ГДЗ. Математика 5 класс Тарасенкова. Уравнения.
Категория: —>> Математика 5 класс Тарасенкова.
Задание: —>> 553 — 569 570 — 586
наверх
|
|
Задание 553.
Какое из чисел 4. 5, 8 и 10 является корнем уравнения:
Решение:
1) 5; | 2) 10; | 3) 4. |
Задание 554.
Решите уравнение устно:
Решение:
1) 15 + x: = 55, x = 40; | 3) 60 — y = 45, y = 15; | 5) 88 : x = 8, x = 11; |
2) х — 22 = 42, x = 64; | 4) у * 12 = 12, y = 1; | 6) у : 10 = 40, y = 400. |
Задание 555.
Можно ли решить уравнение:
1) 8x = 0; | 2) 0 : y = 25; | 3) 5х = 5 | 4) 12 : y = 0? |
Решение:
1) x = 0; 2) Не имеет решений; 3) x = 1; 4) Не имеет решений;
Задание 556.
Решите уравнение:
Решение:
1)28 + (45 + х) = 100;
| 11) 121 : (х — 45) = 11;
|
Задание 557.
Решите уравнение:
Решение:
1) 65 + (х + 23) = 105;
| 6) 9х + 50 = 86;
|
Задание 558.
Составьте уравнение, корнем которого является число:
а) 8; | б) 14. |
Решение:
а) 2y = 16; | б) x + 7 = 21. |
Задание 559.
Составьте уравнение, корнем которого является число.
а) 5; | б) 9. |
Решение:
а) 25 : x = 5; | б) 5x = 45. |
Задание 560.
Некоторое число увеличили на 67 и получили число 109. Найдите это число.
Решение:
- Некоторое число — x.
- x + 67 = 109;
- x = 109 — 67;
- x = 42.
- Ответ: число 42.
Задание 561.
К некоторому числу прибавили 38 и получили число 245. Найдите это число.
Решение:
- x + 38 = 245;
- x = 245 — 38;
- x = 207.
- Ответ: 207.
Задание 562.
Некоторое число увеличили в 24 раза и получили число 1968. Найдите это число.
Решение:
- 24x = 1968;
- x = 1968 : 24;
- x = 82.
- Ответ: 82.
Задание 563.
Некоторое число уменьшили в 18 раз и получили число 378. Найдите это число.
Решение:
- x : 18 = 378;
- x = 378 * 18;
- x = 6804.
- Ответ: 6408.
Задание 564.
Решение:
- x — 22 = 105;
- x = 105 + 22;
- x = 127.
- Ответ: 127.
Задание 565.
Из числа 128 вычли некоторое число и получили 79. Найдите это число.
Решение:
- 128 — x = 79;
- x = 128 — 79;
- x = 49.
- Ответ: 49.
Задание 566.
Составьте и решите уравнение:
- 1) сумма удвоенного числа х и числа 39 равна 81;
- 2) разность чисел 32 и y в 2 раза меньше числа 64;
- 3) частное суммы чисел х и 12 и числа 2 равно 40;
- 4) сумма чисел х и 12 в 3 раза больше числа 15;
- 5) частное разности чисел у и 12 и числа 6 равно 18;
- 6) утроенная разность чисел у и 17 равна 63.
Решение:
- 1) 2x + 39 = 81
- 2x = 81 — 39;
- 2x = 42;
- x = 42 : 2;
- x = 21;
- 2) (32 — y) * 2 = 64
- 32 — y = 64 : 2;
- 32 — y = 32;
- y = 32 — 32;
- y = 0;
- 3) (x + 12) : 2 = 40
- x + 12 = 40 * 2;
- x + 12 = 80;
- x = 80 — 12;
- x = 68;
- 4) (x + 12) : 3 = 15
- x + 12 = 15 * 3;
- x + 12 = 45;
- x = 45 — 12;
- x = 33;
- 5) (y — 12) : 6 = 18
- y — 12 = 18 * 6;
- y — 12 = 108;
- y = 108 + 12;
- y = 120;
- 6) (y — 17) * 3 = 63
- y — 17 = 63 : 3;
- y — 17 = 21;
- y = 21 + 17;
- y = 38;
Задание 567.
Составьте и решите уравнение:
- 1) разность утроенного числа у и числа 41 равна 64;
- 2) сумма чисел 9 и х в 5 раз меньше числа 80;
- 3) частное суммы чисел у и 10 и числа 4 равно 16;
- 4) разность утроенного числа х и числа 17 равна 10.
Решение:
- 1) 3y — 41 = 64
- 3y = 64 + 41;
- 3y = 105;
- y = 105 : 3;
- y = 15;
- 2) (9 + x) * 5 = 80
- 9 + x = 80 : 5;
- 9 + x = 16;
- x = 16 — 9;
- x = 7;
- 3) (y + 10) : 4 = 16
- y + 10 = 16 * 4;
- y + 10 = 64;
- y = 64 — 10;
- y = 54;
- 4) 3x — 17 = 10
- 3x = 10 + 17;
- 3x = 27;
- x = 27 : 3;
- x = 9;
Задание 568.
Некоторое число увеличили на 5 и полученное число удвоили. В результате получили число 22. Найдите неизвестное число.
Решение:
- (x + 5) * 2 = 22;
- x + 5 = 22 : 2;
- x + 5 = 11;
- x = 11 — 5;
- x = 6;
Задание 569.
Некоторое число увеличили в 7 раз и полученное число уменьшили на 54. В результате получили число 100. Найдите неизвестное число.
Решение:
- 7x — 54 = 100;
- 7x = 100 + 54;
- 7x = 154;
- x = 154 : 7;
- x = 22;
Задание: —>> 553 — 569 570 — 586
reshebniki-uchebniki.ru
Тренинг по математике на тему «Уравнения» (5 класс)
Макарова Т.П., ГБОУ СОШ №618 Тренинг «Уравнения» 5 класс
Тренинг для 5 класса по теме «Уравнения» в 2 – х вариантах
Макарова Татьяна Павловна,
Учитель ГБОУ СОШ №618 г. Москвы
Контингент: 5 класс
Тренинг направлен на проверку знаний и умений учеников по теме «Уравнения». Тренинг предназначен для учащихся 5 класса к учебнику Н.Я.Виленкин, В.И.Жохова и др. Учебник для 5 класса. – М.: Мнемозина, 2013. – 288с. Тест содержит два параллельных варианта равной трудности по девять заданий в каждом (4 заданий с выбором ответа, 3 задания с кратким ответом, 2 задания с развернутым решением).
Данный тренинг полностью соответствует федеральному государственному образовательному стандарту (второго поколения), может быть использован при проведении классно-урочного контроля, а также может быть использован учащимися 5 класса для самостоятельной работы по теме.
На выполнение теста выделяется от 15 до 25 минут времени урока. Ключи прилагаются.
Тренинг для 5 класса по теме «Уравнения». Вариант 1.
№п/п
Задание
Ответ
Часть 1. Задание с выбором ответа
1
Решите уравнение
574
1124
1114
1024
2
Найдите корень уравнения
(156-x)+43=170.
19
29
33
47
3
Укажите номера верных утверждений:
1)Корнем уравнения называют значение буквы.
2)Корень уравнения (23 – х) – 21 = 2 не является натуральным числом.
3)Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.
4) Уравнение х – х = 0 имеет ровно один корень.
1)
2)
3)
4)
4
Петя задумал число. Если к этому числу прибавить 43, а к полученной сумме прибавить 77, то получится 258. Какое число задумал Петя?
1) (х + 43) – 77 = 258
2) (х + 43) + 77 = 258
3) (х – 43) + 77 = 258
4) (х – 43) – 77 = 258
Часть 2. Задание с кратким ответом
5
Решите уравнение: (5·с – 8) : 2 = 121 : 11.
6
Решите уравнение: 821 – (m + 268) = 349.
7
Найдите значение числа а, если 8а + 9х = 60 и х=4.
Часть 3. Задания с развернутым решением
8
Решите задачу с помощью уравнения. В библиотеке было 125 книг по математике. После того как учащиеся взяли несколько книг, а потом 3 книги вернули, их стало 116. Сколько всего книг брали учащиеся?
9
Решите уравнение:
456 + (х – 367) – 225 =898
Тренинг для 5 класса по теме «Уравнения». Вариант 2.
№п/п
Задание
Ответ
Часть 1. Задание с выбором ответа
1
Решите уравнение
525
1081
535
1071
2
Найдите корень уравнения
942 – (y + 142) = 419.
391
481
1219
381
3
Укажите номера верных утверждений:
1) Уравнение – это равенство, содержащее букву, значение которой надо найти.
2) Любое натуральное число является корнем уравнения
3) Корнем уравнения называют значение буквы, при котором из уравнения получается верное числовое выражение.
4) Чтобы найти неизвестное делимое, надо к частному прибавить делитель.
1)
2)
3)
4)
4
Даша задумала число. Если к этому числу прибавить 43, а от полученной суммы отнять 77, то получится 258. Какое число задумала Даша?
1) (х + 43) – 77 = 258
2) (х + 43) + 77 = 258
3) (х – 43) + 77 = 258
4) (х – 43) – 77 = 258
Часть 2. Задание с кратким ответом
5
Решите уравнение: 63 : (2·х – 1) = 21 : 3.
6
Решите уравнение: 748 – (b +248) = 300.
7
Найдите значение числа а, если 7а – 3х = 41 и х=5.
Часть 3. Задания с развернутым решением
8
Решите задачу с помощью уравнения. На складе было 197 станков. После того, как часть продали, а еще 86 привезли, на складе осталось еще 115 станков. Сколько всего станков продали?
9
Решите уравнение:
142 – (123 – х) + 14 = 111
Ключи.
Вариант 1
Вариант 2
1
2) 1124
1
1) 525
2
2) 29
2
4) 381
3
2), 3)
3
1),3)
4
2) (х + 43) + 77 = 258
4
1) (х + 43) – 77 = 258
5
6
5
5
6
204
6
200
7
3
7
8
8
12
8
168
9
1034
9
78
2014 год Страница 3
infourok.ru
Уравнения 5 класса | Математика
Сегодня мы рассмотрим более сложные уравнения 5 класса, содержащие несколько действий. Чтобы найти неизвестную переменную, в таких уравнениях надо применить не одно, а два правила.
1) x:7+11=21
Выражение, стоящее в левой части — сумма двух слагаемых
x:7 | + | 11 | = | 21 |
1сл. | 2сл. | сум. |
Таким образом, переменная x является частью первого слагаемого. Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое:
x:7=21-11
x:7=10
Получили простое уравнение 5 класса, из которого надо найти неизвестное делимое. Чтобы найти неизвестное делимое, нужно частное умножить на делитель:
x=10∙7
x=70
Ответ: 70.
2) 65-5z=30
Правая часть уравнения представляет собой разность:
65 | — | 5z | = | 30 |
ум. | в. | р. |
Переменная z является частью неизвестного вычитаемого. Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность:
5z=65-30
5z=35
Получили простое уравнение, в котором z — неизвестный множитель. Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель:
z=35:5
z=7
Ответ: 7.
3) 120:y-23=17
В правой части уравнения — разность. Переменная y является частью неизвестного уменьшаемого.
120:y | — | 23 | = | 17 |
ум. | в. | р. |
Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое:
120:y=17+23
120:y=40
Здесь y — неизвестный делитель. Чтобы найти неизвестный делитель, надо делимое разделить на частное:
y=120:40
y=3
Ответ: 3.
4) (48+k)∙8=400
Левая часть уравнения представляет собой произведение. Переменная k — часть первого множителя:
(48+k) | · | 8 | = | 400 |
1мн | 2мн | пр |
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель:
48+k=400:8
48+k=50
В новом уравнении k — неизвестное слагаемое:
k=50-48
k=2
Ответ: 2.
Здесь мы решали уравнения 5 класса без использования свойств сложения и вычитания. В 6 классе правила раскрытия скобок упрощаются, и решать такие уравнения становится проще.
www.for6cl.uznateshe.ru
Линейные уравнения для 5 класса
Одним из самых важных навыков при поступлении в 5 класс является умение решать простейшие уравнения. Так как 5 класс ещё не так далек от начальной школы, то и видов уравнений, которые может решать ученик не так уж и много. Мы познакомим Вас со всеми основными видами уравнений, которые необходимо уметь решать, если Вы хотите поступить в физико-математическую школу.
1 тип: «луковичные»
Это уравнения, которые почти со вероятностью встретятся Вам при поступлении в любую школу или кружок 5 класса как отдельное задание. Их легко отличить от других: в них переменная присутствует только 1 раз. Например, или .
Решаются они очень просто: необходимо просто «добраться» до неизвестной, постепенно «снимая» всё лишнее, что окружает её — как будто почистить луковицу — отсюда и такое название. Для решения достаточно помнить несколько правил из второго класса. Перечислим их все:
Сложение
- слагаемое1 + слагаемое2 = сумма
- слагаемое1 = сумма — слагаемое2
- слагаемое2 = сумма — слагаемое1
Вычитание
- уменьшаемое — вычитаемое = разность
- уменьшаемое = вычитаемое + разность
- вычитаемое = уменьшаемое — разность
Умножение
- множитель1 * множитель2 = произведение
- множитель1 = произведение : множитель2
- множитель2 = произведение : множитель1
Деление
- делимое : делитель = частное
- делимое = делитель * частное
- делитель = делимое : частное
Разберём на примере, как применять данные правила.
Заметим, что мы делим на и получаем . В этой ситуации мы знаем делитель и частное. Чтобы найти делимое, нужно делитель умножить на частное:
Мы стали немного ближе к самому . Теперь мы видим, что к прибавляется и получается . Значит, чтобы найти одно из слагаемых, нужно из суммы вычесть известное слагаемое:
И ещё один «слой» снят с неизвестной! Теперь мы видим ситуацию с известным значением произведения () и одним известным множителем ().
Теперь ситуация «уменьшаемое — вычитаемое = разность»
И последний шаг — известное произведение () и один из множителей ()
2 тип: уравнения со скобками
Уравнения данного типа чаще всего встречаются в задачах — именно к ним сводится 90% всех задач для поступления в 5 класс. В отличие от «луковичных уравнений» переменная здесь может встретиться несколько раз, поэтому решить её методами из предыдущего пункта невозможно. Типичные уравнения: или
Основная трудность — это правильно раскрыть скобки. После того, как удалось это верно сделать, следует привести подобные слагаемые (числа к числам, переменные к переменным), а после этого мы получаем самое простое «луковичное уравнение», которое умеем решать. Но обо всём по-порядку.
Раскрытие скобок. Мы приведём несколько правил, которыми следует пользоваться в данном случае. Но, как показывает практика, верно раскрывать скобки ученик начинает только после 70-80 прорешанных задач. Основное правило таково: любой множитель, стоящий за скобками необходимо умножить на каждое слагаемое внутри скобок. А минус, стоящий перед скобкой, меняет знак всех выражений, что стоят внутри. Итак, основные правила раскрытия:
Приведение подобных. Здесь всё гораздо легче: Вам необходимо путём переноса слагаемых через знак равенства добиться того, чтобы с одной стороны стояли только слагаемые с неизвестной, а с другой — только числа. Основное правило таково: каждое слагаемое, переносимое через , меняет свой знак — если оно было с ,то станет с , и наоборот. После успешного переноса необходимо сосчитать итоговое количество неизвестных, итоговое число стоящее с другой стороны равенства, нежели переменные, и решить простое «луковичное уравнение».
Приведём пример:
(раскроем скобки. Обратите внимание на смену знаков!)
(выполним умножения)
(перенесём , и через знак равенства — они «превратятся» в , и )
(посчитаем итоговое количество справа и число слева)
(ситуация «известный множитель и произведение»)
Освоив эти два типа уравнений, Вы можете быть уверенны, что сможете решить добрую половину всех заданий во вступительной олимпиаде в 5 класс.
geniusmath.ru
Урок по математике «Уравнения» (5 класс)
Урок № 33
Тема: Уравнения
Цели урока:
Обобщить и систематизировать знания учащихся по изучаемой теме, продолжить работу над формированием умения решать уравнения и задачи способом составления уравнений.
Совершенствовать вычислительные навыки учащихся
Воспитывать ответственное отношение к учёбе.
Критерии успеха
Я знаю …
Я понимаю …
Я умею ….
Ход урока
Вводно – мотивационный момент
Математика, друзья,
Абсолютно всем нужна.
На уроке работай старательно,
И успех тебя ждёт обязательно!
Сегодня мы продолжаем учиться решать уравнения и задачи способом составления уравнения.
Актуализация знаний
Чтобы выполнить задания, повторим основные понятия, необходимые для решения уравнений и задач, которые решаются способом составления уравнений.
( Слайд № 1)
Какое равенство называется уравнением?
Какое число называется корнем уравнения?
Что значит решить уравнение?
Как проверить верно ли решено уравнение?
Проверка выполнения домашнего задания
( Слайд № 2)
( проверка выполнения домашнего задания проводится с помощью самопроверки )
Решение учащимися с проговариванием
1
2
( х – 87 ) – 27 = 36
87 – ( 41 + у) = 22
х – 87 = 36 + 27
41 + у = 87 — 22
х – 87 = 63
41 + у = 65
х = 63 + 87
у = 65 — 41
х = 150
у = 24
Проверка
Проверка
( 150 – 87 ) — = 36
87 – ( 41 + 24) = 22
63 – 27 = 36
87 – 65 = 22
36 = 36 (верно)
22 = 22 ( верно)
Устная работа
1.Назовите номера уравнений ( уравнения записаны на доске ), в которых надо найти слагаемое.
В каких уравнениях неизвестно уменьшаемое?
В каких уравнениях надо найти вычитаемое?
В каких уравнениях неизвестно слагаемое?
Найти корни уравнений.
х + 21 = 40; 2) а – 21 = 40; 3) 50 = а + 31; 4) с – 23 = 61; 5) 42 = 70 – у;
6) 38 — х = 38; 7) 25 – а = 25; 8) х + 32 = 32; 9) у – 0 = 27; 10) 60 – с = 35
( Слайд № 3)
Работа в группах
Найти неизвестное число:
1) К неизвестному прибавили 71, получили 100.
( х + 71 = 100 )
х = 100 – 71
х = 29
2) Произведение двух чисел 72, один множитель равен 12, найти второй множитель.
12*Х = 72
Х = 72 : 12
Х = 6
3) При делении некоторого числа на 9 в частном получили 11. Найдите это число.
х : 9 = 31
х = 31* 9
х = 279
Работа над уравнениями
( Слайд №5)
Учащимся предлагается составить по условиям три уравнения и решить эти уравнения следующем порядке:
1) Разность суммы чисел «х» и 40 больше числа 31 на 50.
(Уравнение решается с комментированием)
2) Число 70 больше суммы числа 25 и « у » на 38.
(Решение уравнения учащиеся выполняют самостоятельно, а один из учеников записывает решение на обратной стороне доски)
3) Разность числа 120 и числа «а» меньше числа 65 на 53.
(Решение уравнения полностью записывается на доске, после чего весь класс обсуждает решение уравнения)
Работа над задачами
(слайд № 6)
Задача № 1
В коробке было несколько яблок. После того как в неё положили ещё 32 яблока, их стало 81. Сколько яблок в коробке было первоначально?
О чём говорится в задаче? Какие действия выполнили с яблоками? Что нужно узнать в задаче? Что следует обозначить буквой?
Пусть в корзине было х яблок. После того, как в неё положили ещё 32 яблока их стало ( х + 32) яблока, а по условию задачи яблок в корзине стало 81.
Значит, можем составить уравнение:
х + 32 = 81,
х = 81 – 32,
х = 49
Первоначально в корзине было 49 яблок.
Ответ: 49 яблок.
Задача № 2
В ателье было 70 (м) ткани. Из части ткани сшили платья и ещё 18 (м) израсходовали на брюки, после чего осталось 23 (м ). Сколько метров ткани пошло на платья?
О чём говорится в задаче? Какие действия выполнили с тканью? Что нужно узнать в задаче? Что следует обозначить буквой?
Пусть на платья израсходовано х (м ) ткани. Тогда на пошив платьев и брюк израсходовано ( х + 18 ) метров ткани. По условию задачи известно, что осталось 23 м.
Значит можем составить уравнение:
70 – ( х + 18 ) = 23,
х + 18 = 70 – 23,
х + 18 = 47,
х = 47 – 18,
х = 29.
На платья пошло 29 метров ткани.
Ответ: 29 метров.
Самостоятельная работа
( Слайд № 7)
Самостоятельная работа учащимся предлагается в двух вариантах.
1 вариант
2 вариант
Решите уравнения:
Решите уравнения:
1) 320 – х = 176
1) 450 – у = 246
2) у + 294 = 501
2) х + 386 = 602
3) а – 453 = 219
3) а – 376 = 435
4) ( у + 383 ) – 479 = 33
4) ( х + 276 ) – 357 = 25
5) 634 – ( 156 – х ) = 548
5) 467 – ( 265 – х ) = 319
6) 167 + ( у + 39 ) = 325
6) 184 + ( х + 65 ) = 292
Домашнее задание:
www.metod-kopilka.ru
Тест: Уравнения. 5 класс. 1 вариант
Решение уравнений.
Математика 5 класс | Автор: Ливанова И.Г. | ID: 3765 | Дата: 31.1.2015
«;} else {document.getElementById(«torf1″).innerHTML=»»;}; if (answ.charAt(1)==»1″) {document.getElementById(«torf2″).innerHTML=»»;} else {document.getElementById(«torf2″).innerHTML=»»;}; if (answ.charAt(2)==»1″) {document.getElementById(«torf3″).innerHTML=»»;} else {document.getElementById(«torf3″).innerHTML=»»;}; if (answ.charAt(3)==»1″) {document.getElementById(«torf4″).innerHTML=»»;} else {document.getElementById(«torf4″).innerHTML=»»;}; if (answ.charAt(4)==»1″) {document.getElementById(«torf5″).innerHTML=»»;} else {document.getElementById(«torf5″).innerHTML=»»;}; if (answ.charAt(5)==»1″) {document.getElementById(«torf6″).innerHTML=»»;} else {document.getElementById(«torf6″).innerHTML=»»;}; if (answ.charAt(6)==»1″) {document.getElementById(«torf7″).innerHTML=»»;} else {document.getElementById(«torf7″).innerHTML=»»;}; if (answ.charAt(7)==»1″) {document.getElementById(«torf8″).innerHTML=»»;} else {document.getElementById(«torf8″).innerHTML=»»;}; if (answ.charAt(8)==»1″) {document.getElementById(«torf9″).innerHTML=»»;} else {document.getElementById(«torf9″).innerHTML=»»;}; if (answ.charAt(9)==»1″) {document.getElementById(«torf10″).innerHTML=»»;} else {document.getElementById(«torf10″).innerHTML=»»;}; } }Получение сертификата
о прохождении теста
testedu.ru
Задачи на составление уравнения 5 класс
Задачи на составление уравнения 5 класс
1.В корзине было неизвестное количество яблок. Сначала из нее взяли 12 яблок, а потом положили туда 5 яблок. В результате в корзине стало 24 яблока. Сколько яблок было в корзине первоначально?
2. В корзине было 15 груш. Сначала из нее взяли 7 груш, а потом положили в нее неизвестное количество груш. В результате в корзине стало 34 груши. Сколько груш положили в корзину?
3. В коробке было 65 конфет. Вначале из нее взяли неизвестное количество конфет, а потом доложили 7 конфет. В результате в коробке стало 34 конфеты. Сколько конфет было взято?
4. Турист прошел часть пути за 45 минут, затем отдыхал неизвестное количество времени, и оставшуюся часть пути прошел за 34 минуты. В результате весь путь турист преодолел за 2 часа 18 минут. Сколько минут отдыхал турист?
5. Температура воздуха была 23 градуса. В первый день она опустилась на неизвестное количество градусов, а во второй день поднялась на 5 градусов. В результате температура воздуха стала 19 градусов. На сколько градусов опустилась температура в первый день?
6. В корзине было неизвестное количество конфет. Вскоре из нее достали 5 конфет и отдали мальчику, а потом доложили в корзину еще 9 конфет, после чего в ней стало 12 конфет. Сколько конфет было в корзине первоначально?
7. В корзине было неизвестное количество яблок. Вскоре из нее достали 7 яблок и отдали мальчику, а потом доложили в корзину еще 14 яблок, после чего в ней стало 18 яблок. Сколько яблок было в корзине первоначально?
8. У Пети было в 5 раз меньше карандашей, чем у Маши. При этом у Маши было на 12 карандашей больше. Сколько было карандашей у каждого ребенка?
9. Для приготовления мороженого взяли 3 части молока, 2 части сахара и 1 часть масла. Всего мороженое весило 120 грамм. Сколько грамм сахара взяли?
10. Пети было 4 пакета картошки, а у Васи 3 пакета. Когда эти пакеты взвесили, то их общая масса составила 42 кг. Сколько кг картошки было у Васи?
11. У Маши было в 5 раз больше конфет, чем у Кати. Всего же у девочек было 96 конфет. Сколько конфет было у каждой девочки?
12.Путь до поселка в 3 раза короче, чем до города. При этом путь до города на 26 км больше, чем до поселка. Каков был путь до поселка?
13. Для приготовления супа берут 7 части воды, 3 части овощей и 2 части мяса. Всего получается 3600 грамм супа. Сколько грамм овощей потребуется?
14. У Коли было в 4 раза меньше яблок, чем у Миши. Всего же у мальчиков было 75 яблок. Сколько яблок было у каждого мальчика?
15. У Насти было в 3 раза больше груш, чем у Иры. При этом, у Иры было на 14 груш меньше, чем у Насти. Сколько груш было у Иры? У Насти?
16. Для приготовления теста взяли 5 частей муки, 2 части молока и 1 часть масла. Общий вес теста составил 960 грамм. Сколько грамм молока было взято?
17. У Ивана было в 6 раз меньше мандарин, чем у Пети. При этом у Пети было на 15 мандарин больше. Сколько мандарин было у Ивана? У Пети?
18. Мальчик проехал на автобусе 3 части пути от дома, а пешком прошел 2 части пути. Всего же он преодолел 15 км. Сколько км мальчик прошел?
19. У Вики было в 4 раза меньше апельсин, чем у Оли. При этом у Оли было на 12 апельсин больше, чем у Вики. Сколько апельсин было у Вики? У Оли?
20. Для приготовления салата берут 4 части помидор, 3 части огурцов и 1 часть зелени. Всего получилось 480 грамм салата. Сколько грамм помидор было взято?
21. У Веры было в 5 раз больше слив, чем у Даши. При этом у Даши было на 16 слив меньше. Сколько слив было у Даши? У Веры?
22. У Дениса было в 3 раз больше монет, чем у Васи. А у Димы в 2 раза больше монет, чем у Дениса. Всего же монет было 50. Сколько монет было у Васи? У Дениса?
23. Для приготовления варенья взяли 4 части сахара и 7 частей фруктов. Всего получилось 660 грамм варенья. Сколько грамм сахара было взято?
24. В коробке было 25 конфет. Вначале в нее положили 12 конфет, а затем взяли неизвестное количество конфет. В результате в коробке осталось 11 конфет. Сколько было взято конфет?
25. В корзине было неизвестное количество яблок. Вначале из нее взяли 16 яблок, а затем положили в нее 5 яблок. В результате в корзине стало 7 яблок. Сколько яблок было в корзине первоначально?
Ответы:
31 яблоко26 груш
38 конфет
59 минут
На 9 градусов
8 конфет
11 яблок
3 карандаша у Пети, у Маши 15 карандашей
40 г
18 кг
16 конфет у Кати и 80 конфет у Маши
13 км
900 г
14. 15 яблок у Миши и 60 яблок у Коли
15. 7 груш у Иры и 21груша у Насти
16. 240 г
17. 3 мандарина у Ивана и 18 мандарин у Пети
18. 6 км
19. 4 апельсина у Вики и 16 апельсин у Оли
20. 240 г
21. 4 сливы у Даши и 20 слив у Веры
22. 5 монет у Васи и 15 монет у Дениса
23. 240 г сахара
24. 26 конфет
25. 18 яблок
infourok.ru