Задачи по физике электричество с решением – ФИЗИКА: ЗАДАЧИ на Работу электрического тока

Содержание

ФИЗИКА: ЗАДАЧИ на Работу электрического тока

Задачи на Работу электрического тока с решениями

Формулы, используемые на уроках «Задачи на Работу электрического тока».

Название величины
Обозначение
Единица измерения
Формула
Сила тока
I
А
I = U / R
Напряжение
U
В
U = IR
Время
t
с
t = A / IU
Работа тока
А
Дж
A = IUt

1 мин = 60 с;    1 ч = 60 мин;   1 ч = 3600 с.


ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ


Задача № 1.  Какую работу совершит электрический ток в электродвигателе вентилятора за 20 мин, если сила тока в цепи 0,2 А, а напряжение 12 В?


Задача № 2.  Какую работу совершит электрический ток в паяльнике за 30 мин, если сопротивление паяльника 40 Ом, а сила тока в цепи 3 А?


Задача № 3.  Сколько времени работал электродвигатель игрушечной машины, если при напряжении 12 В и силе тока 0,1 А электрический ток совершил работу 360 Дж?


Задача № 4.  Рассчитайте расход энергии электрической лампой, включенной на 10 мин в сеть напряжением 127 В, если сила тока в лампе 0,5 А.


Задача № 5.  По данным рисунка определите энергию, потребляемую лампой в течение 10 с. Как будет изменяться потребляемая лампой энергия, если ползунок реостата переместить вверх; вниз?


 

 

Краткая теория для решения Задачи на Работу электрического тока.

 


Это конспект по теме «ЗАДАЧИ на Работу электрического тока»

. Выберите дальнейшие действия:

 

ЗАДАЧИ на Работу электрического тока

5 (100%) 6 vote[s]

uchitel.pro

Задачи на тему Электрический ток

§ 10.

10.1 Ток I в проводнике меняется со временем t по уравнению I = 4 + 2t. Какое количество электричества проходит через поперечное сечение проводника за время от t1 = 2 с до t2 = 6 с? При каком постоянном токе через поперечное сечение проводника за то же время проходит такое же количество электричества
РЕШЕНИЕ

10.2 Ламповый реостат состоит из пяти электрических лампочек сопротивлением r = 3500 м, включенных параллельно. Найти сопротивление реостата, когда горят все лампочки; вывинчиваются одна, две, три, четыре лампочки
РЕШЕНИЕ

10.3 Сколько витков нихромовой проволоки диаметром d=1мм надо навить на фарфоровый цилиндр радиусом a=2,5 см, чтобы получить печь сопротивлением R = 40 Ом
РЕШЕНИЕ

10.4 Катушка из медной проволоки имеет сопротивление R = 10,8 Ом. Масса медной проволоки m = 3,41 кг. Какой длины и какого диаметра проволока намотана на катушке
РЕШЕНИЕ

10.5 Найти сопротивление R железного стержня диаметром d = 1 см, если его масса m = 1 кг
РЕШЕНИЕ

10.6 Медная и алюминиевая проволоки имеют одинаковую длину l и одинаковое сопротивление R. Во сколько раз медная проволока тяжелее алюминиевой
РЕШЕНИЕ

10.7 Вольфрамовая нить электрической лампочки при t1 = 20 °C имеет сопротивление R1 = 35,8 Ом. Какова будет температура нити лампочки, если при включении в сеть напряжением U = 120 В по нити идет ток I = 0,33 А? Температурный коэффициент сопротивления вольфрама 4,6·10-5 Κ-1
РЕШЕНИЕ

10.8 Реостат из железной проволоки, амперметр и генератор включены последовательно. При t0 = 0 сопротивление реостата R0 = 120 Ом, сопротивление амперметра RA0 = 20 Ом. Амперметр показывает ток I0 = 22 мА. Какой ток будет показывать амперметр, если реостат нагреется на T = 50 К? Температурный коэффициент сопротивления железа 6·10-3 К-1
РЕШЕНИЕ

10.9 Обмотка катушки из медной проволоки при t1 = 14 имеет сопротивление R1 = 10 Ом. После пропускания тока сопротивление обмотки стало равным R2 = 12,2 Ом. До какой температуры нагрелась обмотка? Температурный коэффициент сопротивления меди 4,15·10-3 К-1
РЕШЕНИЕ

10.10 Найти падение потенциала на медном проводе длиной l = 500 м и диаметром d = 2 мм, если ток в нем I = 2 A
РЕШЕНИЕ

10.11 Найти падения потенциала в сопротивлениях R1 = 4, R2 = 2 и R3 = 4 Ом, если амперметр показывает ток I1 = 3 А. Найти токи и в сопротивлениях R2 и R3
РЕШЕНИЕ

10.12 Элемент, имеющий эдс 1,1 В и внутреннее сопротивление r = 1 Ом, замкнут на внешнее сопротивление R = 9 Ом. Найти ток в цепи, падение потенциала во внешней цепи и падение потенциала внутри элемента. С каким кпд работает элемент
РЕШЕНИЕ

10.13 Построить график зависимости падения потенциала U во внешней цепи от внешнего сопротивления R для цепи предыдущей задачи. Сопротивление взять в пределах 0 РЕШЕНИЕ

10.14 Элемент с эдс 2 В имеет внутреннее сопротивление r = 0,5 Ом. Найти падение потенциала внутри элемента при токе в цепи I = 0,25 A. Каково внешнее сопротивление цепи при этих условиях
РЕШЕНИЕ

10.15 Элемент с э.д.с. 1,6 В имеет внутреннее сопротивление r = 0,5 Ом. Найти к.п.д элемента при токе в цепи I = 2,4 А
РЕШЕНИЕ

10.16 Эдс элемента 6 B. При внешнем сопротивлении R = 1,1 Ом ток в цепи I = 3 A. Найти падение потенциала внутри элемента и его сопротивление
РЕШЕНИЕ

10.17 Какую долю эдс элемента e составляет разность потенциалов на его зажимах, если сопротивление элемента в n раз меньше внешнего сопротивления R? Задачу решить для n = 0,1; 1; 10
РЕШЕНИЕ

10.18 Элемент, сопротивление и амперметр соединены последовательно. Элемент имеет эдс e = 2 В и внутреннее сопротивление r = 0,4 Ом. Амперметр показывает ток I = 1 A. С каким кпд работает элемент
РЕШЕНИЕ

10.19 Имеются два одинаковых элемента с эдс 2 В и внутренним сопротивлением r = 0,3 Ом. Как надо соединить эти элементы последовательно или параллельно, чтобы получить больший ток, если внешнее сопротивление R = 0,2; 16 Ом. Найти ток в каждом из этих случаев
РЕШЕНИЕ

10.20 Считая сопротивление вольтметра RV бесконечно большим, определяют сопротивление R по показаниям амперметра и вольтметра. Найти относительную погрешность, если в действительности сопротивление вольтметра равно RV. Задачу решить для RV = 1000 Ом и сопротивления R = 10; 100; 1000 Ом
РЕШЕНИЕ

10.21 Считая сопротивление амперметра RA бесконечно малым, определяют сопротивление R по показаниям амперметра и вольтметра. Найти относительную погрешность , если в действительности сопротивление амперметра равно RA. Решить задачу для RA = 0,2 Ом и R = 1; 10; 100 Ом
РЕШЕНИЕ

10.22 Два параллельно соединенных элемента с одинаковыми эдс e1 = e2 = 2 В и внутренними сопротивлениями r1 = 1 Ом и r2 = 1,5 Ом замкнуты на внешнее сопротивление R = 1,4 Ом. Найти ток в каждом из элементов и во всей цепи.
РЕШЕНИЕ

10.23 Два последовательно соединенных элемента с одинаковыми эдс 2 В и внутренними сопротивлениями r1 = 1 и r2 = 1,5 Ом замкнуты на внешнее сопротивление R = 0,5 Ом. Найти разность потенциалов на зажимах каждого элемента
РЕШЕНИЕ

10.24 Батарея с эдс 20 B, амперметр и реостаты с сопротивлениями R1 и R2 соединены последовательно. При выведенном реостате R1 амперметр показывает ток I = 8 A, при введенном I = 5 A. Найти сопротивления реостатов и падения потенциала на них, когда реостат R1 полностью включен
РЕШЕНИЕ

10.25 Элемент, амперметр и некоторое сопротивление соединены последовательно. Если взять сопротивление из медной проволоки диной l = 100 м и поперечным сечением S = 2 мм2, то амперметр показывает ток I1 = 1,43 A. Если же из алюминиевой проволоки длиной l = 57,3 м и поперечным сечением S = 1 мм2, то ток I2 = 1 A. Сопротивление амперметра RA = 0,05 Ом. Найти эдс элемента и его внутреннее сопротивление
РЕШЕНИЕ

10.26 Напряжение на зажимах элемента в замкнутой цепи U = 2,1 B, сопротивления R1 = 5, R2 = 6 и R3 = 3 Ом. Какой ток показывает амперметр
РЕШЕНИЕ

10.27 Сопротивления R2= 20 и R3 = 15 Ом. Через R2 течет ток I2 = 0,3 A. Амперметр показывает ток I = 0,8 A. Найти сопротивление R1
РЕШЕНИЕ

10.28 Эдс батареи 100 B, сопротивления R1 = R3 = 40, R2 = 80 и R4 = 34 Ом. Найти ток текущий через сопротивление R2, и падение потенциала на нем
РЕШЕНИЕ

10.29 ЭДС батареи e = 120 B, сопротивления R3 = 20 и R4 = 25 Ом. Падение потенциала на сопротивлении R1 равно U1 = 40 B. Амперметр показывает ток I = 2 A. Найти сопротивление R2
РЕШЕНИЕ

10.30 Батарея с эдс 10 В и внутренним сопротивлением r = 1 Ом имеет кпд 0,8. Падения потенциала на сопротивлениях R1 и R4 равны U1 = 4 и U4 = 2 B. Какой ток показывает амперметр? Найти падение потенциала на сопротивлении R2
РЕШЕНИЕ

10.31 Эдс батареи 100 B, сопротивления R1 = 100, R2 = 200 и R3 = 300 Ом, сопротивление вольтметра Rv = 2 кОм. Какую разность потенциалов показывает амперметр
РЕШЕНИЕ

10.32 Сопротивления R1 = R2 = R3 = 200 Ом, сопротивление вольтметра Rv = 1 кОм. Вольтметр показывает разность потенциалов U = 100 B. Найти эдс батареи
РЕШЕНИЕ

10.33 Найти показания амперметра и вольтметра в схемах, изображенных на рисунках. Эдс батареи 110 B, сопротивления R1 = 400 и R2 = 600 Ом, сопротивление вольтметра Rv = 1 кОм
РЕШЕНИЕ

10.34 Амперметр с сопротивлением RA = 0,16 Ом зашунтован сопротивлением R = 0,04 Ом. Показывает ток I0 = 8 A. Найти ток в цепи
РЕШЕНИЕ

10.35 Имеется предназначенный для измерения токов до I = 10 А амперметр с сопротивлением RА = 0,18 Ом, шкала которого разделена на 100 делений. Какое сопротивление надо взять и как его включить, чтобы можно было измерять ток до I0 = 100 А? Как изменится при этом цена деления амперметра
РЕШЕНИЕ

10.36 Имеется предназначенный для измерения разности потенциалов до U = 30 В вольтметр с сопротивлением R1 = 2 кОм, шкала которого разделена на 150 делений. Какое сопротивление надо взять и как его включить, чтобы можно было измерять разности потенциалов до 75 В? Как изменится при этом цена деления вольтметра
РЕШЕНИЕ

10.37 Имеется предназначенный для измерения токов до I = 15 мА амперметр с сопротивлением RA = 5 Ом. Какое сопротивление надо взять и как его включить, чтобы этим прибором можно было измерять ток до I0 = 150 мА; разность потенциалов до U0 = 150 В
РЕШЕНИЕ

10.38 Имеется 120-вольтовая электрическая лампочка мощностью P = 40 Вт. Какое добавочное сопротивление надо включить последовательно с лампочкой, чтобы она давала нормальный накал при напряжении в сети U0 = 220 В? Какую длину нихромовой проволоки диаметром d = 0,3 мм надо взять, чтобы получить такое сопротивление
РЕШЕНИЕ

10.39 Имеется три 110-вольтовых электрических лампочки, мощности которых P1 =P2 = 40 и P3 = 80 Вт. Как надо включить эти лампочки, чтобы они давали нормальный накал при напряжении в сети U0 = 220 В? Начертить схему. Найти токи, текущие через лампочки при нормальном накале
РЕШЕНИЕ

10.40 В лаборатории, удаленной от генератора на расстояние l = 100 м, включили электрический нагревательный прибор, потребляющий ток I = 10 A. На сколько понизилось напряжение на зажимах электрической лампочки, горящей в этой лаборатории, если сечение медных подводящих проводов S = 5 мм2
РЕШЕНИЕ

10.41 От батареи с эдс 500 В требуется передать энергию на расстояние l = 2,5 км. Потребляемая мощность P = 10 кВт. Найти минимальные потери мощности в сети, если диаметр медных подводящих проводов d = 1,5 см
РЕШЕНИЕ

10.42 От генератора с эдс 110 В требуется передать энергию на расстояние l = 250 м. Потребляемая мощность P = 1 кВт. Найти минимальное сечение медных подводящих проводов, если потери мощности в сети не должны превышать 1%
РЕШЕНИЕ

10.43 В цепь включены последовательно медная и стальная проволоки одинаковых длины и диаметра. Найти отношение количеств теплоты, выделяющихся в этих проволоках; отношение падений напряжения
РЕШЕНИЕ

10.44 Решить предыдущую задачу для случая, когда проволоки включены параллельно
РЕШЕНИЕ

10.45 Элемент с эдс e = 6 В дает максимальный ток I = 3 A. Найти наибольшее количество теплоты, которое может быть выделено во внешнем сопротивлении в единицу времени
РЕШЕНИЕ

10.46 Батарея с эдс 240 В и внутренним сопротивлением r = 1 Ом замкнута на внешнее сопротивление R = 23 Ом. Найти полную, полезную мощность и кпд батареи
РЕШЕНИЕ

10.47 Найти внутреннее сопротивление генератора, если известно, что мощность, выделяющаяся во внешней цепи, одинакова при внешних сопротивлениях R1 = 5 и R2 = 0,2 Ом. Найти кпд генератора в каждом из этих случаев
РЕШЕНИЕ

10.48 На графике дана зависимость полезной мощности P от тока I в цепи. По данным этой кривой найти внутреннее сопротивление и эдс элемента. Построить график зависимости от тока I в цепи кпд элемента и падения потенциала U во внешней цепи
РЕШЕНИЕ

10.49 По данным кривой, изображенной на рисунке, построить график зависимости от внешнего сопротивления цепи кпд элемента, полной и полезной мощности. Кривые построить для значений внешнего сопротивления R, равных 0, r, 2r , 3r , 4r и 5r, где r внутреннее сопротивление элемента
РЕШЕНИЕ

10.50 Элемент замыкают сначала на внешнее сопротивление R1 = 2 Ом, а затем на R2 = 0,5 Ом. Найти эдс элемента и его внутреннее сопротивление, если в каждом из этих случаев мощность, выделяющаяся во внешней цепи, одинакова и равна P = 2,54 Вт
РЕШЕНИЕ

10.51 Элемент с эдс 2 B и внутренним сопротивлением r = 0,5 Ом замкнут на внешнее сопротивление. Построить график зависимости от сопротивления R тока I в цепи, падения потенциала U во внешней цепи, полезной и полной мощности. Сопротивление взять в пределах 0 РЕШЕНИЕ

famiredo.ru

Задачи по электростатике с подробными решениями

Задачи по электростатике с решениями

Закон Кулона

6.1.1 В парафине на расстоянии 20 см помещены два точечных заряда. На каком
6.1.2 Два электрических заряда притягиваются друг к другу в керосине с силой 7,8 Н
6.1.3 Два шарика, расположенные на расстоянии 10 см друг от друга, имеют одинаковые
6.1.4 С какой силой ядро атома железа (Fe) притягивает электрон, находящийся
6.1.5 На двух одинаковых капельках воды находится по одному лишнему электрону
6.1.6 Два заряженных шара одинакового радиуса, массой 0,3 кг каждый, расположены

6.1.7 По теории Бора электрон в атоме водорода вращается вокруг ядра
6.1.8 В атоме водорода электрон движется вокруг протона с угловой скоростью
6.1.9 Два одинаковых шара, массы которых 600 г и радиусы — 20 см, имеют
6.1.10 Какое первоначальное ускорение получит капелька жидкости массой 1,6×10^(-5) г
6.1.11 Два точечных заряда 5 и 15 нКл находятся на расстоянии 4 см друг от друга
6.1.12 Два одинаковых металлических шарика с зарядами -15 и 25 мкКл, вследствие притяжения
6.1.13 Два одинаковых маленьких металлических шарика с зарядами 120 и 80 нКл
6.1.14 Во сколько раз изменится сила кулоновского притяжения двух маленьких шариков
6.1.15 Каждый из двух маленьких шариков положительно заряжен так, что их общий заряд
6.1.16 Два одинаковых шарика, заряженные одноименными зарядами и помещенные
6.1.17 Два маленьких одинаковых шарика находятся на расстоянии 0,2 м и притягиваются
6.1.18 Вокруг отрицательного точечного заряда -5 нКл равномерно вращается
6.1.19 Два заряда по 25 нКл каждый, расположенные на расстоянии 0,24 м друг от друга
6.1.20 На нити подвешен заряженный шар массой 300 г. Когда к нему поднесли снизу
6.1.21 На нити подвешен маленький шарик массой 10 г, которому сообщили заряд 1 мкКл
6.1.22 Три одинаковых точечных заряда по -1,7 нКл каждый находятся в вершинах
6.1.23 Две частицы массой 10 г и зарядом 2 мкКл находятся в вершинах равностороннего
6.1.24 В вертикальной трубке, заполненной воздухом, закреплен точечный заряд 5 мкКл
6.1.25 Два одинаковых шарика подвешены на нитях в воздухе так, что их поверхности
6.1.26 Два шарика массой по 1 г подвешены на нитях длиной 0,5 м в одной точке. После
6.1.27 Два маленьких проводящих шарика подвешены на длинных непроводящих нитях
6.1.28 Два одинаковых шарика, имеющих одинаковые заряды 1,6 мкКл, подвешены на одной
6.1.29 Точечные положительные заряды q и 2q закреплены на расстоянии L друг от друга
6.1.30 Точечные положительные заряды q и 2q закреплены на расстоянии L друг
6.1.31 Два маленьких одинаковых металлических шарика заряжены положительным зарядом 5q

Напряженность электростатического поля

6.2.1 Указать размерность единицы напряженности электростатического поля
6.2.2 Определить напряженность электрического поля, если на точечный заряд 1 мкКл
6.2.3 С какой силой действует однородное поле, напряженность которого 2 кВ/м
6.2.4 В некоторой точке поля на заряд 0,1 мкКл действует сила 4 мН. Найти напряженность
6.2.5 Найти заряд, создающий электрическое поле, если на расстоянии 5 см от него
6.2.6 Точечный заряд удалили от точки A на расстояние, в три раза превышающее
6.2.7 Напряженность электрического поля на расстоянии 30 см от точечного заряда 0,1 мкКл
6.2.8 Поле в глицерине образовано точечным зарядом 70 нКл. Какова напряженность поля
6.2.9 Определить напряженность электрического поля на поверхности иона, считая его
6.2.10 Очень маленький заряженный шарик погрузили в керосин. На каком расстоянии
6.2.11 Шарик, несущий заряд 50 нКл, коснулся внутренней поверхности незаряженной
6.2.12 Проводящему шару радиусом 24 см сообщается заряд 6,26 нКл. Определить
6.2.13 Напряженность электрического поля на расстоянии 10 см от поверхности заряженной
6.2.14 Поверхностная плотность заряда на проводящем шаре равна 0,32 мкКл/м2. Определить
6.2.15 Заряд металлического шара, радиус которого 0,5 м, равен 30 мкКл. На сколько
6.2.16 Шар радиусом 5 см зарядили до потенциала 180 В и потом поместили в керосин
6.2.17 Точечные заряды 10 и -20 нКл закреплены на расстоянии 1 м друг от друга в воздухе
6.2.18 Два точечных заряда 4 и 2 нКл находятся друг от друга на расстоянии 50 см. Определить
6.2.19 Два точечных заряда 4 и -2 нКл находятся друг от друга на расстоянии 60 см. Определить
6.2.20 Найти напряженность поля, создаваемого двумя точечными зарядами 2 и -4 нКл
6.2.21 Определить расстояние между двумя точечными зарядами 16 и -6 нКл, если
6.2.22 В однородном электрическом поле напряженностью 40 кВ/м, направленным
6.2.23 Заряды по 0,1 мкКл расположены на расстоянии 6 см друг от друга. Найти
6.2.24 Одинаковые по модулю, но разные по знаку заряды 40 нКл расположены
6.2.25 В серединах всех сторон равностороннего треугольника расположены одинаковые

6.2.26 В двух противоположных вершинах квадрата со стороной 30 см находятся заряды
6.2.27 В трёх вершинах квадрата со стороной 30 см находятся точечные заряды
6.2.28 В трёх вершинах квадрата со стороной 1 м находятся положительные точечные заряды
6.2.29 Четыре одинаковых заряда 40 мкКл расположены в вершинах квадрата со стороной
6.2.30 Шарик массой 1 г подвешен вблизи земли на невесомой и непроводящей нити
6.2.31 На какой угол отклонится бузиновый шарик с зарядом 4,9 нКл и массой 0,40 г
6.2.32 В однородном электрическом поле напряженностью 1 МВ/м, направленном вверх
6.2.33 Поле равномерно заряженной плоскости действует в вакууме на заряд 0,2 нКл
6.2.34 Бесконечная, равномерно заряженная пластина имеет поверхностную плотность
6.2.35 Две бесконечные параллельные пластины равномерно заряжены поверхностной
6.2.36 Две плоские пластинки площадью 200 см2, расстояние между которыми очень мало
6.2.37 Две бесконечные плоскости, заряженные с поверхностной плотностью 2 и 0,6 мкКл/м2
6.2.38 Напряженность электрического поля вблизи земли перед разрядом молнии
6.2.39 Между горизонтальными пластинами заряженного конденсатора, напряженность
6.2.40 Свинцовый шарик радиусом 0,5 см помещён в глицерин. Определить заряд шарика
6.2.41 Капля массой 10^(-10) г, на которой находится заряд, равный 10 зарядам электрона
6.2.42 Капля массой 10^(-13) кг поднимается вертикально вверх с ускорением 2,2 м/с2
6.2.43 Положительно заряженный шарик массой 18 г и плотностью 1800 кг/м3 находится
6.2.44 Для ионизации нейтральной молекулы воздуха электрон должен обладать
6.2.45 Два заряженных шарика с зарядами 300 и 200 нКл, массы которых 0,2 и 0,8 г
6.2.46 Протон движется с ускорением 76 км/с2 в электрическом поле. Определить
6.2.47 Электрон влетает в плоский конденсатор параллельно его пластинам со скоростью
6.2.48 Электрон влетает в однородное электрическое поле напряженностью 200 В/м
6.2.49 Электрон, попадая в однородное электрическое поле, движется вдоль силовых линий
6.2.50 Поток электронов, направленный параллельно обкладкам плоского конденсатора
6.2.51 Электрон, обладающий скоростью 18 км/с, влетает в однородное электрическое поле
6.2.52 Три равных по величине и знаку заряда q расположены в вакууме вдоль одной прямой
6.2.53 Указать направление вектора напряженности электрического поля, созданного в точке
6.2.54 Точечный положительный заряд создаёт на расстоянии 10 см электрическое поле
6.2.55 На каком расстоянии от поверхности шара напряженность электрического поля
6.2.56 Равномерно заряженный проводящий шар радиуса 5 см создаёт на расстоянии 10 см
6.2.57 Проводящий шар радиуса R заряжен радиусом q. Найти напряженность поля в точке
6.2.58 Точечный отрицательный заряд создаёт на расстоянии 10 см поле, напряженность

Потенциал. Разность потенциалов. Работа сил электрического поля

6.3.1 Указать размерность единицы потенциала электростатического поля
6.3.2 Определить электрический потенциал на поверхности сферы радиусом 5 см
6.3.3 При сообщении металлической сфере радиусом 10 см некоторого заряда
6.3.4 Определить напряженность электрического поля в точке, находящейся на расстоянии
6.3.5 На расстоянии 10 м от центра заряженного металлического шара радиусом 3 м
6.3.6 Определить потенциал шара радиусом 10 см, находящегося в вакууме
6.3.7 Металлический шар диаметром 30 см заряжен до потенциала 5400 В. Чему равен
6.3.8 На расстоянии 1 м от центра заряженного металлического шара радиусом 3 м
6.3.9 Найти потенциал электрического поля в точке, лежащей посредине между двумя
6.3.10 Сколько электронов следует передать металлическому шарику радиусом 7,2 см
6.3.11 Определить разность потенциалов (по модулю) между точками, отстоящими
6.3.12 Расстояние между точечными зарядами 10 и -1 нКл равно 1,1 м. Найти
6.3.13 В двух вершинах равностороннего треугольника со стороной 0,5 м находятся
6.3.14 Капля росы в виде шара получилась в результате слияния 216 одинаковых капелек
6.3.15 Электрический пробой воздуха наступает при напряженности поля 3 МВ/м
6.3.16 Два одинаковых точечных заряда по 5 мкКл взаимодействуют с силой 10 Н
6.3.17 Два металлических шара, радиусы которых 5 и 15 см, расположенные далеко друг
6.3.18 Энергия 10^(-17) Дж, выраженная в эВ, составляет
6.3.19 Модуль напряженности однородного электрического поля равен 150 В/м. Какую
6.3.20 На какое расстояние вдоль силовой линии перемещен заряд 1 нКл, если
6.3.21 При лечении статическим душем к электродам электрической машины приложена
6.3.22 Электрическое поле в глицерине образовано точечным зарядом 9 нКл. Какую работу
6.3.23 Два шарика с зарядами 0,8 и 0,5 мкКл находятся на расстоянии 0,4 м. До какого
6.3.24 Какая совершается работа при перенесении точечного заряда 20 нКл из бесконечности
6.3.25 Потенциал заряженного металлического шара 45 В. Какой минимальной скоростью
6.3.26 Две равномерно заряженные проводящие пластины образовали однородное поле
6.3.27 Напряженность поля внутри конденсатора равна E. Найти работу перемещения заряда
6.3.28 На сколько изменится потенциальная энергия взаимодействия зарядов 25 и -4 нКл
6.3.29 Два одинаковых маленьких шарика, имеющих одинаковые заряды 2 мкКл, соединены
6.3.30 На расстоянии 90 см от поверхности шара радиусом 10 см, несущего положительный
6.3.31 Электрон переместился из точки с потенциалом 200 В в точку с потенциалом 300 В
6.3.32 Электрон вылетает из точки, потенциал которой 600 В, со скоростью 12 Мм/с
6.3.33 Электрон с начальной скоростью 2000 км/с, двигаясь в поле плоского конденсатора
6.3.34 В поле неподвижного точечного заряда 1 мкКл по направлению к нему движется
6.3.35 Электрическое поле в вакууме образовано точечным зарядом 1,5 нКл. На каком
6.3.36 Электрическое поле в глицерине образовано точечным зарядом 20 нКл. На каком
6.3.37 Между двумя горизонтально расположенными пластинами, заряженными до 10 кВ
6.3.38 Заряженная частица, пройдя ускоряющую разность потенциалов 600 кВ, приобрела
6.3.39 Электрическое поле образовано двумя параллельными пластинами, находящимися
6.3.40 Пылинка массой 4×10^(-12) кг и зарядом 10^(-16) Кл попадает в поле заряженного
6.3.41 Пылинка массой 10 нг покоится в однородном электростатическом поле между
6.3.42 Электрон с некоторой скоростью влетает в плоский конденсатор параллельно
6.3.43 Какую разность потенциалов должен пройти первоначально покоящийся электрон
6.3.44 Какую скорость может сообщить электрону, находящемуся в состоянии покоя
6.3.45 Заряд 5 нКл находится на расстоянии 0,45 м от поверхности шара диаметром 0,1 м
6.3.46 Два электрона движутся под действием сил электростатического отталкивания
6.3.47 Между катодом и анодом двухэлектродной лампы приложена разность потенциалов
6.3.48 Энергия 100 эВ в системе СИ равна
6.3.49 Найти скорость, которую приобретает электрон, пролетевший в электрическом поле
6.3.50 В углах квадрата со стороной 4 см поместили 4 электрона. Под действием электрических
6.3.51 Электрон, ускоренный разностью потенциалов 5 кВ, влетает в середину зазора между
6.3.52 Маленький металлический шарик массой 1 г и зарядом 100 нКл брошен издалека
6.3.53 В электронно-лучевой трубке поток электронов с кинетической энергией 8 кэВ
6.3.54 В закрепленной металлической сфере радиусом 1 см, имеющей заряд -10 нКл
6.3.55 В зазор между пластинами плоского конденсатора влетает электрон, пройдя перед
6.3.56 Неподвижно закрепленный шарик, заряженный положительно, находится над шариком
6.3.57 Заряды q1=2 мкКл и q2=5 мкКл расположены на расстоянии AB=40 см друг от друга
6.3.58 Шарик массой 10 г с зарядом 100 мкКл подвешен на тонкой нити длиной 50 см
6.3.59 Внутри шарового металлического слоя, внутренний и внешний радиусы которого
6.3.60 По тонкому проволочному кольцу радиуса 3 см равномерно распределен заряд 10^(-9) Кл
6.3.61 Какую работу необходимо совершить, чтобы три одинаковых точечных положительных
6.3.62 В центре закрепленной полусферы радиуса R, заряженной равномерно с поверхностной
6.3.63 В центре закрепленной полусферы радиуса R, заряженной равномерно
6.3.64 На тонком закрепленном кольце радиуса R равномерно распределен заряд q. Какова

Электроемкость. Плоский конденсатор. Соединение конденсаторов. Энергия электростатического поля

6.4.1 Указать размерность единицы электроемкости
6.4.2 Проводник электроемкостью 10 пФ имеет заряд 600 нКл, а проводник электроемкостью
6.4.3 Два металлических шара радиусами 6 и 3 см соединены тонкой проволокой. Шары
6.4.4 Шар радиусом 0,3 м, заряженный до потенциала 1000 В, соединяют проводником
6.4.5 Проводники, заряженные одинаковым зарядом, имеют потенциалы 40 и 60 В
6.4.6 Тысяча одинаковых шарообразных капелек ртути заряжены до одинакового потенциала
6.4.7 Шар радиусом 15 см, заряженный до потенциала 300 В, соединяют проволокой
6.4.8 Шарообразная капля, имеющая потенциал 2,5 В, получена в результате слияния двух
6.4.9 Плоский воздушный конденсатор состоит из двух пластин площадью 100 см2 каждая
6.4.10 Определить площадь пластин плоского воздушного конденсатора электроемкостью 1 мкФ
6.4.11 Плоский конденсатор составлен из двух круглых пластин диаметром 0,54 м каждая
6.4.12 Плоский воздушный конденсатор погрузили в керосин. Во сколько раз изменилась
6.4.13 Плоский конденсатор состоит из двух пластин площадью 50 см2 каждая. Между
6.4.14 Во сколько раз изменится электроемкость плоского конденсатора при уменьшении
6.4.15 Плоский конденсатор, площадь пластин которого 25×25 см2 и расстоянием между ними
6.4.16 Плоский воздушный конденсатор погрузили в воду так, что над водой находится девятая
6.4.17 Между пластинами плоского конденсатора по всей площади проложили слюду (диэлектрик)
6.4.18 Плоский воздушный конденсатор зарядили до 50 В и отключили от источника тока
6.4.19 Плоский воздушный конденсатор, заряженный до напряжения 200 В, отключили
6.4.20 Воздушный конденсатор емкостью 4 мкФ подключен к источнику 10 В. Какой заряд
6.4.21 Какой заряд пройдет по проводам, соединяющим пластины плоского воздушного конденсатора
6.4.22 Во сколько раз увеличится электроемкость плоского конденсатора, пластины которого
6.4.23 Две пластины конденсатора площадью 2 дм2 находятся в керосине на расстоянии 4 мм
6.4.24 Напряжение на батарее из двух последовательно включенных конденсаторов
6.4.25 Батарея из двух последовательно соединенных конденсаторов электроемкостью
6.4.26 Два последовательно соединенных конденсатора с электроемкостью 1 и 3 мкФ подключены
6.4.27 Два плоских конденсатора электроемкостью по 2 мкФ каждый, соединенные последовательно
6.4.28 Два конденсатора электроемкостью 4 и 1 мкФ соединены последовательно и подключены
6.4.29 Два одинаковых плоских воздушных конденсатора соединены последовательно и подключены
6.4.30 Два одинаковых конденсатора соединены последовательно и подключены к источнику
6.4.31 Бумага пробивается при напряженности поля 18 кВ/см. Два плоских конденсатора с изолятором
6.4.32 Три конденсатора электроемкостью 0,1, 0,125 и 0,5 мкФ соединены последовательно
6.4.33 Три воздушных конденсатора емкостью 1 мкФ каждый соединены последовательно
6.4.34 Батарея из 5 последовательно соединенных конденсаторов емкостью 4 мкФ каждый
6.4.35 Определить электроемкость одного конденсатора, если для зарядки батареи, составленной
6.4.36 Конденсаторы электроемкостью 1 и 2 мкФ заряжены до разности потенциалов 20 и 50 В
6.4.37 Незаряженный конденсатор электроемкостью 5 мкФ соединяют параллельно с конденсатором
6.4.38 Плоский заряженный конденсатор соединили параллельно с незаряженным плоским
6.4.39 Шесть конденсаторов электроемкостью 5 нФ каждый соединили параллельно и зарядили
6.4.40 На батарею из трех параллельно соединенных конденсаторов электроемкостью
6.4.41 Конденсатор, заряженный до разности потенциалов 20 В, соединили параллельно разноименными
6.4.42 Найти общую электроемкость соединенных по схеме конденсаторов, если
6.4.43 Определить электроемкость батареи конденсаторов, изображенной на рисунке
6.4.44 Батарея из четырех одинаковых конденсаторов включена один раз по схеме A, другой раз по схеме B
6.4.45 Какое количество теплоты выделяется при замыкании пластин конденсатора электроемкостью
6.4.46 Какое количество теплоты выделяется при заземлении заряженного до потенциала 3000 В
6.4.47 Шар радиусом 25 см заряжен до потенциала 600 В. Какое количество тепла выделится
6.4.48 Плоский воздушный конденсатор после зарядки отключают от источника напряжения
6.4.49 Площадь пластины слюдяного конденсатора 36 см2, толщина слоя диэлектрика 0,14 см
6.4.50 На корпусе конденсатора написано 100 мкФ, 200 В. Какую максимальную энергию можно
6.4.51 При сообщении конденсатору заряда 5 мкКл его энергия оказалось равной 0,01 Дж
6.4.52 Два удаленных друг от друга одинаковых шара емкостью 4,7 мкФ каждый, заряжены
6.4.53 В импульсной фотовспышке лампа питается от конденсатора емкостью 800 мкФ, заряженного
6.4.54 Напряженность электрического поля конденсатора электроемкостью 0,8 мкФ равна 1 кВ/м
6.4.55 Определить работу, которую необходимо совершить, чтобы увеличить расстояние между пластинами
6.4.56 Парафиновая пластинка заполняет все пространство между обкладками плоского конденсатора
6.4.57 Определить количество электрической энергии, перешедшей в тепло при соединении одноименно
6.4.58 Три воздушных конденсатора электроемкостью 1 мкФ каждый соединены параллельно
6.4.59 Плоский конденсатор имеет в качестве изолирующего слоя пластинку из слюды толщиной
6.4.60 Два одинаковых плоских конденсатора электроемкостью 1 мкФ соединены параллельно
6.4.61 Конденсаторы соединены в батарею, причем C1=C2=2 мкФ, C3=C4=C5=6 мкФ
6.4.62 Принимая протон и электрон, из которых состоит атом водорода, за точечные заряды
6.4.63 Плоский воздушный конденсатор, площадь пластин которого равна S, заряжен

6.4.64 Два одинаковых плоских воздушных конденсатора соединены последовательно и подключены
6.4.65 Три одинаковых конденсатора соединены, как показано на рисунке. При разности
6.4.66 Три одинаковых конденсатора соединены, как показано на рисунке. При
6.4.67 Три одинаковых конденсатора соединены, как показано на рисунке. При разности потенциалов
6.4.68 Площадь каждой пластины плоского вакуумного конденсатора S. Конденсатор заряжен

easyfizika.ru

Решение задач по теме Электричество

Тема: Решение задач по теме «Электричество»

Цель: научить обучающихся решать задачи из раздела «Электричество»

Образовательные: обобщить и систематизировать знания по теме «Электричество»; совершенствовать навыки решения задач различного типа.

Воспитательные: содействовать развитию умения работать в группе, сотрудничать, выслушивать товарища, уважать мнение оппонента.

Развивающие: создать условия для развития у школьников речевых навыков; способствовать развитию теоретического мышления. Расширить кругозор обучающихся.

Оборудование: источник тока- 6 шт., вольтметр-6 шт., электрическая лампочка- 6 шт., ключ-6 шт., соединительные провода.

— карточки для дифференцированной и индивидуальной работы, дидактический материал.

Ход урока

I. Проверка домашнего задания

(фронтальный опрос)

Учитель. Сегодня на уроке вам предстоит заняться экспериментальными и качественными задачами.

Учитель. Какая из электрических величин одинакова для всех проводников, соединенных параллельно?

Ученик. Напряжение.

Учитель. Какая из электрических величин одинакова для всех проводников, соединенных последовательно?

Ученик. Сила тока.

Учитель. Я показываю вам приборы, а вы должны дать определение названия прибора и определить его предназначение (амперметр, реостат, вольтметр)

Ученик. Амперметр- прибор для измерения силы тока.

Ученик. Реостат- прибор для регулирования силы тока в цепи.

Ученик. Вольтметр-прибор для измерения напряжения на полюсах источника тока или на каком-нибудь участке цепи.

Учитель. Какое соединение проводников применяются в жилых помещениях?

Ученик. В жилых помещениях применяют параллельное и последовательное соединение проводников.

II.Актуализация знаний обучающихся

Учитель. Только что к нам поступила шифровка. Ваша задача – расшифровать эти непонятные знаки. Эти знаки записаны на доске. А вы отвечаете, что они обозначают: I, U, R, S, t ,P, l, A.

Обучающиеся отвечают по цепочке. (Сила тока, напряжение, сопротивление, площадь поперечного соединения, время, удельное сопротивление, длина проводника, работа силы тока.)

Учитель. В любом деле, каким бы оно ни было, знание законов играет очень важную роль. Как говорят, законы должны знать все. Я сейчас зачитаю вам рассказ, а, вы, глядя на доску, на которой записаны законы электрического тока, должны будете ответить на вопрос, который прозвучит в конце. Итак: «Мария Ивановна, учительница физики, разложив на столе карточки с законами электрического тока, вышла на перемене в учительскую. Воспользовавшись ее отсутствием, Иванов и Петров устроили небольшие соревнования по бегу прямо в классе. Пробегая мимо стола, они свалили разложенные карточки. Увидев это, ребята прекратили беготню, подняли карточки и разложили их на столе. Прозвенел звонок. Мария Ивановна вошла в класс, развесила карточки на доску и сказала. Ребята перед вами карточки с законами электрического тока: I-столбик для последовательного соединения, а II- столбик для параллельного соединения. Ребята посмотрели на доску и лес рук.» Почему ребята подняли руки ?

Последовательное Параллельное

соединение соединение

I=I1+I2 I=I1=I2

R=R1+R2 R=R

1*R2/(R1+R2)

U=U1=U2 U=U1+U2

Ученик. Нужно формулы силы тока и напряжения с последовательного соединения поменять местами на параллельное соединение.

Учитель. Какие правила техники безопасности нарушили Иванов и Петров?

Ученик. На перемене нужно приготовиться к уроку и выйти из класса. С демонстрационного стола ничего не трогать.

III. Закрепление материала

(решение задач)

Учитель. Открываем тетради , записываем дату и тему урока. Перед вами карточки. Прочитайте задание и составьте схему в тетради.

Задание 1 (ученик работает индивидуально)

Запиши по карточке ( задание 10 а) название всех приборов.

Задание 10а 1. Начертите принципиальную схему эле­ктрической цепи, изображенной на рисунке, и укажите знаками (+,-) полярность зажимов вольтметра.

Задание 9б

1. Начертите принципиальную схему эле­ктрической цепи, изображенной на рисунке, и укажите знаками (+,-) полярность зажимов вольтметра.

Задание 9 а

1. Начертите принципиальную схему эле­ктрической цепи, изображенной на рисунке.

2. Укажите на вашей схеме знаками ( +, -).

Учитель. Проверим ваши схемы (Взаимопроверка) (на доске)

Задание 9а Задание 9б Задание 10а

+ + — +

Учитель. Вспомним правила техники безопасности перед проведением лабораторной работы. Для этого вам понадобиться найти правильное решение в предложенной задаче.

Задача. При измерении силы тока в проволочной спирали R четыре ученика по-разному подсоединили амперметр. Результат изображен на рисунке. Укажите верное подсоединение амперметра .

1) 2)

3) 4)

Ученик. Верно выполнил первый ученик. Остальные ученики могут повредить амперметр.

Учитель. (Работа в парах). Для работы в парах, давайте, ребята, с вами вспомним, какие пословицы вы знаете о дружбе, совместной работе?

Ученики. «Одна голова хорошо, а две лучше», «Что одному не под силу, то легко коллективу», «Что одному с трудом дается, то коллективом легко берется».

(Работа по дидактическому материалу А.Е.Марон «Физика 8 класс» стр.81, вариант 5)

Задача 1. Найдите напряжение на концах проводников R1 и R2 по рисунку, если сила тока в цепи 2.5 А. Что покажет вольтметр, подключенный к клеммам?

R1 = 4Ом R2 = 16 Ом

Ученик.

Дано: Решение:

I=2,5А Последовательное соединение.

R1=4Ом R=R1+R2=4 Ом+16 Ом=20 Ом

R2=16 Ом U=I*R=2,5А*20 Ом=50 В

U=? U1=I*R1=2,5А*4 Ом=10В

U1=? U2 =? U2=I*R2=2,5А*16 Ом=40В

Ответ: 50 В, 10В, 40В.

Учитель. Выполните задачу № 2. Кто первый выполнит, поможет тому, кому потребуется помощь

Задача 2. Три резистора, имеющие сопротивление 1,5; 2,5 и 3 Ом, соединены параллельно. Какова сила тока в каждом резисторе, если соединение находится под напряжением 15 В?

Дано: Решение:

R1=1,5Oм I1=U/R1=15В/1,5Ом=10А

R2=2,5Ом I2=U/R2=15В/2,5Ом=6А

R2=3Ом I3=U/R3=15В/3Ом=5А

U=15В

I1=?I2=? I3=?

Ответ: 10А, 6А, 5А

Карточка для индивидуальной работы (для 3 учащихся со слабой мотивацией)

Соедините стрелкой единицы измерения и обозначения

Ом I

A S

B R

Мм2 l

М U

IV. Решение экспериментальной задачи в группах.

Каждой паре выдаются тексты задач.

Задача 1. Сколько электронов проходит через поперечное сечение спирали электрической лампочки за 1 минуту, если ее сопротивление 2 Ом?

Оборудование: источник тока, вольтметр, электрическая лампочка, ключ, соединительные провода.

Задача 2. Сколько электронов проходит через поперечное сечение спирали электрической лампочки за 30 секунд, если ее сопротивление 2 Ом?

Оборудование: источник тока, вольтметр, электрическая лампочка, ключ, соединительные провода.

Учитель. Каждой группе предстоит решить одну из предложенных задач. Условие задачи запишите в тетрадь. Начертите схему электрической цепи. Выполните измерения и запишите в нее все измеренные, справочные и вычислительные величины. Сначала работу выполняем в парах. Затем объединяемся в группы и готовим общий отчет, в котором принимает участие каждый учащийся. Выступление групп состоятся в конце урока.

Если пара встретится с затруднением, можно воспользоваться подсказкой. Но поощряется самостоятельная работа.

Подсказка к задаче 1 и 2

1. Количество электронов, проходящих через поперечное соединение проводника, N=q/e.

2.Собрать электрическую цепь, состоящую из последовательно соединенных источника тока, ключа и лампочки. Параллельно лампочке подключить вольтметр и измерить напряжение.

3. Воспользоваться законом Ома для участка цепи, а также формулой

I=q/t.

Отчеты групп

Учитель. Сейчас каждая группа расскажет о своей работе. Ребята, слушайте внимательно и кратко записывайте условие и ход решений. Это необходимо для успешного выполнения домашнего задания, за которое вы получите оценку.

Примеры отчетов групп

Задача 1 и 2 *: 1. Соединяем последовательно источник тока, лампу и ключ. Параллельно лампе включаем вольтметр. 2. Измеряем напряжение на лампе. 3. По закону Ома вычисляем силу тока I=U/R. 4. По определению, силы тока I=q/t. 5. Заряд, протекающий через лампу, q=I*t, заряд электрона qe=1,6*10-19Кл. 6. Количество электронов, проходящих через поперечное сечение спирали лампы, N=q/1,6*10-19.

III. Домашнее задание

Упражнение 23(1и2)

Дорешать задачи 1 и 2.

Подведение итогов

Рефлексия

Учитель. Что понравилось на уроке? Что не понравилось?

Что узнали нового?

Спасибо за работу всем, но особенно мне понравилось, как работали…

(выставление оценок за урок)

infourok.ru

«Работа и мощность электрического тока». Видеоурок. Физика 8 Класс

На данном уроке рассмотрено решение задач, посвященных работе и мощности электрического тока.

Работа – произведение силы тока, напряжения и времени, в течение которого протекает электрический ток.

Мощность – отношение работы ко времени, в течение которого протекает электрический ток.

Из закона Ома получили эквивалентные формулы.

Условие задачи:

«В течение 10 мин по некоторому участку протекает электрический ток, значение которого – 250 мА. Напряжение на этом участке – 4 В. Необходимо определить мощность электрического тока, который выделяется на этом участке, и работу электрического тока, произведенную за это время».

Краткое условие задачи и решение

Дано:

СИ

Решение

t = 10 мин

U = 4 В

I = 250 мА

600 с

0,25 А

Ответ: А = 600 Дж; Р = 1 Вт

Найти:

А – ?

Р – ?

Комментарий к решению:

10 минут – это время протекания электрического тока. Напряжение на концах участка цепи – 4 В. Сила тока определяется как 250 мА (миллиамперметры). 1 мА = 0,001 А.

Переведем все значение в интернациональную систему (СИ):

t = 10 мин = 10∙60 с = 600 с;

І = 250 мА = 250∙0,001 А = 0,25 А.

U = 4 В (так как вольт (в системе СИ) – международная единица)

 Первое уравнение – это вычисление работы.

 

Получаем ответ: А=600 Дж.

Существует 2 варианта определения мощности:

1.     Зная, что работа равна 600 Дж, а время протекания тока – 600 с, определяем мощность по формуле, или

2.   

Ответ: А = 600 Дж; Р = 1 Вт

Условие задачи:

 « Две лампы мощностью 25 Вт и 100 Вт включаем в электрическую цепь под напряжением 220 В. Насколько отличается сила тока в этих лампах?»

Краткое условие и решение задачи:

Дано:

Решение

Р1 = 100 Вт

Р2 = 25 Вт

U = 220 В

І=I1-I2=0,45-0,11=0,34 [А]

Ответ: І=0,34 А

Найти:

І – ?

Комментарий к решению:

І означает, что мы должны найти разность сил тока в одной лампе и в другой. Из формулы для вычисления мощности  выражаем силу тока в первой лампе и во второй. Получаем, что в лампе мощностью 100 Вт протекает электрический ток в 0,45 А, в лампе с мощностью 25 Вт сила тока будет 0,11 А. Следовательно, І=0,45-0,11=0,34 А.

Лампа, которая обладает большей мощностью, будет гораздо ярче светить. Это значит, что чем больше электрический ток протекает в цепи, тем ярче будет гореть лампа. Можно заметить, что мощность первой лампы в 4 раза больше второй, тем самым в 4 раза больше и сила тока. Мощность, работа, сила тока, напряжение – величины, которые между собой связаны и характеризуют действие электрического тока.

 

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Electrono.ru (Источник).
  2. Utrew.hut.ru (Источник).
  3. Stoom.ru (Источник).

 

Домашнее задание

  1. П. 50–52, вопросы 1–6 стр. 121, 1–3 стр. 122, задание 26 (1). Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  2. Определите мощность электрического камина, спираль которого имеет сопротивление 500 Ом и потребляет ток 2 А.
  3. С помощью каких формул можно определить работу и мощность электрического тока?

interneturok.ru

Примеры решения задач по теме «Электрический ток в различных средах»

Примеры решения задач по теме «Электрический ток в различных средах»

«Физика — 10 класс»

Наиболее просты количественные закономерности для электрического тока в металлах и электролитах.

Задачи на закон Ома, который выполняется для этих проводников, были приведены в главе 15. В данной главе преимущественно рассматриваются задачи на применение закона электролиза. Кроме того, при решении некоторых задач надо использовать формулу (16.1) для зависимости сопротивления металлических проводников от температуры.

Задача 1.

Проводящая сфера радиусом R = 5 см помещена в электролитическую ванну, наполненную раствором медного купороса. Насколько увеличится масса сферы, если отложение меди длится t — 30 мин, а электрический заряд, поступающий на каждый квадратный сантиметр поверхности сферы за 1 с, q = 0,01 Кл? Молярная масса меди М = 0,0635 кг/моль.

Р е ш е н и е.

Площадь поверхности сферы S = 4πR2 = 314 см2. Следовательно, заряд, перенесённый ионами за t = 30 мин = 1800 с, равен Δq = qSt = 0,01 Кл/(см2 • с) • 314 см2 • 1800 с = 5652 Кл. Масса выделившейся меди равна:

Задача 2.

При электролизе, длившемся в течение одного часа, сила тока была равна 5 А. Чему равна температура выделившегося атомарного водорода, если при давлении, равном 105 Па, его объём равен 1,5 л? Электрохимическии эквивалент водорода

Р е ш е н и е.

По закону Фарадея масса m выделившегося водорода:

m = kIt.         (1)

Из уравнения Менделеева—Клапейрона где R — универсальная газовая постоянная, М — молярная масса атомарного водорода, определим массу водорода, полученного при электролизе:

Из выражений (1) и (2) определим температуру:

Задача 3.

При никелировании изделия в течение 1 ч отложился слой никеля толщиной l = 0,01 мм. Определите плотность тока, если молярная масса никеля М = 0,0587 кг/моль, валентность n = 2, плотность никеля

Р е ш е н и е.

Согласно закону электролиза Фарадея масса выделившегося на катоде никеля

где m = ρV = ρlS, а I = jS, где S — площадь покрытия никелем; F — постоянная Фарадея, Подставив выражения для массы никеля и силы тока I в формулу (1), получим откуда

Задача 4.

Определите электрическую энергию, затраченную на получение серебра массой 200 г, если КПД установки 80%, а электролиз проводят при напряжении 20 В. Электрохимический эквивалент серебра равен

Р е ш е н и е.

Энергия, идущая только на электролиз, равна:

W’э = qU.         (1)

Согласно закону Фарадея m = kq, откуда

Подставив выражение для q в формулу (1), получим

Полная затраченная энергия Wэ связана с W’э выражением следовательно,

Задача 5.

Объясните, почему при дуговом разряде при увеличении силы тока напряжение уменьшается.

Р е ш е н и е.

При увеличении силы тока возрастает термоэлектронная эмиссия с катода, носителей заряда становится больше, а следовательно, сопротивление промежутка между электродами уменьшается. При этом уменьшение сопротивления происходит быстрее, чем увеличение силы тока (в газах нарушается линейный закон Ома U = IR), поэтому напряжение уменьшается.

Задача 6.

Покажите, что при упругом столкновении электрона с молекулой электрон передаёт ей меньшую энергию, чем при абсолютно неупругом ударе.

Р е ш е н и е.

При прямом абсолютно упругом столкновении электрона с молекулой выполняются законы сохранения энергии и импульса:

где me и m — массы электрона и молекулы; υ1 и υ2 — их скорости после столкновения. Решая эту систему относительно υ1 и υ2, получаем

Энергия, передаваемая молекуле, Так как me << m, то можно записать, что (me + m)2 ≈ m2. Тогда

Из полученного выражения следует, что молекуле передаётся очень маленькая часть первоначальной энергии электрона, так как me << m.

При неупругом столкновении выполняется только закон сохранения импульса meυ0 = (m + me)υ, и, таким образом, электрон теряет энергию

Так как me << m, мы можем считать, что дробь в скобках равна нулю, откуда т. е. при неупругом столкновении электрон полностью передаёт свою энергию молекуле.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский



Электрический ток в различных средах — Физика, учебник для 10 класса — Класс!ная физика

Электрическая проводимость различных веществ. Электронная проводимость металлов — Зависимость сопротивления проводника от температуры. Сверхпроводимость — Электрический ток в полупроводниках. Собственная и примесная проводимости — Электрический ток через контакт полупроводников с разным типом проводимости. Транзисторы — Электрический ток в вакууме. Электронно-лучевая трубка — Электрический ток в жидкостях. Закон электролиза — Электрический ток в газах. Несамостоятельный и самостоятельный разряды — Плазма — Примеры решения задач по теме «Электрический ток в различных средах»

class-fizika.ru

Задачи на постоянный ток с подробными решениями

Задачи на постоянный ток с решениями

Закон Ома для участка цепи. Сопротивление

7.1.1 Определить силу тока, проходящего через сопротивление 15 Ом, если напряжение на нем
7.1.2 Определить падение напряжения на проводнике, имеющем сопротивление 10 Ом
7.1.3 Через лампочку накаливания проходит ток 0,8 А. Сколько электронов проводимости
7.1.4 Удлинитель длиной 30 м сделан из медного провода диаметром 1,3 мм. Каково сопротивление
7.1.5 Эквивалентное сопротивление трех параллельно соединенных проводников равно 30 Ом
7.1.6 Проволока имеет сопротивление 36 Ом. Когда ее разрезали на несколько равных частей
7.1.7 Определить плотность тока, текущего по медной проволоке длиной 10 м, на которую
7.1.8 Определить плотность тока, если за 0,4 с через проводник сечением 1,2 мм2 прошло
7.1.9 Найти плотность тока в стальном проводнике длиной 10 м, на который подано напряжение
7.1.10 Какое напряжение надо приложить к концам стального проводника длиной 30 см
7.1.11 Допустимый ток для изолированного медного провода площадью поперечного сечения
7.1.12 Определить падение напряжения на полностью включенном реостате, изготовленном
7.1.13 Определить падение напряжения в линии электропередачи длиной 500 м при токе
7.1.14 Найти массу алюминиевого провода, из которого изготовлена линия электропередачи
7.1.15 Вольтметр показывает 6 В. Найти напряжение на концах участка цепи, состоящей
7.1.16 На сколько надо повысить температуру медного проводника, взятого
7.1.17 Медная проволока при 0 C имеет сопротивление R_0. До какой температуры надо нагреть
7.1.18 Вольфрамовая нить электрической лампы при температуре 2000 C имеет сопротивление
7.1.19 Определить сопротивление вольфрамовой нити электрической лампы при 24 C
7.1.20 Сопротивление медной проволоки при температуре 20 C равно 0,04 Ом
7.1.21 При нагревании металлического проводника от 0 до 250 C его сопротивление увеличилось
7.1.22 До какой температуры нагревается нихромовая электрогрелка, если известно, что ток
7.1.23 Плотность тока в проводнике сечением 0,5 мм2 равна 3,2 мА/м2. Сколько электронов
7.1.24 По проводнику с поперечным сечением 0,5 см2 течет ток силой 3 А. Найти среднюю скорость
7.1.25 Средняя скорость упорядоченного движения электронов в медной проволоке сечением
7.1.26 К концам медного провода длиной 200 м приложено напряжение 18 В. Определить среднюю
7.1.27 Какой ток покажет амперметр, если напряжение U=15 В, сопротивления R1=5 Ом, R2=10 Ом
7.1.28 За одну минуту через поперечное сечение проводника прошел заряд 180 Кл
7.1.29 Какой ток покажет амперметр, если R1=1,25 Ом, R2=1 Ом, R3=3 Ом, R4=7 Ом, напряжение
7.1.30 В рентгеновской трубке пучок электронов с плотностью тока 0,2 А/мм2 попадает на участок
7.1.31 За какое время в металлическом проводнике с током 32 мкА через поперечное сечение
7.1.32 Анодный ток в радиолампе равен 16 мА. Сколько электронов попадает на анод лампы
7.1.33 Участок цепи AB состоит из пяти одинаковых проводников с общим сопротивлением 5 Ом
7.1.34 Четыре лампы накаливания сопротивлением 110 Ом каждая включены в сеть с напряжением

Закон Ома для полной цепи

7.2.1 Источник тока с ЭДС 18 В имеет внутреннее сопротивление 6 Ом. Какой ток потечет
7.2.2 Кислотный аккумулятор имеет ЭДС 2 В, а внутреннее сопротивление 0,5 Ом. Определить
7.2.3 Определить ЭДС источника питания, если при перемещении заряда 10 Кл сторонняя сила
7.2.4 К источнику тока с ЭДС 12 В и внутренним сопротивлением 2 Ом подсоединили
7.2.5 При внешнем сопротивлении 3,75 Ом в цепи идет ток 0,5 А. Когда в цепь ввели еще
7.2.6 Источник тока замкнут внешним резистором. Определить отношение электродвижущей силы
7.2.7 ЭДС аккумуляторной батареи равна 12 В, внутреннее сопротивление 0,06 Ом, а сопротивление
7.2.8 ЭДС батареи равна 1,55 В. При замыкании ее на нагрузку сопротивлением 3 Ом
7.2.9 В цепи, состоящей из источника тока с ЭДС 3 В и резистора сопротивлением 20 Ом
7.2.10 ЭДС элемента 15 В. Ток короткого замыкания равен 20 А. Чему равно внутреннее сопротивление
7.2.11 Определить ток короткого замыкания источника тока, если при внешнем сопротивлении
7.2.12 Батарея с ЭДС в 6 В и внутренним сопротивлением 1,4 Ом питает внешнюю цепь
7.2.13 Определить силу тока в проводнике R1, если ЭДС источника 14 В, его внутреннее сопротивление
7.2.14 В сеть с напряжением 220 В включены последовательно десять ламп сопротивлением по 24 Ом
7.2.15 ЭДС источника 6 В. При внешнем сопротивлении цепи 1 Ом сила тока 3 А. Какой будет
7.2.16 Источник тока с внутренним сопротивлением 1,5 Ом замкнут на резистор 1,5 Ом. Когда в цепь
7.2.17 Генератор с ЭДС 80 В и внутренним сопротивлением 0,2 Ом соединен со сварочным аппаратом
7.2.18 Для включения в сеть дуговой лампы, рассчитанной на напряжение 42 В и силу тока 10 А
7.2.19 Определить внутреннее сопротивление источника тока, имеющего ЭДС 1,1 В
7.2.20 Какой ток покажет амперметр, если R1=1,5 Ом, R2=1 Ом, R3=5 Ом, R4=8 Ом, ЭДС источника
7.2.21 Батарея гальванических элементов с ЭДС 15 В и внутренним сопротивлением 5 Ом замкнута
7.2.22 В сеть с напряжением 24 В включены два последовательно соединенных резистора. При этом
7.2.23 Щелочной аккумулятор создает силу тока 0,8 А, если его замкнуть на сопротивление 1,5 Ом
7.2.24 Какова ЭДС источника, если при измерении напряжения на его зажимах вольтметром
7.2.25 Два источника тока с ЭДС 2 и 1,2 В, внутренними сопротивлениями 0,5 и 1,5 Ом соответственно
7.2.26 Аккумулятор подключен для зарядки к сети с напряжением 12,5 В. Внутреннее сопротивление
7.2.27 Батарея элементов замкнута двумя проводниками сопротивлением 4 Ом каждый
7.2.28 Цепь состоит из аккумулятора с внутренним сопротивлением 5 Ом и нагрузки 15 Ом
7.2.29 Два источника с одинаковыми ЭДС 2 В и внутренними сопротивлениями 0,2 и 0,4 Ом соединены
7.2.30 Источник тока имеет ЭДС 12 В. Сила тока в цепи 4 А, напряжение на внешнем сопротивлении 11 В
7.2.31 Два элемента с внутренним сопротивлением 0,2 и 0,4 Ом соединены одинаковыми полюсами
7.2.32 Два элемента соединены параллельно. Один имеет ЭДС E1=2 В и внутреннее сопротивление
7.2.33 Два элемента с ЭДС, равными E1=1,5 В и E2=2 В, соединены одинаковыми полюсами
7.2.34 Определить число последовательно соединенных элементов с ЭДС 1,2 В и внутренним
7.2.35 Источник тока с внутренним сопротивлением 1,5 Ом замкнут на резистор 1,5 Ом. Когда
7.2.36 В схеме, показанной на рисунке, внутреннее и внешние сопротивления одинаковы, а расстояние
7.2.37 Имеется 5 одинаковых аккумуляторов с внутренним сопротивлением 1 Ом каждый
7.2.38 Определите заряд на обкладках конденсатора C=1 мкФ в цепи, изображенной на рисунке
7.2.39 Конденсатор и проводник соединены параллельно и подключены к источнику с ЭДС 12 В
7.2.40 Определите заряд на обкладках конденсатора C=1 мкФ. ЭДС источника 4 В, внутреннее
7.2.41 Проволока из нихрома изогнута в виде кольца радиусом 1 м. В центре кольца помещен
7.2.42 Указать направление вектора сторонней силы, действующей на положительный заряд q
7.2.43 В конце заряда батареи аккумуляторов током I1 присоединенный к ней вольтметр показывал
7.2.44 Источники тока, имеющие одинаковые внутренние сопротивления r=1 Ом, подключены
7.2.45 Источники тока, имеющие одинаковые внутренние сопротивления r=0,5 Ом, подключены
7.2.46 В указанной электрической схеме R1=R2=R3=6 Ом, ЭДС источника тока E=3,9 В, а его внутреннее
7.2.47 К полюсам батареи из двух источников, каждый с ЭДС 75 В и внутренним сопротивлением 4 Ом

Ток в жидкостях и газах

7.3.1 Через некоторое сечение электролитической ванны положительные ионы перенесли за 1 с
7.3.2 В газе между двумя электродами образуется 2×10^18 ионов в секунду. Найти силу тока в газе
7.3.3 Определите массу алюминия, который отложится на катоде за 10 ч при электролизе Al2(SO4)3
7.3.4 Цинковый анод массой 5 г поставлен в электролитическую ванну, через которую проходит ток
7.3.5 При какой силе тока протекает электролиз водного раствора сульфата меди, если за 50 мин
7.3.6 Определить затраты электроэнергии на получение 1 кг алюминия из трехвалентного состояния
7.3.7 Через раствор медного купороса в течение 2 с протекал электрический ток силой 3,2 А
7.3.8 При электролизе сернокислого цинка ZnSO4 в течение 4 ч выделилось 24 г цинка. Определить
7.3.9 Электролиз алюминия проводится при напряжении 10 В на установке с КПД 80%. Какое
7.3.10 Определите массу выделившейся на электроде меди, если затрачено 6 кВтч электроэнергии
7.3.11 При никелировании изделий в течение 2 ч отложился слой никеля толщиной 0,03 мм. Найти
7.3.12 При электролизе медного купороса за 1 ч выделяется медь массой, равной 0,5 г. Площадь
7.3.13 При электролизе раствора серной кислоты за 50 минут выделилось 0,3 г водорода. Определить
7.3.14 Определите сопротивление раствора серной кислоты, если известно, что при прохождении тока
7.3.15 Две электролитические ванны соединены последовательно. В первой ванне выделилось
7.3.16 Какой толщины слой серебра образовался на изделии за 3 мин, если плотность тока в растворе
7.3.17 Плотность тока при серебрении контактов проводов равна 40 А/м2. Определить толщину
7.3.18 В ряде производств водород получают электролизом воды. При каком токе, пропускаемом
7.3.19 Никелирование пластинок производится при плотности тока 0,4 А/дм2. С какой скоростью
7.3.20 Электролиз воды ведется при силе тока 2,6 А, причем в течение часа получено 0,5 л кислорода
7.3.21 Сколько электроэнергии надо затратить для получения 2,5 л водорода при температуре 25 C
7.3.22 Электрический пробой воздуха наступает при напряженности поля 3 МВ/м. Определить потенциал
7.3.23 Сила тока, характеризующая поток электронов в электронно-лучевой трубке, 400 мкА
7.3.24 Через раствор медного купороса пропускают ток, изменяющийся по линейному во времени закону
7.3.25 Определить массу меди, выделившейся из раствора медного купороса за 100 с, если сила тока
7.3.26 Электрохимический эквивалент меди 3,3×10^(-7) кг/Кл. Сколько меди выделится на электроде
7.3.27 К источнику с ЭДС 200 В и внутренним сопротивлением 2 Ом подсоединены последовательно

Работа и мощность тока

7.4.1 По проводнику сопротивлением 20 Ом за 5 мин прошло количество электричества 300 Кл
7.4.2 Электрический паяльник рассчитан на напряжение 120 В при токе 0,6 А. Какое количество
7.4.3 Батарея, включенная на сопротивление 2 Ом, дает ток 1,6 А. Найти мощность, которая теряется
7.4.4 Дуговая сварка ведется при напряжении 40 В и силе тока 500 А. Определить энергию
7.4.5 К источнику тока с внутренним сопротивлением 0,6 Ом подключено внешнее сопротивление
7.4.6 Чему равен КПД источника тока с ЭДС 12 В и внутренним сопротивлением 0,5 Ом
7.4.7 Кипятильник работает от сети с напряжением 125 В. Какая энергия расходуется в кипятильнике
7.4.8 Во сколько раз увеличится количество теплоты, выделяемое электроплиткой, если сопротивление
7.4.9 Какое количество электроэнергии расходуется на получение 5 кг алюминия, если электролиз
7.4.10 Во сколько раз изменятся тепловые потери в линии электропередачи при увеличении напряжения
7.4.11 Найти полезную мощность, которую может дать батарея, ЭДС которой равна 24 В
7.4.12 Два резистора сопротивлением 2 и 5 Ом соединены последовательно и включены в сеть
7.4.13 Определите силу тока в кипятильнике, если при подключении к напряжению 12 В, он нагревает
7.4.14 Напряжение на зажимах автотранспортного генератора равно 24 В. Определить работу
7.4.15 Поперечное сечение медной шины 80 мм2. Какое количество теплоты выделится на 1 м длины
7.4.16 Мощность автомобильного стартера 6000 Вт. Какова сила тока, проходящего через стартер
7.4.17 Две лампы имеют одинаковые мощности. Одна из них рассчитана на напряжение 120 В
7.4.18 ЭДС источника тока равна 2 В, внутреннее сопротивление 1 Ом. Внешняя цепь потребляет
7.4.19 На сколько градусов изменится температура воды в калориметре, если через нагреватель
7.4.20 Через поперечное сечение спирали нагревательного элемента паяльника каждую секунду
7.4.21 Какую максимальную полезную мощность может выделить аккумулятор с ЭДС 10 В
7.4.22 Два проводника, соединенных параллельно, имеют сопротивления 4 и 8 Ом. При включении
7.4.23 Масса воды в нагревателе 2,5 кг. На сколько градусов повысится температура воды, если
7.4.24 Мощность, выделяемая на резисторе, подключенном к источнику тока с ЭДС 3,0 В
7.4.25 Из комнаты за сутки теряется 87 МДж тепла. Какой длины нужна нихромовая проволока
7.4.26 Две одинаковые лампочки мощностью 50 Вт каждая, рассчитанные на напряжение 10 В
7.4.27 Электролампа с вольфрамовой спиралью в момент включения при 20 C потребляет мощность
7.4.28 Электробритва имеет мощность 15 Вт и рассчитана на напряжение 110 В. При напряжении
7.4.29 При замыкании источника тока с внутренним сопротивлением 2 Ом на сопротивление 4 Ом
7.4.30 Емкость аккумулятора 75 А*ч. Какую работу должен совершить источник тока для зарядки
7.4.31 Электроплитка, работающая от сети с напряжением 220 В, расходует мощность 600 Вт
7.4.32 Девять нагревательных элементов с сопротивлением 1 Ом каждый соединены
7.4.33 Скоростной лифт массой 1600 кг за 300 с поднимается на высоту 30 м. Определить силу тока
7.4.34 Четыре одинаковых источника тока соединены, как показано на рисунке. ЭДС каждого
7.4.35 На сколько градусов поднимется температура медного стержня, если по нему в течение 0,5 с
7.4.36 Определить ток короткого замыкания источника питания, если при токе 15 А он отдает
7.4.37 ЭДС батареи аккумуляторов 12 В. Сила тока короткого замыкания 5 А. Какую наибольшую
7.4.38 В электрочайник с сопротивлением 140 Ом налита вода массой 1,5 кг при температуре 20 С
7.4.39 Два элемента с ЭДС 5 и 10 В и внутренними сопротивлениями 1 и 2 Ом соединены последовательно
7.4.40 Батарея состоит из параллельно соединенных источников тока. При силе тока во внешней цепи
7.4.41 Три лампочки мощностью P01=50 Вт и P02=25 Вт и P03=50 Вт, рассчитанные на напряжение
7.4.42 К источнику тока подключен реостат. При сопротивлении реостата 4 Ом и 9 Ом получается
7.4.43 Определить ЭДС аккумулятора, если при нагрузке в 5 А он отдает во внешнюю цепь 10 Вт
7.4.44 На резисторе внешней цепи аккумулятора выделяется тепловая мощность 10 Вт
7.4.45 При подключении к источнику тока ЭДС 15 В сопротивления 15 Ом КПД источника равен 75%
7.4.46 По линии электропередачи протяженностью в 100 км должен пройти электрический ток
7.4.47 Линия имеет сопротивление 300 Ом. Какое напряжение должен иметь генератор
7.4.48 Источник тока с ЭДС 5 В замыкается один раз на сопротивление 4 Ом, а другой раз — на 9 Ом
7.4.49 При замыкании на сопротивление 5 Ом батарея элементов дает ток 1 А
7.4.50 Определите КПД электропаяльника сопротивлением 25 Ом, если медная часть его массой
7.4.51 Найти ток короткого замыкания в цепи генератора с ЭДС 70 В, если при увеличении
7.4.52 Два чайника, каждый из которых потребляет при напряжении 200 В по 400 Вт, закипают
7.4.53 При силе тока 2 А во внешней цепи выделяется мощность 24 Вт, а при силе тока 5 А — мощность 30 Вт
7.4.54 Элемент замыкают один раз сопротивлением 4 Ом, другой — резистором сопротивлением 9 Ом
7.4.55 Сила тока, протекающего в проводнике, сопротивление которого равно 15 Ом, меняется
7.4.56 Лампу, рассчитанную на напряжение U1=220 В, включили в сеть с напряжением U2=110 В
7.4.57 Две лампочки имеют одинаковые мощности. Первая лампочка рассчитана на напряжение 127 В
7.4.58 При ремонте бытовой электрической плитки ее спираль была укорочена на 0,2 первоначальной
7.4.59 Сопротивление лампочки накаливания в рабочем состоянии 240 Ом. Напряжение в сети 120 В
7.4.60 Два резистора с одинаковым сопротивлением каждый включаются в сеть постоянного напряжения
7.4.61 Стоимость 1 кВт*ч электроэнергии равна 50 коп. Паяльник, включенный в сеть с напряжением
7.4.62 Определите силу тока в обмотке двигателя электропоезда, развивающего силу тяги 6 кН

Амперметр и вольтметр в электрической цепи. Шунты и добавочные сопротивления

7.5.1 Сопротивление вольтметра 400 Ом, предел измерения 4 В. Какое дополнительное сопротивление
7.5.2 Какое дополнительное сопротивление нужно подключить к вольтметру со шкалой 100 В
7.5.3 Миллиамперметр имеет сопротивление 25 Ом, рассчитан на предельный ток 50 мА
7.5.4 К амперметру с сопротивлением 0,1 Ом подключен шунт с сопротивлением 11,1 мОм
7.5.5 Какой шунт нужно подсоединить к гальванометру со шкалой на 100 делений, ценой деления 1 мкА
7.5.6 Вольтметр постоянного тока рассчитан на измерение максимального напряжения 3 В
7.5.7 Для измерения напряжения сети 120 В последовательно соединили два вольтметра
7.5.8 Амперметр имеет сопротивление 0,02 Ом, его шкала рассчитана на 1,2 А. Каково должно
7.5.9 Имеется миллиамперметр с внутренним сопротивлением 10 Ом, который может измерять
7.5.10 Предел измерения амперметра с внутренним сопротивлением 0,4 Ом 2 А. Какое шунтирующее
7.5.11 Зашунтированный амперметр измеряет токи до 10 А. Какую наибольшую силу тока
7.5.12 Амперметр показывает ток 0,04 А, а вольтметр — напряжение 20 В. Найти сопротивление
7.5.13 Вольтметр, рассчитанный на измерение напряжения до 20 В, необходимо включить в сеть
7.5.14 Гальванометр имеет сопротивление 200 Ом, и при силе тока 100 мкА стрелка отклоняется
7.5.15 Гальванометр со шкалой из 100 делений и ценой деления 50 мкА/дел, надо использовать как
7.5.16 К амперметру с внутренним сопротивлением 0,03 Ом подключен медный шунт длиной 10 см
7.5.17 Предел измерения амперметра 5 А, число делений шкалы 100, внутреннее сопротивление
7.5.18 Вольтметр, внутреннее сопротивление которого 50 кОм, подключенный к источнику
7.5.19 Вольтметр с внутренним сопротивлением 3 кОм, включенный в городскую осветительную сеть
7.5.20 Если подключить к гальванометру шунт 100 Ом, вся шкала соответствует току во внешней цепи
7.5.21 Стрелка миллиамперметра отклоняется до конца шкалы, если через миллиамперметр идет ток
7.5.22 Гальванометр со шкалой из 50 делений имеет цену деления 2 мкА/дел
7.5.23 Вольтметр, соединенный последовательно с сопротивлением R1=10 кОм, при включении
7.5.24 Амперметр с внутренним сопротивлением 2 Ом, подключенный к батарее, показывает ток 5 А
7.5.25 Вольтметр, подключенный к источнику с ЭДС 12 В, показывает напряжение 9 В. К его клеммам
7.5.26 Аккумулятор замкнут на некоторый проводник. Если в цепь включить два амперметра
7.5.27 К источнику тока подключены последовательно амперметр и резистор. Параллельно резистору
7.5.28 Два вольтметра, подключенные последовательно к ненагруженной батарее, показывают
7.5.29 В цепь, состоящую из источника ЭДС и сопротивления 2 Ом, включают амперметр сначала
7.5.30 Каково удельное сопротивление проводника, если его длина 10 км, площадь поперечного
7.5.31 Медный провод длиной 500 м имеет сопротивление 2,9 Ом. Найти вес провода
7.5.32 Проводники сопротивлением 2, 3 и 4 Ом соединены параллельно. Найти общее
7.5.33 Какого сопротивления проводник нужно соединить параллельно с резистором 300 Ом
7.5.34 Три проводника сопротивлением 2, 3 и 6 Ом соединены параллельно. Найти наибольший ток
7.5.35 В городскую осветительную сеть включены последовательно электрическая плитка, реостат
7.5.36 Во сколько раз площадь поперечного сечения алюминиевого провода больше, чем у медного
7.5.37 Цепь состоит из трех сопротивлений 10, 20 и 30 Ом, соединенных последовательно
7.5.38 Два электронагревателя сопротивлением 25 и 20 Ом находятся под напряжением 100 В
7.5.39 ЭДС батареи 6 В, внутреннее и внешнее сопротивления соответственно равны 0,5 и 11,5 Ом
7.5.40 Атомная масса золота 197,2, валентность 3. Вычислить электрохимический эквивалент золота
7.5.41 Лампу, рассчитанную на напряжение 220 В, включили в сеть напряжением 110 В. Во сколько
7.5.42 Спираль электронагревателя укоротили на 0,1 первоначальной длины. Во сколько раз
7.5.43 Сколько времени длилось никелирование, если был получен слой никеля массой 1,8 г
7.5.44 Электромотор имеет сопротивление 2 Ом. Какую мощность потребляет мотор при токе
7.5.45 Через раствор сернокислой меди (медного купороса) прошло 2*10^4 Кл электричества
7.5.46 Какой ток должен проходить по проводнику в сети напряжением 120 В, чтобы в нем
7.5.47 По проводнику сопротивлением 4 Ом в течение 2 минут прошло 500 Кл электричества
7.5.48 В схеме, изображенной на рисунке, R1=5 Ом, R2=6 Ом, R3=3 Ом, сопротивлением амперметра
7.5.49 Вольтметр, внутреннее сопротивление которого равно 50 кОм, подключенный к источнику
7.5.50 Определите показание амперметра в электрической цепи, изображенной на рисунке
7.5.51 Какой величины надо взять дополнительное сопротивление, чтобы можно было включить

easyfizika.ru

Добавить комментарий

Ваш адрес email не будет опубликован.