Что такое медиана треугольника в геометрии определение – 1. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник

Содержание

Высоты медианы биссектрисы треугольника — материалы для подготовки к ЕГЭ по Математике

Высоты, медианы и биссектрисы треугольника постоянно встречаются нам в задачах по геометрии. Мы начнем с таблицы, в которой показано, что такое высоты, медианы и биссектрисы, и какими свойствами они обладают. Затем — подробные объяснения и решение задач.

Напомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

Три высоты треугольника всегда пересекаются в одной точке. Вот как это выглядит в случае остроугольного треугольника.

Попробуйте провести три высоты в тупоугольном треугольнике. Получилось? Да, редкий выпускник справляется с этим заданием. Действительно, мы не можем опустить перпендикуляр из точки  на отрезок , зато можем опустить его на прямую  — то есть на продолжение стороны .

В этом случае в одной точке пересекаются не сами высоты, а их продолжения.

А как выглядят три высоты в прямоугольном треугольнике? В какой точке они пересекаются?

Медиана треугольника — отрезок, соединяющий его вершину с серединой противоположной стороны.

Три медианы треугольника пересекаются в одной точке и делятся в ней в отношении , считая от вершины.

Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.

У биссектрисы угла есть замечательное свойство — точки, принадлежащие ей, равноудалены от сторон угла. Поэтому три биссектрисы треугольника пересекаются в одной точке, равноудаленной от всех сторон треугольника. Эта точка является центром окружности, вписанной в треугольник.

Еще одно свойство биссектрисы пригодится тем, кто собирается решать задачу . Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон.

Ты нашел то, что искал? Поделись с друзьями!

Разберем несколько задач, в которых речь идет о высотах, медианах и биссектрисах треугольника. Все задачи взяты из Банка заданий ФИПИ.

1. Найдите острый угол между биссектрисами острых углов прямоугольного треугольника. Ответ дайте в градусах.

Пусть биссектрисы треугольника (в котором угол  равен ) пересекаются в точке .

Рассмотрим треугольник .

,

, тогда

Острый угол между биссектрисами на рисунке обозначен .

Угол  смежный с углом , следовательно, .

Поскольку треугольник  — прямоугольный, то .

Тогда .

Ответ: .

2. Острые углы прямоугольного треугольника равны и . Найдите угол между высотой и биссектрисой, проведенными из вершины прямого угла. Ответ дайте в градусах.

Пусть  — высота, проведенная из вершины прямого угла ,  — биссектриса угла .

Тогда

.

Угол между высотой и биссектрисой — это угол .

Ответ: .

3. Два угла треугольника равны и . Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.

Из треугольника (угол  — прямой) найдем угол . Он равен .

Из треугольника ( — прямой) найдем угол . Он равен .

В треугольнике известны два угла. Найдем третий, то есть угол , который и является тупым углом между высотами треугольника :

.

Ответ: .

4. В треугольнике угол  равен ,  и  — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Пусть в треугольнике угол равен , угол равен .

Рассмотрим треугольник .

, тогда .

Из треугольника получим, что .

Тогда .

Ответ: .

5. В треугольнике угол  равен , угол  равен . , и  — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Найдем угол . Он равен .

Тогда .

Из треугольника найдем угол . Он равен .

Рассмотрим треугольник .

, . Значит

Ответ: .

6. В треугольнике ,  — медиана, угол равен , угол  равен . Найдите угол . Ответ дайте в градусах.

Как решать эту задачу? У медианы прямоугольного треугольника, проведенной из вершины прямого угла, есть особое свойство. Мы докажем его в теме «Прямоугольник и его свойства».

Подсказка: Сделайте чертеж, найдите на нем равнобедренные треугольники и докажите, что они равнобедренные.

Правильный ответ: .

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Медиана треугольника Википедия

У этого термина существуют и другие значения, см. Медиана. Треугольник и его медианы.

Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы.

Свойства

Основное свойство

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника

  • В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой.
  • Верно и обратное: если в треугольнике две медианы равны, то треугольник — равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.
  • У равностороннего треугольника все три медианы равны.

Свойства оснований медиан

Окружность девяти точек
  • Теорема Эйлера для окружности девяти точек: основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (так называемой окружности девяти точек).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
    • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.

Другие свойства

  • Если треугольник разносторонний (неравносторонний), то его биссектриса, проведённая из любой вершины, лежит между медианой и высотой, проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника.
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три
    симедианы
    проходят через одну точку — точку Лемуана.
  • Медиана угла треугольника изотомически сопряжена самой себе.
Бесконечно удаленная прямая — трилинейная поляра центроида

Основные соотношения

Чтобы вычислить длину медианы, когда известны длины сторон треугольника, применяется теорема Аполлония (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):

ma=2b2+2c2−a24,{\displaystyle m_{a}={\sqrt {\frac {2b^{2}+2c^{2}-a^{2}}{4}}},}
mb=2a2+2c2−b24,{\displaystyle m_{b}={\sqrt {\frac {2a^{2}+2c^{2}-b^{2}}{4}}},}
mc=2a2+2b2−c24,{\displaystyle m_{c}={\sqrt {\frac {2a^{2}+2b^{2}-c^{2}}{4}}},}
где ma, mb, mc{\displaystyle m_{a},\ m_{b},\ m_{c}} — медианы к сторонам треугольника a, b, c{\displaystyle a,\ b,\ c} соответственно.

В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон:

ma2+mb2+mc2=34(a2+b2+c2){\displaystyle m_{a}^{2}+m_{b}^{2}+m_{c}^{2}={\frac {3}{4}}(a^{2}+b^{2}+c^{2})}.

Обратно, можно выразить длину произвольной стороны треугольника через медианы:

a=23−ma2+2mb2+2mc2=2(b2+c2)−4ma2=b22−c2+2mb2=c22−b2+2mc2,{\displaystyle a={\frac {2}{3}}{\sqrt {-m_{a}^{2}+2m_{b}^{2}+2m_{c}^{2}}}={\sqrt {2(b^{2}+c^{2})-4m_{a}^{2}}}={\sqrt {{\frac {b^{2}}{2}}-c^{2}+2m_{b}^{2}}}={\sqrt {{\frac {c^{2}}{2}}-b^{2}+2m_{c}^{2}}},}
b=23−mb2+2ma2+2mc2=2(a2+c2)−4mb2=a22−c2+2ma2=c22−a2+2mc2,{\displaystyle b={\frac {2}{3}}{\sqrt {-m_{b}^{2}+2m_{a}^{2}+2m_{c}^{2}}}={\sqrt {2(a^{2}+c^{2})-4m_{b}^{2}}}={\sqrt {{\frac {a^{2}}{2}}-c^{2}+2m_{a}^{2}}}={\sqrt {{\frac {c^{2}}{2}}-a^{2}+2m_{c}^{2}}},}
c=23−mc2+2mb2+2ma2=2(b2+a2)−4mc2=b22−a2+2mb2=a22−b2+2ma2,{\displaystyle c={\frac {2}{3}}{\sqrt {-m_{c}^{2}+2m_{b}^{2}+2m_{a}^{2}}}={\sqrt {2(b^{2}+a^{2})-4m_{c}^{2}}}={\sqrt {{\frac {b^{2}}{2}}-a^{2}+2m_{b}^{2}}}={\sqrt {{\frac {a^{2}}{2}}-b^{2}+2m_{a}^{2}}},}
где ma,mb,mc{\displaystyle m_{a},m_{b},m_{c}} — медианы к соответствующим сторонам треугольника, a,b,c{\displaystyle a,b,c} — стороны треугольника.

Площадь S{\displaystyle S} любого треугольника, выраженная через длины его медиан:

S=43σ(σ−ma)(σ−mb)(σ−mc),{\displaystyle S={\frac {4}{3}}{\sqrt {\sigma (\sigma -m_{a})(\sigma -m_{b})(\sigma -m_{c})}},}
где σ=(ma+mb+mc)/2{\displaystyle \sigma =(m_{a}+m_{b}+m_{c})/2} — полусумма длин медиан.

См. также

Литература

wikiredia.ru

Произвольный треугольник. Определение медианы, высоты, биссектрисы. Формулы

Рис. 1. Треугольник (общий случай)

Треугольник — замкнутая геометрическая фигура, состоящая из трёх отрезков (в общем случае, разных). В физике эти отрезки классически называются буквами латинского алфавита (

и т.д.), в отличие от обозначений в геометрии.

Итак, треугольник, у которого все стороны имеют разную длину и ни один из углов не равен 

, называется произвольным (рис. 1).

В случае, если у треугольника равны две стороны, данный треугольник называется равнобедренным.

В случае, если у треугольника все стороны одинаковы, он называется равносторонним.

В случае, если у треугольника один и углов прямой (

), он называется прямоугольным.

Для произвольного треугольника вводят ряд отрезков, характеризующих треугольник и обладающих собственными свойствами:

  1. Биссектриса
  2. Высота
  3. Медиана

Для разных типов треугольников поиск длин параметров треугольника может происходить по-разному. Для физических задач использование конкретной формулы диктуется конкретными данными задачи.

Рис. 2. Треугольник (биссектриса)

Биссектриса угла — геометрическое место точек, равноудалённых от сторон этого угла. Т.е. биссектриса — это линия, которая делит угол треугольника пополам (рис. 2). Известно, что биссектриса внутреннего угла треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам.

Для нахождения биссектрисы угла через различные данные можно пользоваться следующими соотношениями:

  • через две стороны и угол:
(1)
  • через три стороны:
(2)

Медиана треугольника — отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Все медианы треугольника пересекаются в одной точке: данная точка делит медианы в соотношении 2 к 1, считая от вершины (рис. 3).

Рис. 3. Треугольник (медиана)

Для нахождения медианы треугольника через различные данные можно пользоваться следующими соотношениями:

  • через три стороны:
(3)
  • через две стороны и угол между ними:
(4)

Рис. 4. Треугольник (высота)

Высота треугольника — перпендикуляр, опущенный из любой вершины треугольника на противоположную сторону или на её продолжение (рис. 4).

 Для нахождения высоты треугольника через различные данные можно пользоваться следующими соотношениями:

  • через сторону и угол:
(5)
  • через сторону и площадь треугольника ()
(6)

Важно: то, какую формулу выбрать для решения конкретной задачи, зависит от того, что легче найти, исходя из дано.

Поделиться ссылкой:

www.abitur.by

Медиана треугольника. Теоремы связанные с медианами треугольника. Формулы для нахождения медиан

Медиана треугольника — это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.

Свойства медиан треугольника

1. Медиана разбивает треугольник на два треугольника одинаковой площади.

2. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника (центроидом).

3. Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Длина медианы проведенной к стороне:  (док-во достроением до параллелограмма и использованием равенства в параллелограмме удвоенной суммы квадратов сторон и суммы квадратов диагоналей )

Т1. Три медианы треугольника пересекаются в одной точке М, которая делит каждую из них в отношении 2:1, считая от вершин треугольника.   Дано: ∆ABC, СС1, АА1, ВВ1 — медианы
ABC. Доказать: и

. Д-во: Пусть М — точка пересечения медиан СС1, АА1 треугольника ABC. Отметим A2 — середину отрезка AM и С2 — середину отрезка СМ. Тогда A2C2 — средняя линия треугольника АМС. Значит,А2 С2 || АС

и A2C2 = 0,5*АС. С1А1 — средняя линия треугольника ABC. Значит, А1С1 || АС и А1С1 = 0,5*АС.

Четырехугольник А2С1А1С2 — параллелограмм, так как его противо­положные стороны А1С1 и А2С2 равны и параллельны. Следовательно, А2М = МА1  и С2М = МC1. Это означает, что точки А2 и M делят медиану АА2 на три равные части, т. е. AM = 2МА2 . Аналогично СМ = 2MC1. Итак, точка М пересечения двух медиан АА2 и CC2 треугольника ABC делит каждую из них в отношении 2:1, считая от вершин треу­гольника. Совершенно аналогично доказывается, что точка пересечения меди­ан АА1 и BB1 делит каждую из них в отношении 2:1, считая от вер­шин треугольника.

На медиане АА1 такой точкой является точка М, следовательно, точка М и есть точка пересечения медиан АА1 иBB1.

Таким образом, n

T2. Докажите, что отрезки, которые соединяют центроид с вер­шинами треугольника, делят его на три равновеликие части. Дано: ∆ABC ,  — его медианы.

Доказать:SAMB =SBMC =SAMC. Доказательство.  и высота, проведенная из вершины В, у них общая. т.к. равны их основания  и высота, проведенная из вершины М, у них общая. Тогда

Аналогичным образом доказывается, чтоSAMB = SAMC. Таким образом,SAMB = SAMC = SCMB .n

Биссектриса треугольника.Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис

Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.

Биссектриса угла есть геометрическое место точек внутри угла, равноудалённых от сторон угла.

Свойства

1. Теорема о биссектрисе: Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон

2. Биссектрисы внутренних углов треугольника пересекаются в одной точке — инцентре — центре вписанной в этот треугольник окружности.

3. Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса).

Вычисление длины биссектрисы

где:

lc — длина биссектрисы, проведённой к стороне c,

a,b,c — стороны треугольника против вершин A,B,C соответственно,

p — полупериметр треугольника,

al,bl — длины отрезков, на которые биссектриса lc делит сторону c,

α,β,γ — внутренние углы треугольника при вершинах A,B,C соответственно,

hc — высота треугольника, опущенная на сторону c.

Метод площадей.

Характеристика метода. Из названия следует, что главным объектом данного метода является площадь. Для ряда фигур, например для треугольника, площадь довольно просто выражается через разнообразные комбинации элементов фигуры (треугольника). Поэтому весьма эффективным оказывается прием, когда сравниваются различные выражения для площади данной фигуры. В этом случае возникает уравнение, содержащее известные и искомые элементы фигуры, разрешая которое мы определяем неизвестное. Здесь и проявляется основная особенность метода площадей – из геометрической задачи он «делает» алгебраическую, сводя все к решению уравнения (а иногда системы уравнений).

Можно выделить 2 направления этого метода:

1) Метод сравнения: связан с большим кол-вом формул S одних и тех же фигур

2) Метод отношения S: основан на след опорных задачах:

 

 

Теорема Чевы

Пусть точки A’,B’,C’ лежат на прямых BC,CA,AB треугольника . Прямые AA’,BB’,CC’ пересекаются в одной точке тогда и только тогда, когда

Доказательство.

Обозначим через точку  пересечения отрезков   и . Опустим из точек С и А перпендикуляры на прямую ВВ1 до пересечения с ней в точках Kи L соответственно (см. рисунок).

Поскольку треугольники  и  имеют общую сторону , то их площади относятся как высоты, проведенные на эту сторону, т.е. AL иCK :

Последнее равенство справедливо, так как прямоугольные треугольники и  подобны по острому углу.

Аналогично получаем и

Перемножим эти три равенства:

что и требовалось доказать.

Замечание. Отрезок (или продолжение отрезка), соединяющий вершину треугольника с точкой, лежащей на противоположной стороне или ее продолжении, называется чевианой.

Теорема (обратная теорема Чевы). Пусть точки A’,B’,C’ лежат на сторонах BC,CA и AB треугольника ABC соответственно. Пусть выполняется соотношение

Тогда отрезки AA’,BB’,CC’ и пересекаются в одной точке.

Теорема Менелая

Теорема Менелая. Пусть прямая пересекает треугольник ABC, причем C1 – точка ее пересечения со стороной AB, A1 – точка ее пересечения со стороной BC, и B1 – точка ее пересечения с продолжением стороны AC. Тогда

Доказательство. Проведем через точку C прямую, параллельную AB. Обозначим через K ее точку пересечения с прямой B1C1.

 

 

ТреугольникиAC1B1иCKB1подобны (∟C1AB1= ∟KCB1, ∟AC1B1= ∟CKB1). Следовательно,

 

ТреугольникиBC1A1иCKA1такжеподобны (∟BA1C1=∟KA1C, ∟BC1A1=∟CKA1). Значит,

Из каждого равенства выразим CK:

Откуда что и требовалось доказать.

Теорема (обратная теорема Менелая). Пусть дан треугольник ABC. Пусть точка C1 лежит на стороне AB, точка A1 – на стороне BC, а точка B1 – на продолжении стороны AC, причем выполняется соотношение

Тогда точки A1,B1 и C1 лежат на одной прямой.

studopedia.net

Определение медианы треугольника (в стихах) |

Определение медианы треугольника в разных источниках дается по-разному.

В некоторых (например, в Википедии) определение медианы “расширенное”:

Медиа́на треуго́льника (лат.mediāna — средняя) ― отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.

В школьных учебниках по геометрии (7 класс) встречается такое определение:

У Погорелова А.В. :

Медианой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину с серединой противолежащей стороны треугольника.

У Атанасяна Л.С. :

Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.

Так или иначе,  для понимания и запоминания школьниками определения медианы треугольника  требуется одна-единственная ассоциация: середина стороны треугольника. Именно туда “устремляется” из вершины отрезок.

А чтобы легче запомнилась суть медианы треугольника, придуманы мнемонические правила и стихи . Их имеется несколько вариаций.

Определение медианы треугольника (в стихах)

Это из серии “Биссектриса – это крыса…” :

А вот этот стих создает образ медианы треугольника  более “интеллигентно” (если  можно так выразится):

И еще один вариант стишочка для запоминания определения медианы треугольника, на мой взгляд – очень трогательный и нежный.

Надеюсь, какой-то из приведенных вариантов вам, уважаемые читатели, понравился больше остальных. Поделитесь этим в комментариях ниже.

А может Вы дополните статью новым мнемоническим правилом или стихом для запоминания определения медианы треугольника?


repetitor-problem.net

Медиана треугольника — Википедия. Что такое Медиана треугольника

Материал из Википедии — свободной энциклопедии Треугольник и его медианы.

Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы.

Свойства

Основное свойство

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника

  • В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой.
  • Верно и обратное: если в треугольнике две медианы равны, то треугольник — равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.
  • У равностороннего треугольника все три медианы равны.

Свойства оснований медиан

Окружность девяти точек
  • Теорема Эйлера для окружности девяти точек: основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (так называемой окружности девяти точек).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
    • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.

Другие свойства

  • Если треугольник разносторонний (неравносторонний), то его биссектриса, проведённая из любой вершины, лежит между медианой и высотой, проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника.
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку — точку Лемуана.
  • Медиана угла треугольника изотомически сопряжена самой себе.
Бесконечно удаленная прямая — трилинейная поляра центроида

Основные соотношения

mc=2a2+2b2−c22{\displaystyle m_{c}={\frac {\sqrt {2a^{2}+2b^{2}-c^{2}}}{2}}}
где mc{\displaystyle m_{c}} — медиана к стороне c{\displaystyle c}; a,b,c{\displaystyle a,b,c} — стороны треугольника.
В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон:
ma2+mb2+mc2=34(a2+b2+c2){\displaystyle m_{a}^{2}+m_{b}^{2}+m_{c}^{2}={\frac {3}{4}}(a^{2}+b^{2}+c^{2})}.
  • Обратно, можно выразить длину произвольной стороны треугольника через медианы:
a=232(mb2+mc2)−ma2{\displaystyle a={\frac {2}{3}}{\sqrt {2(m_{b}^{2}+m_{c}^{2})-m_{a}^{2}}}},
где ma,mb,mc{\displaystyle m_{a},m_{b},m_{c}} медианы к соответствующим сторонам треугольника, a,b,c{\displaystyle a,b,c} — стороны треугольника.
  • Площадь любого треугольника, выраженная через длины его медиан:
S=43σ(σ−ma)(σ−mb)(σ−mc),{\displaystyle S={\frac {4}{3}}{\sqrt {\sigma (\sigma -m_{a})(\sigma -m_{b})(\sigma -m_{c})}},}
где σ=(ma+mb+mc)/2{\displaystyle \sigma =(m_{a}+m_{b}+m_{c})/2} — полусумма длин медиан.

См. также

Литература

wiki.sc

Медиана треугольника — WiKi

У этого термина существуют и другие значения, см. Медиана. Треугольник и его медианы.

Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы.

Основное свойство

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника

  • В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой.
  • Верно и обратное: если в треугольнике две медианы равны, то треугольник — равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.
  • У равностороннего треугольника все три медианы равны.

Свойства оснований медиан

  Окружность девяти точек
  • Теорема Эйлера для окружности девяти точек: основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (так называемой окружности девяти точек).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
    • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.

Другие свойства

  • Если треугольник разносторонний (неравносторонний), то его биссектриса, проведённая из любой вершины, лежит между медианой и высотой, проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника.
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку — точку Лемуана.
  • Медиана угла треугольника изотомически сопряжена самой себе.
  Бесконечно удаленная прямая — трилинейная поляра центроида

Чтобы вычислить длину медианы, когда известны длины сторон треугольника, применяется теорема Аполлония (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):

ma=2b2+2c2−a24,{\displaystyle m_{a}={\sqrt {\frac {2b^{2}+2c^{2}-a^{2}}{4}}},} 
mb=2a2+2c2−b24,{\displaystyle m_{b}={\sqrt {\frac {2a^{2}+2c^{2}-b^{2}}{4}}},} 
mc=2a2+2b2−c24,{\displaystyle m_{c}={\sqrt {\frac {2a^{2}+2b^{2}-c^{2}}{4}}},} 
где ma, mb, mc{\displaystyle m_{a},\ m_{b},\ m_{c}}  — медианы к сторонам треугольника a, b, c{\displaystyle a,\ b,\ c}  соответственно.

В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон:

ma2+mb2+mc2=34(a2+b2+c2){\displaystyle m_{a}^{2}+m_{b}^{2}+m_{c}^{2}={\frac {3}{4}}(a^{2}+b^{2}+c^{2})} .

Обратно, можно выразить длину произвольной стороны треугольника через медианы:

a=23−ma2+2mb2+2mc2=2(b2+c2)−4ma2=b22−c2+2mb2=c22−b2+2mc2,{\displaystyle a={\frac {2}{3}}{\sqrt {-m_{a}^{2}+2m_{b}^{2}+2m_{c}^{2}}}={\sqrt {2(b^{2}+c^{2})-4m_{a}^{2}}}={\sqrt {{\frac {b^{2}}{2}}-c^{2}+2m_{b}^{2}}}={\sqrt {{\frac {c^{2}}{2}}-b^{2}+2m_{c}^{2}}},} 
b=23−mb2+2ma2+2mc2=2(a2+c2)−4mb2=a22−c2+2ma2=c22−a2+2mc2,{\displaystyle b={\frac {2}{3}}{\sqrt {-m_{b}^{2}+2m_{a}^{2}+2m_{c}^{2}}}={\sqrt {2(a^{2}+c^{2})-4m_{b}^{2}}}={\sqrt {{\frac {a^{2}}{2}}-c^{2}+2m_{a}^{2}}}={\sqrt {{\frac {c^{2}}{2}}-a^{2}+2m_{c}^{2}}},} 
c=23−mc2+2mb2+2ma2=2(b2+a2)−4mc2=b22−a2+2mb2=a22−b2+2ma2,{\displaystyle c={\frac {2}{3}}{\sqrt {-m_{c}^{2}+2m_{b}^{2}+2m_{a}^{2}}}={\sqrt {2(b^{2}+a^{2})-4m_{c}^{2}}}={\sqrt {{\frac {b^{2}}{2}}-a^{2}+2m_{b}^{2}}}={\sqrt {{\frac {a^{2}}{2}}-b^{2}+2m_{a}^{2}}},} 
где ma,mb,mc{\displaystyle m_{a},m_{b},m_{c}}  — медианы к соответствующим сторонам треугольника, a,b,c{\displaystyle a,b,c}  — стороны треугольника.

Площадь S{\displaystyle S}  любого треугольника, выраженная через длины его медиан:

S=43σ(σ−ma)(σ−mb)(σ−mc),{\displaystyle S={\frac {4}{3}}{\sqrt {\sigma (\sigma -m_{a})(\sigma -m_{b})(\sigma -m_{c})}},} 
где σ=(ma+mb+mc)/2{\displaystyle \sigma =(m_{a}+m_{b}+m_{c})/2}  — полусумма длин медиан.

www.ru-wiki.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *