}^{2\cdot \frac{4}{x}}}={{2}^{\frac{8}{x}}}\]

Переписываем исходное неравенство, сводя всё к основанию «два»:

\[{{2}^{\frac{x}{2}}} \lt {{2}^{\frac{8}{x}}}\Rightarrow \left( \frac{x}{2}-\frac{8}{x} \right)\cdot \left( 2-1 \right) \lt 0\]

Да, да, вы всё правильно поняли: я только что применил метод рационализации, описанный выше. Теперь нужно работать аккуратно: у нас получилось дробно-рациональное неравенство (это такое, у которого в знаменателе стоит переменная), поэтому прежде чем что-то приравнивать к нулю, необходимо привести всё к общему знаменателю и избавиться от множителя-константы.

\[\begin{align} & \left( \frac{x}{2}-\frac{8}{x} \right)\cdot \left( 2-1 \right) \lt 0; \\ & \left( \frac{{{x}^{2}}-16}{2x} \right)\cdot 1 \lt 0; \\ & \frac{{{x}^{2}}-16}{2x} \lt 0. \\\end{align}\]

Теперь используем стандартный метод интервалов. Нули числителя: $x=\pm 4$. Знаменатель обращается в ноль только при $x=0$. Итого три точки, которые надо отметить на числовой прямой (все точки выколоты, т.к. знак неравенства строгий). Получим:

Более сложный случай: три корня

Как нетрудно догадаться, штриховкой отмечены те интервалы, на которых выражение слева принимает отрицательные значения. Поэтому в окончательный ответ пойдут сразу два интервала:

\[x\in \left( -\infty ;-4 \right)\bigcup \left( 0;4 \right)\]

Концы интервалов не входят в ответ, поскольку исходное неравенство было строгим. Никаких дополнительных проверок этого ответа не требуется. В этом плане показательные неравенства намного проще логарифмических: никаких ОДЗ, никаких ограничений и т.д.

Переходим к следующей задаче:

\[{{\left( \frac{1}{3} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}\]

Здесь тоже никаких проблем, поскольку мы уже знаем, что $\frac{1}{3}={{3}^{-1}}$, поэтому всё неравенство можно переписать так:

\[\begin{align} & {{\left( {{3}^{-1}} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}\Rightarrow {{3}^{-\frac{3}{x}}}\ge {{3}^{2+x}}; \\ & \left( -\frac{3}{x}-\left( 2+x \right) \right)\cdot \left( 3-1 \right)\ge 0; \\ & \left( -\frac{3}{x}-2-x \right)\cdot 2\ge 0;\quad \left| :\left( -2 \right) \right. \\ & \frac{3}{x}+2+x\le 0; \\ & \frac{{{x}^{2}}+2x+3}{x}\le 0. \\\end{align}\]

Обратите внимание: в третьей строчке я решил не мелочиться и сразу разделить всё на (−2). Минул ушёл в первую скобку (теперь там везде плюсы), а двойка сократилась с множителем-константой. Именно так и стоит поступать при оформлении реальных выкладок на самостоятельных и контрольных работах — не надо расписывать прям каждое действие и преобразование.

Далее в дело вступает знакомый нам метод интервалов. Нули числителя: а их нет. Потому что дискриминант будет отрицательный. В свою очередь знаменатель обнуляется лишь при $x=0$ — как и в прошлый раз. Ну и понятно, что справа от $x=0$ дробь будет принимать положительные значения, а слева — отрицательные. Поскольку нас интересуют именно отрицательные значения, то окончательный ответ: $x\in \left( -\infty ;0 \right)$.

Идём далее. В следующем задании нас поджидают десятичные дроби:

\[{{\left( 0,16 \right)}^{1+2x}}\cdot {{\left( 6,25 \right)}^{x}}\ge 1\]

А что нужно делать с десятичными дробями в показательных неравенствах? Правильно: избавляться от них, переводя в обыкновенные. Вот и мы переведём:

\[\begin{align} & 0,16=\frac{16}{100}=\frac{4}{25}\Rightarrow {{\left( 0,16 \right)}^{1+2x}}={{\left( \frac{4}{25} \right)}^{1+2x}}; \\ & 6,25=\frac{625}{100}=\frac{25}{4}\Rightarrow {{\left( 6,25 \right)}^{x}}={{\left( \frac{25}{4} \right)}^{x}}. \\\end{align}\]

Ну и что мы получили в основаниях показательных функций? А получили мы два взаимно обратных числа:

\[\frac{25}{4}={{\left( \frac{4}{25} \right)}^{-1}}\Rightarrow {{\left( \frac{25}{4} \right)}^{x}}={{\left( {{\left( \frac{4}{25} \right)}^{-1}} \right)}^{x}}={{\left( \frac{4}{25} \right)}^{-x}}\]

Таким образом исходное неравенство можно переписать так:

\[\begin{align} & {{\left( \frac{4}{25} \right)}^{1+2x}}\cdot {{\left( \frac{4}{25} \right)}^{-x}}\ge 1; \\ & {{\left( \frac{4}{25} \right)}^{1+2x+\left( -x \right)}}\ge {{\left( \frac{4}{25} \right)}^{0}}; \\ & {{\left( \frac{4}{25} \right)}^{x+1}}\ge {{\left( \frac{4}{25} \right)}^{0}}. \\\end{align}\]

Разумеется, при умножении степеней с одинаковым основанием их показатели складываются, что и произошло во второй строчке. Кроме того, мы представили единицу, стоящую справа, тоже в виде степени по основанию 4/25. Осталось лишь выполнить рационализацию:

\[{{\left( \frac{4}{25} \right)}^{x+1}}\ge {{\left( \frac{4}{25} \right)}^{0}}\Rightarrow \left( x+1-0 \right)\cdot \left( \frac{4}{25}-1 \right)\ge 0\]

Заметим, что $\frac{4}{25}-1=\frac{4-25}{25} \lt 0$, т.е. второй множитель является отрицательной константой, и при делении на неё знак неравенства поменяется:

\[\begin{align} & x+1-0\le 0\Rightarrow x\le -1; \\ & x\in \left( -\infty ;-1 \right]. \\\end{align}\]

Наконец, последнее неравенство из текущего «комплекта»:

\[{{\left( \frac{27}{\sqrt[3]{3}} \right)}^{-x}} \lt {{9}^{4-2x}}\cdot 81\]

В принципе, идея решения тут тоже ясна: все показательные функции, входящие в состав неравенства, необходимо свести к основанию «3». Но для этого придётся немного повозиться с корнями и степенями:

\[\begin{align} & \frac{27}{\sqrt[3]{3}}=\frac{{{3}^{3}}}{{{3}^{\frac{1}{3}}}}={{3}^{3-\frac{1}{3}}}={{3}^{\frac{8}{3}}}; \\ & 9={{3}^{2}};\quad 81={{3}^{4}}. \\\end{align}\]

С учётом этих фактов исходное неравенство можно переписать так:

\[\begin{align} & {{\left( {{3}^{\frac{8}{3}}} \right)}^{-x}} \lt {{\left( {{3}^{2}} \right)}^{4-2x}}\cdot {{3}^{4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{8-4x}}\cdot {{3}^{4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{8-4x+4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{4-4x}}. \\\end{align}\]

Обратите внимание на 2-ю и 3-ю строчку выкладок: прежде чем что-то делать с неравенством, обязательно приведите его к тому виду, о котором мы говорили с самого начала урока: ${{a}^{x}} \lt {{a}^{n}}$. До тех пор, пока у вас слева или справа есть какие-то левые множители, дополнительные константы и т.д., никакую рационализацию и «зачёркивание» оснований выполнять нельзя! Бесчисленное множество задач было выполнено неправильно из-за непонимания этого простого факта. Я сам постоянно наблюдаю эту проблему у моих учеников, когда мы только-только приступаем к разбору показательных и логарифмических неравенств.

Но вернёмся к нашей задаче. Попробуем в этот раз обойтись без рационализации. Вспоминаем: основание степени больше единицы, поэтому тройки можно просто зачеркнуть — знак неравенства при этом не поменяется. Получим:

\[\begin{align} & -\frac{8x}{3} \lt 4-4x; \\ & 4x-\frac{8x}{3} \lt 4; \\ & \frac{4x}{3} \lt 4; \\ & 4x \lt 12; \\ & x \lt 3. \\\end{align}\]

Вот и всё. Окончательный ответ: $x\in \left( -\infty ;3 \right)$.

Выделение устойчивого выражения и замена переменной

В заключение предлагаю решить ещё четыре показательных неравенства, которые уже являются довольно сложными для неподготовленных учеников. Чтобы справиться с ними, необходимо вспомнить правила работы со степенями. В частности — вынесение общих множителей за скобки.

Но самое главное — научиться понимать: что именно можно вынести за скобки. Такое выражение называется устойчивым — его можно обозначить новой переменной и таким образом избавиться от показательной функции. Итак, посмотрим на задачи:

\[\begin{align} & {{5}^{x+2}}+{{5}^{x+1}}\ge 6; \\ & {{3}^{x}}+{{3}^{x+2}}\ge 90; \\ & {{25}^{x+1,5}}-{{5}^{2x+2}} \gt 2500; \\ & {{\left( 0,5 \right)}^{-4x-8}}-{{16}^{x+1,5}} \gt 768. \\\end{align}\]

Начнём с самой первой строчки. Выпишем это неравенство отдельно:

\[{{5}^{x+2}}+{{5}^{x+1}}\ge 6\]

Заметим, что ${{5}^{x+2}}={{5}^{x+1+1}}={{5}^{x+1}}\cdot 5$, поэтому правую часть можно переписать:

\[5\cdot {{5}^{x+1}}+{{5}^{x+1}}\ge 6\]

Заметим, что никаких других показательных функций, кроме ${{5}^{x+1}}$, в неравенстве нет. И вообще, нигде больше не встречается переменная $x$, поэтому введём новую переменную: ${{5}^{x+1}}=t$. Получим следующую конструкцию:

\[\begin{align} & 5t+t\ge 6; \\ & 6t\ge 6; \\ & t\ge 1. \\\end{align}\]

Возвращаемся к исходной переменной ($t={{5}^{x+1}}$ ), а заодно вспоминаем, что 1=50. Имеем:

\[\begin{align} & {{5}^{x+1}}\ge {{5}^{0}}; \\ & x+1\ge 0; \\ & x\ge -1. \\\end{align}\]

Вот и всё решение! Ответ: $x\in \left[ -1;+\infty \right)$. Переходим ко второму неравенству:

\[{{3}^{x}}+{{3}^{x+2}}\ge 90\]

Здесь всё то же самое. Заметим, что ${{3}^{x+2}}={{3}^{x}}\cdot {{3}^{2}}=9\cdot {{3}^{x}}$. Тогда левую часть можно переписать:

\[\begin{align} & {{3}^{x}}+9\cdot {{3}^{x}}\ge 90;\quad \left| {{3}^{x}}=t \right. \\ & t+9t\ge 90; \\ & 10t\ge 90; \\ & t\ge 9\Rightarrow {{3}^{x}}\ge 9\Rightarrow {{3}^{x}}\ge {{3}^{2}}; \\ & x\ge 2\Rightarrow x\in \left[ 2;+\infty \right). \\\end{align}\]

Вот примерно так и нужно оформлять решение на настоящих контрольных и самостоятельных работах.

Что ж, попробуем что-нибудь посложнее. Например, вот такое неравенство:

\[{{25}^{x+1,5}}-{{5}^{2x+2}} \gt 2500\]

В чём тут проблема? Прежде всего, основания показательных функций, стоящих слева, разные: 5 и 25. Однако 25 = 52, поэтому первое слагаемое можно преобразовать:

\[\begin{align} & {{25}^{x+1,5}}={{\left( {{5}^{2}} \right)}^{x+1,5}}={{5}^{2x+3}}; \\ & {{5}^{2x+3}}={{5}^{2x+2+1}}={{5}^{2x+2}}\cdot 5. \\\end{align}\]

Как видите, сначала мы всё привели к одинаковому основанию, а затем заметили, что первое слагаемое легко сводится ко второму — достаточно лишь разложить показатель. Теперь можно смело вводить новую переменную: ${{5}^{2x+2}}=t$, и всё неравенство перепишется так:

\[\begin{align} & 5t-t\ge 2500; \\ & 4t\ge 2500; \\ & t\ge 625={{5}^{4}}; \\ & {{5}^{2x+2}}\ge {{5}^{4}}; \\ & 2x+2\ge 4; \\ & 2x\ge 2; \\ & x\ge 1. \\\end{align}\]

И вновь никаких трудностей! Окончательный ответ: $x\in \left[ 1;+\infty \right)$. Переходим к заключительному неравенству в сегодняшнем уроке:

\[{{\left( 0,5 \right)}^{-4x-8}}-{{16}^{x+1,5}} \gt 768\]

Первое, на что следует обратить внимание — это, конечно, десятичная дробь в основании первой степени. От неё необходимо избавиться, а заодно привести все показательные функции к одному и тому же основанию — числу «2»:

\[\begin{align} & 0,5=\frac{1}{2}={{2}^{-1}}\Rightarrow {{\left( 0,5 \right)}^{-4x-8}}={{\left( {{2}^{-1}} \right)}^{-4x-8}}={{2}^{4x+8}}; \\ & 16={{2}^{4}}\Rightarrow {{16}^{x+1,5}}={{\left( {{2}^{4}} \right)}^{x+1,5}}={{2}^{4x+6}}; \\ & {{2}^{4x+8}}-{{2}^{4x+6}} \gt 768. \\\end{align}\]

Отлично, первый шаг мы сделали — всё привели к одному и тому же основанию. Теперь необходимо выделить устойчивое выражение. Заметим, что ${{2}^{4x+8}}={{2}^{4x+6+2}}={{2}^{4x+6}}\cdot 4$. Если ввести новую переменную ${{2}^{4x+6}}=t$, то исходное неравенство можно переписать так:

\[\begin{align} & 4t-t \gt 768; \\ & 3t \gt 768; \\ & t \gt 256={{2}^{8}}; \\ & {{2}^{4x+6}} \gt {{2}^{8}}; \\ & 4x+6 \gt 8; \\ & 4x \gt 2; \\ & x \gt \frac{1}{2}=0,5. \\\end{align}\]

Естественно, может возникнуть вопрос: каким это образом мы обнаружили, что 256 = 28? К сожалению, тут нужно просто знать степени двойки (а заодно степени тройки и пятёрки). Ну, или делить 256 на 2 (делить можно, поскольку 256 — чётное число) до тех пор, пока не получим результат. Выглядеть это будет примерно так:

\[\begin{align} & 256=128\cdot 2= \\ & =64\cdot 2\cdot 2= \\ & =32\cdot 2\cdot 2\cdot 2= \\ & =16\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =8\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =4\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & ={{2}^{8}}.\end{align}\]

То же самое и с тройкой (числа 9, 27, 81 и 243 являются её степенями), и с семёркой (числа 49 и 343 тоже было бы неплохо запомнить). Ну, и у пятёрки тоже есть «красивые» степени, которые нужно знать:

\[\begin{align} & {{5}^{2}}=25; \\ & {{5}^{3}}=125; \\ & {{5}^{4}}=625; \\ & {{5}^{5}}=3125. \\\end{align}\]

Конечно, все эти числа при желании можно восстановить в уме, просто последовательно умножая их друг на друга. Однако, когда вам предстоит решить несколько показательных неравенств, причём каждое следующее сложнее предыдущего, то последнее, о чём хочется думать — это степени каких-то там чисел. И в этом смысле данные задачи являются более сложными, нежели «классические» неравенства, которые решаются методом интервалов.

Надеюсь, этот урок помог вам в освоении данной темы. Если что-то непонятно — спрашивайте в комментариях. И увидимся в следующих уроках.:)

Смотрите также:

  1. Учимся решать показательные уравнения
  2. Различные способы решения показательных уравнений
  3. Десятичные дроби
  4. Решение задач B12: №448—455
  5. Метод интервалов: случай нестрогих неравенств
  6. ЕГЭ-2014 по математике и открытый банк задач

www.berdov.com

Некоторые моменты о том, как выполняется решение неравенств :: SYL.ru

Одна из тем, которая требует от учеников максимума внимания и усидчивости, это решение неравенств. Такие похожие на уравнения и при этом сильно от них отличающиеся. Потому что к их решению нужен особый подход.

Свойства, которые потребуются для нахождения ответа

Все они применяются для того, чтобы заменить имеющуюся запись равносильной. Большая их часть похожа на то, что было в уравнениях. Но есть и отличия.

  • Функцию, которая определена в ОДЗ, или любое число можно прибавить к обеим частям исходного неравенства.
  • Аналогичным образом возможно умножение, но только на положительную функцию или число.
  • Если это действие выполняется с отрицательными функцией или числом, то знак неравенства нужно заменить на противоположный.
  • Функции, которые являются неотрицательными, можно возводить в положительную степень.

Иногда решение неравенств сопровождается действиями, которые дают посторонние ответы. Их нужно исключить, сравнив область ОДЗ и множество решений.

Использование метода интервалов

Его суть состоит в том, чтобы свести неравенство к уравнению, в котором в правой части стоит ноль.

  1. Определить область, где лежат допустимые значения переменных, то есть ОДЗ.
  2. Преобразовать неравенство с помощью математических операций так, чтобы в его правой части стоял ноль.
  3. Знак неравенства заменить на «=» и решить соответствующее уравнение.
  4. На числовой оси отметить все ответы, которые получились во время решения, а также интервалы ОДЗ. При строгом неравенстве точки нужно нарисовать выколотыми. Если присутствует знак равенства, то их полагается закрасить.
  5. Определить знак исходной функции на каждом интервале, получившемся из точек ОДЗ и делящих его ответов. Если при переходе через точку знак функции не изменяется, то она входит в ответ. В противном случае — исключается.
  6. Граничные для ОДЗ точки нужно дополнительно проверить и только потом включать или нет в ответ.
  7. Ответ, который получается, нужно записать в виде объединенных множеств.

Немного о двойных неравенствах

Они используют в записи сразу два знака неравенства. То есть некоторая функция ограничена условиями сразу дважды. Такие неравенства решаются, как система из двух, когда исходное разбито на части. И в методе интервалов указываются ответы от решения обоих уравнений.

Для их решения также допустимо использовать свойства, указанные выше. С их помощью удобно приводить неравенство к равенству нулю.

Как обстоят дела с неравенствами, в которых имеется модуль?

В этом случае решение неравенств использует следующие свойства, причем они справедливы для положительного значения «а».

Если «х» принимает алгебраическое выражение, то справедливы такие замены:

  • |х| < a на -a < х < a;
  • |х| > a на х < -a или х > a.

Если неравенства нестрогие, то формулы тоже верны, только в них, кроме знака больше или меньше, появляется «=».

Как осуществляется решение системы неравенств?

Это знание потребуется в тех случаях, когда дано такое задание или имеется запись двойного неравенства или в записи появился модуль. В такой ситуации решением будут такие значения переменных, которые удовлетворяли бы всем имеющимся в записи неравенствам. Если таких чисел нет, то система решений не имеет.

План, по которому выполняется решение системы неравенств:

  • решить каждое из них отдельно;
  • изобразить на числовой оси все интервалы и определить их пересечения;
  • записать ответ системы, который и будет объединением того, что получилось во втором пункте.

Как быть с дробными неравенствами?

Поскольку во время их решения может потребоваться изменение знака неравенства, то нужно очень тщательно и внимательно выполнять все пункты плана. Иначе может получиться противоположный ответ.

Решение дробных неравенств тоже использует метод интервалов. И план действий будет таким:

  • Используя описанные свойства, придать дроби такой вид, чтобы справа от знака остался только ноль.
  • Заменить неравенство на «=» и определить точки, в которых функция будет равна нулю.
  • Отметить их на координатной оси. При этом числа, получившиеся в результате расчетов в знаменателе, всегда будут выколоты. Все другие — исходя из условия неравенства.
  • Определить интервалы знакопостоянства.
  • В ответ записать объединение тех промежутков, знак которых соответствует тому, который был в исходном неравенстве.

Ситуации, когда в неравенстве появляется иррациональность

Другими словами, в записи присутствует математический корень. Поскольку в школьном курсе алгебры большая часть заданий идет для квадратного корня, то именно он и будет рассмотрен.

Решение иррациональных неравенств сводится к тому, чтобы получить систему из двух или трех, которые будут равносильны исходному.

Исходное неравенствоусловиеравносильная система
√ n(х) < m(х)m(х) меньше или равно 0решений нет
m(х) больше 0

n(х) больше или равно 0

n(х) < (m(х))2

√ n(х) > m(х)

m(х) больше или равно 0

n(х) > (m(х))2

или

n(х) больше или равно 0

m(х) меньше 0

√n(х) ≤ m(х)m(х) меньше 0решений нет
m(х) больше или равно 0

n(х) больше или равно 0

n(х) ≤ (m(х))2

√n(х) ≥ m(х)

m(х) больше или равно 0

n(х) ≥ (m(х))2

или

n(х) больше или равно 0

m(х) меньше 0

√ n(х) < √ m(х)

n(х) больше или равно 0

n(х) меньше m(х)

√n(х) * m(х) < 0

n(х) больше 0

m(х) меньше 0

√n(х) * m(х) > 0

n(х) больше 0

m(х) больше 0

√n(х) * m(х) ≤ 0

n(х) больше 0

m(х) ≤0

или

n(х) равно 0

m(х) –любое

√n(х) * m(х) ≥ 0

n(х) больше 0

m(х) ≥0

или

n(х) равно 0

m(х) –любое

Примеры решения разных видов неравенств

Для того чтобы добавить наглядности в теорию про решение неравенств, ниже приведены примеры.

Первый пример. 2х - 4 > 1 + х

Решение: для того чтобы определить ОДЗ, достаточно просто внимательно посмотреть на неравенство. Оно образовано из линейных функций, поэтому определено при всех значениях переменной.

Теперь из обеих частей неравенства нужно вычесть (1 + х). Получается: 2х - 4 - (1 + х) > 0. После того как будут раскрыты скобки и приведены подобные слагаемые неравенство примет такой вид: х - 5 > 0.

Приравняв его к нулю, легко найти его решение: х = 5.

Теперь эту точку с цифрой 5, нужно отметить на координатном луче. Потом проверить знаки исходной функции. На первом интервале от минус бесконечности до 5 можно взять число 0 и подставить его в неравенство, получившееся после преобразований. После расчетов получается -7 >0. под дугой интервала нужно подписать знак минуса.

На следующем интервале от 5 до бесконечности можно выбрать число 6. Тогда получается, что 1 > 0. Под дугой подписан знак «+». Этот второй интервал и будет ответом неравенства.

Ответ: х лежит в интервале (5; ∞).

Второй пример. Требуется решить систему двух уравнений: 3х + 3 ≤ 2х + 1 и 3х - 2 ≤ 4х + 2.

Решение. ОДЗ этих неравенств тоже лежит в области любых чисел, поскольку даны линейные функции.

Дальше действовать нужно поэтапно. Сначала преобразовать первое из неравенств и приравнять его к нулю. 3х + 3 - 2х - 1 = 0. То есть х + 2 = 0. Таким образом, х равен -2.

Второе неравенство примет вид такого уравнения: 3х - 2 - 4х - 2 = 0. После преобразования: -х - 4 =0. Из него получается значение для переменной, равное -4.

Эти два числа нужно отметить на оси, изобразив интервалы. Поскольку неравенство нестрогое, то все точки нужно закрасить. Первый интервал от минус бесконечности до -4. Пусть будет выбрано число -5. Первое неравенство даст значение -3, а второе 1. Значит, этот промежуток не входит в ответ.

Второй интервал от -4 до -2. Можно выбрать число -3 и подставить его в оба неравенства. В первом и во втором получается значение -1. Значит, под дугой «-».

На последнем интервале от -2 до бесконечности самым лучшим числом является ноль. Его и нужно подставить и найти значения неравенств. В первом из них получается положительное число, а втором ноль. Этот промежуток тоже нужно исключить из ответа.

Из трех интервалов решением неравенства является только один.

Ответ: х принадлежит [-4; -2].

Третий пример. |1 - х| > 2 |х - 1|.

Решение. Первым делом нужно определить точки, в которых функции обращаются в ноль. Для левого этим числом будет 2, для правого — 1. их нужно отметить на луче и определить промежутки знакопостоянства.

На первом интервале, от минус бесконечности до 1, функция из левой части неравенства принимает положительные значения, а из правой — отрицательные. Под дугой нужно записать рядом два знака «+» и «-».

Следующий промежуток от 1 до 2. На нем обе функции принимают положительные значения. Значит, под дугой два плюса.

Третий интервал от 2 до бесконечности даст такой результат: левая функция — отрицательная, правая — положительная.

С учетом получившихся знаков нужно вычислить значения неравенства для всех промежутков.

На первом получается такое неравенство: 2 - х > - 2 (х - 1). Минус перед двойкой во втором неравенстве получился из-за того, что эта функция отрицательная.

После преобразования неравенство выглядит так: х > 0. Оно сразу дает значения переменной. То есть из этого интервала в ответ пойдет только промежуток от 0 до 1.

На втором: 2 - х > 2 (х - 1). Преобразования дадут такое неравенство: -3х + 4 больше ноля. Его нулем будет значение х = 4/3. С учетом знака неравенства получается, что х должен быть меньше этого числа. Значит, этот интервал уменьшается до промежутка от 1 до 4/3.

Последний дает такую запись неравенства: - (2 - х) > 2 (х - 1). Его преобразование приводит к такому: -х > 0. То есть уравнение верно при х меньшем ноля. Это значит, что на искомом промежутке неравенство не дает решений.

На первых двух промежутках граничным оказалось число 1. Его нужно проверить отдельно. То есть подставить в исходное неравенство. Получается: |2 - 1| > 2 |1 - 1|. Подсчет дает что 1 больше 0. Это верное утверждение, поэтому единица входит в ответ.

Ответ: х лежит в промежутке (0; 4/3).

www.syl.ru

Решение неравенств

Рассмотрим основные понятия, которые связанны с решением определенных неравенств, которые включают в себя одну переменную. Например, нам дано неравенство f(x)>g(x). Любое значение переменной, при котором наше неравенство с данной переменной обратится в правильное числовое неравенство, будет называться решением данного неравенства. Что же значит решить неравенство с переменной? Это, конечно же, значит найти абсолютно все его решения, или же доказать, что решений не существует.

Если нам даны два неравенства с одной переменной и их решения совпадают, то такие неравенства будут называться равносильными. Стоит также отметить, что если и у первого, и у второго неравенство с одной переменной нет решений, то данные неравенства также будут равносильными.

Для того, чтобы решить неравенства, следует заменить одно неравенство на другое, более простое, но обязательно равносильное данному. Затем полученное неравенство следует опять заменить более простым и равносильным и т.д. Однако все эти замены следует осуществлять согласно следующим утверждениям:

  1. Если перенести из одной части неравенства в другую слагаемое, но с противоположным знаком, то мы получим равносильное данному неравенство.
  2. Если разделить или умножить обе части неравенства с одной переменной на одинаковое положительное число, то мы получим неравенство, которое будет равносильно данному.
  3. Если разделить или умножить обе части неравенства с одной переменной на одинаковое отрицательное число и при этом поменять знак неравенства, то мы получим неравенство, которое равносильно данному.

На практике, решение неравенств невозможно без знания трех вышеуказанных утверждений, однако, помимо них, существуют еще два утверждения, которые обобщают две последние теоремы.

Например: 5x-5

Неравенства

Свойства неравенств
Если a > b, то b
Если a > b, то a + c > b + c
Если a > b и c > d, то a + c > b + d
Если a > b и c b - d
Если a > b и m > 0, то am > bm
Если a > b и m
Абсолютная величина числа (модуль)
Если a ≥ 0, то |a| = a
Если a
Некоторые важные неравенства
|a + b| ≤ |a| + |b|
|a - b| ≥ ||a| - |b||
a + 1
a
≥ 2    (a > 0)
a
b
+ b
a
≥ 2    (ab > 0)
aba + b
2
    (a > 0, b > 0)
 
n
 
a 
1
a 
2
...a 
n
a 
1
+ a 
2
+ ... + a 
n
    (неравенство Коши)
n
2 : (1
a
+ 1
b
) ≤ ab    (a > 0, b > 0)
 
a 
1
+ a 
2
+ ... + a 
n
a2
1
+ a2
2
+ ... + a2
n
nn
  
a 
1
b 
1
+ a 
2
b 
2
+ ... + a 
n
b 
n
a2
1
+ a2
2
+ ... + a2
n
* b2
1
+ b2
2
+ ... + b2
n
Решение неравенства первой степени ax > b
Если a > 0, то x > b
a
Решение системы неравенств первой степени
x > a
x > b
Если a > b, то x > a
Если a b
x
x
Если a > b, то x
Если a
x > a
x
Если a > b, то система не имеет решения
Если a
x
x > b
Если a > b, то b
Если a

Решение неравенства второй степени
Если a > 0, то x  
1
и x > x 
2
Здесь x 
1
и x 
2
(x 
1
 
2
) - действительные корни
квадратного трехчлена ax2
 
+ bx + c
Если действительных корней нет,
то неравенство ax2
 
+ bx + c > 0
- справедливо для всех x при a > 0 ;
- не имеет решений при a

mateshka.ru

Решение иррациональных неравенств

Решение иррациональных неравенств

В этой статье я расскажу,  как решать иррациональные неравенства.

Сначала мы рассмотрим решение неравенства вида 

Чтобы его решить, нужно обе части неравенства возвести в квадрат и вовремя вспомнить об ОДЗ: подкоренное выражение меньшего из корней должно быть неотрицательным - тогда подкоренное выражение большего корня автоматически будет больше нуля. Таким образом, неравенство вида  равносильно системе неравенств:

Практически все сложные иррациональные неравенства, в конечном итоге сводятся к базовым иррациональным неравенствам двух типов.

Иррациональные неравенства первого типа: 

Заметим, что в левой части неравенства стоит квадратный корень, который принимает только неотрицательные значения, следовательно, чтобы неравенство имело решения, правая часть должна быть положительной.

Получаем первое условие:

Чтобы решить неравенство, нам нужно обе части возвести в квадрат.

Получаем второе условие:

Возведение в квадрат может привести к появлению  посторонних корней, поэтому не забываем про ОДЗ: подкоренное выражение   должно быть неотрицательным.

Получили третье условие: 

Итак, неравенство вида  равносильно системе неравенств:

Аналогично, нестрогое неравенство   равносильно системе неравенств:

Иррациональные неравенства второго типа:   .

Не смотря на то, что это неравенство с виду похоже на неравенство первого типа, оно принципиально от него отличается.

Поскольку в левой части неравенства стоит квадратный корень, левая часть всегда неотрицательна, поэтому

Итак, неравенство вида  равносильно совокупности двух систем неравенств:

Нестрогое неравенство вида  равносильно совокупности:

.

Рассмотрим примеры решения иррациональных неравенств.

1. Решить неравенство:

Это неравенство второго типа, оно равносильно совокупности двух систем:

Решим каждое неравенство:

1.

D=1-8=-7, старший коэффициент больше нуля, следовательно это неравенство верно при любом значении х. Решением первой системы будет решение ее второго неравенства: x≥2.

2.   Очевидно, что это неравенство не имеет решений. Следовательно, и вся вторая система не имеет решений.

Ответ: x≥2.

2. Решить неравенство:

 

Это иррациональное неравенство первого типа, и оно равносильно системе трех неравенств:

Решим каждое неравенство:

1. 

2. 

D=144-200<0, следовательно, это неравенство верно при любом значении х.

3. 

,  

Совместим решения первого и третьего неравенств системы на одной координатной прямой:

Ответ: 0≤ x ≤ 2.

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Иррациональные неравенства и их решение

Определение и формулы иррациональных неравенств

Иррациональные неравенства в основном решаются возведением обеих частей неравенства в нужную степень. При возведении в степень важно учитывать некоторые особенности. Например, возводить в четную степень можно только те неравенства, у которых обе части неотрицательные.

Виды и примеры решения иррациональных неравенств

Рассмотрим несколько видов иррациональных неравенств.

1. Неравенство . Подкоренная функция должна быть неотрицательной, а функция может быть любой, поэтому заданное неравенство равносильно совокупности неравенств

2. Неравенство . Подкоренная функция должна быть неотрицательна,левая часть неравенства также неотрицательна и меньше, чем правая, а значит . Следовательно, заданное неравенство эквивалентно следующей системе неравенств

3. Неравенство . Обе подкоренные функции должны быть неотрицательны, т.е. . Возведем в квадрат обе части неравенства и получим . Таким образом, заданное неравенство эквивалентно системе неравенств

или

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Решение иррациональных неравенств

Автор Сергей Валерьевич

Четверг, Август 11, 2016

В этой статье я расскажу об одном эффективном способе решения иррациональных неравенств. То есть таких неравенств, которые содержат неизвестную величину под знаком корня. Данный материал очень редко изучается в школа. Разве что в школе с углублённым изучением математики, да и то не всегда. А ведь научиться решать иррациональные неравенства, используя этот способ, очень важно. Поэтому дочитайте эту статью до конца или посмотрите мой видеоурок (ссылка ниже в тексте). Информация, которую вы получите, может очень пригодиться при сдаче ОГЭ, ЕГЭ или вступительных экзаменов по математике.


Иррациональные неравенства, как и любые другие, изучаемые в школьном курсе математики, можно решить с помощью метода интервалов. Но есть более простой и эффективный способ. Разберёмся, в чём он заключается. Все наиболее часто встречающиеся иррациональные неравенства из школьного курса математики можно условно разделить на два типа:

1. или .

2. или .

Здесь  и  — некоторые выражения относительно переменной . Разберём отдельно решение каждого из этих двух типов иррациональных неравенств.

Решение иррациональных неравенств первого типа

Рассмотрим внимательно неравенство . Как уже отмечалось,  и — это некоторые выражения относительно переменной . Но при определённых значениях  эти выражения будут принимать какие-то определённые значения. Наша задача состоит в том, чтобы найти такие значения переменной , при которых значение выражения будет больше значения выражения . Извините, что я говорю очевидные вещи. В данной статье я решил объяснить всё предельно подробно. Если эти разъяснения кажутся вам излишними, вы можете пропустить их и перейти непосредственно к примерам в красных рамочках.

Чтобы избавиться от корня, нужно возвести обе части неравенства в квадрат. Тогда неравенство примет вид: . Но просто так, без соблюдения определённых правил, этого делать нельзя. Почему? Представьте, что при каком-то значении значение выражения

yourtutor.info

Квадратные неравенства и их решение

Определение и формулы квадратных неравенств

Чтобы решить квадратное неравенство, нужно знать количество корней соответствующего квадратного уравнения . Сделать это можно с помощью дискриминанта: если дискриминант , то уравнение имеет два корня, — один корень, — действительных корней нет.

Знак старшего коэффициента определяет направление ветвей параболы : если , то ветви параболы направлены вверх, если — вниз. В зависимости от знаков и возможны такие варианты расположения параболы относительно оси абсцисс.

Решением неравенств () будет числовой промежуток, на котором парабола лежит выше оси абсцисс.

Решением неравенств () будет числовой промежуток, на котором парабола лежит ниже оси абсцисс.

Если неравенство нестрогое, то концы промежутка включаются, если строгое, то не включаются.

Примеры решения квадратных неравенств

ru.solverbook.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *