1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(30 град. ) | |
4 | Найти точное значение | sin(60 град. ) | |
5 | Найти точное значение | tan(30 град. ) | |
6 | Найти точное значение | arcsin(-1) | |
7 | Найти точное значение | sin(pi/6) | |
8 | cos(pi/4) | ||
9 | Найти точное значение | sin(45 град. ) | |
10 | Найти точное значение | sin(pi/3) | |
11 | Найти точное значение | arctan(-1) | |
12 | Найти точное значение | cos(45 град. ) | |
13 | Найти точное значение | cos(30 град. ) | |
14 | Найти точное значение | tan(60) | |
15 | Найти точное значение | csc(45 град. ) | |
16 | Найти точное значение | tan(60 град. ) | |
17 | Найти точное значение | sec(30 град. ) | |
18 | Найти точное значение | cos(60 град. ) | |
19 | Найти точное значение | cos(150) | |
20 | Найти точное значение | sin(60) | |
21 | Найти точное значение | cos(pi/2) | |
22 | Найти точное значение | tan(45 град. ) | |
23 | Найти точное значение | arctan(- квадратный корень из 3) | |
24 | Найти точное значение | csc(60 град. ) | |
25 | Найти точное значение | sec(45 град. ) | |
26 | Найти точное значение | csc(30 град. ) | |
27 | Найти точное значение | sin(0) | |
28 | Найти точное значение | sin(120) | |
29 | Найти точное значение | cos(90) | |
30 | Преобразовать из радианов в градусы | pi/3 | |
31 | Найти точное значение | tan(30) | |
32 | Преобразовать из градусов в радианы | 45 | |
33 | Найти точное значение | cos(45) | |
34 | Упростить | sin(theta)^2+cos(theta)^2 | |
35 | Преобразовать из радианов в градусы | pi/6 | |
36 | Найти точное значение | cot(30 град. ) | |
37 | Найти точное значение | arccos(-1) | |
38 | Найти точное значение | arctan(0) | |
39 | Найти точное значение | cot(60 град. ) | |
40 | Преобразовать из градусов в радианы | 30 | |
41 | Преобразовать из радианов в градусы | (2pi)/3 | |
42 | Найти точное значение | sin((5pi)/3) | |
43 | Найти точное значение | sin((3pi)/4) | |
44 | Найти точное значение | tan(pi/2) | |
45 | Найти точное значение | sin(300) | |
46 | Найти точное значение | cos(30) | |
47 | Найти точное значение | cos(60) | |
48 | Найти точное значение | cos(0) | |
49 | Найти точное значение | cos(135) | |
50 | Найти точное значение | cos((5pi)/3) | |
51 | Найти точное значение | cos(210) | |
52 | Найти точное значение | sec(60 град. ) | |
53 | Найти точное значение | sin(300 град. ) | |
54 | Преобразовать из градусов в радианы | 135 | |
55 | Преобразовать из градусов в радианы | 150 | |
56 | Преобразовать из радианов в градусы | (5pi)/6 | |
57 | Преобразовать из радианов в градусы | (5pi)/3 | |
58 | Преобразовать из градусов в радианы | 89 град. | |
59 | Преобразовать из градусов в радианы | 60 | |
60 | Найти точное значение | sin(135 град. ) | |
61 | Найти точное значение | sin(150) | |
62 | Найти точное значение | sin(240 град. ) | |
63 | Найти точное значение | cot(45 град. ) | |
64 | Преобразовать из радианов в градусы | (5pi)/4 | |
65 | Найти точное значение | sin(225) | |
66 | Найти точное значение | sin(240) | |
67 | Найти точное значение | cos(150 град. ) | |
68 | Найти точное значение | tan(45) | |
69 | Вычислить | sin(30 град. ) | |
70 | Найти точное значение | sec(0) | |
71 | Найти точное значение | cos((5pi)/6) | |
72 | Найти точное значение | csc(30) | |
73 | Найти точное значение | arcsin(( квадратный корень из 2)/2) | |
74 | Найти точное значение | tan((5pi)/3) | |
75 | Найти точное значение | tan(0) | |
76 | Вычислить | sin(60 град. ) | |
77 | Найти точное значение | arctan(-( квадратный корень из 3)/3) | |
78 | Преобразовать из радианов в градусы | (3pi)/4 | |
79 | Найти точное значение | sin((7pi)/4) | |
80 | Найти точное значение | arcsin(-1/2) | |
81 | Найти точное значение | sin((4pi)/3) | |
82 | Найти точное значение | csc(45) | |
83 | Упростить | arctan( квадратный корень из 3) | |
84 | Найти точное значение | sin(135) | |
85 | Найти точное значение | sin(105) | |
86 | Найти точное значение | sin(150 град. ) | |
87 | Найти точное значение | sin((2pi)/3) | |
88 | Найти точное значение | tan((2pi)/3) | |
89 | Преобразовать из радианов в градусы | pi/4 | |
90 | Найти точное значение | sin(pi/2) | |
91 | Найти точное значение | sec(45) | |
92 | Найти точное значение | cos((5pi)/4) | |
93 | Найти точное значение | cos((7pi)/6) | |
94 | arcsin(0) | ||
95 | Найти точное значение | sin(120 град. ) | |
96 | Найти точное значение | tan((7pi)/6) | |
97 | Найти точное значение | cos(270) | |
98 | Найти точное значение | sin((7pi)/6) | |
99 | Найти точное значение | arcsin(-( квадратный корень из 2)/2) | |
100 | Преобразовать из градусов в радианы | 88 град. |
§ 3. УРАВНЕНИЯ
Причина |
При каких преобразованиях это может происходить |
Пример неправильного (или неполного) решения |
|
1. Появление посторонних корней |
|||
в) применение к обеим частям уравнения функции, которая не является возрастающей или убывающей. |
Возведение обеих частей уравнения в четную степень или применение к обеим частям уравнения тригонометрических функций (см. с. 272) |
х — 1 = 2х + 1. Возведем обе части уравнения в квадрат: (х — 1)2 = (2х + 1) |
|
2. Потеря корней |
|||
Явное или неявное сужение ОДЗ заданного уравнения, в частности выполнение преобразований, в ходе которых происходит неявное деление на нуль |
1. Деление обеих частей уравнения на выражение с переменной |
х2= х. Поделив обе части уравнения на х, получим х = 1 |
|
2. Сложение, вычитание, умножение или деление обеих частей уравнения на выражение, ОДЗ которого уже, чем ОДЗ заданного уравнения |
х2 = 1. Если к обеим частям уравнения прибавить , то получим уравнение x2 + x = 1 + x, у которого только один корень х = 1 |
|
Где ошибка |
Как получить правильное (или полное) решение |
Пример правильного (или полного) решения |
|
при решении уравнения |
|||
х1 = 0 не является корнем заданного уравнения |
Выполнить проверку подстановкой корней в заданное уравнение |
В данном уравнении не было необходимости возводить в квадрат. х — 1 = 2х + 1. ►х — 2х = 1 + 1, х = —2. Ответ: —2. < Если применить возведение в квадрат, то проверка показывает, что х2 = —2 — корень, a х1 = 0 — посторонний корень |
|
при решении уравнения |
|||
Потеряли корень х = 0, поскольку после деления на х фактически получили уравнение 2 ОДЗ которого: х( Ф)= 0, то есть сузили ОДЗ заданного уравнения. |
Те значения, на которые сузилась ОДЗ, необходимо рассмотреть отдельно |
► 1. При х = 0 получаем 02 = 0 — верное равенство, таким образом, х = 0 — корень. 2. При х Ф 0 получаем 2 х = 1 Ответ. 0; 1. (Конечно, удобнее решать так: x2 — x = 0, х (х — 1) = 0, х = 0 или х = 1.) |
|
Потеряли корень х = —1, поскольку ОДЗ данного уравнения: х — любое число, а x существует только при х 1 0. |
В данном уравнении не было необходимости прибавлять к обеим частям -\/x. ► х2 = 1, х = ±1. Ответ: ±1. (Если бы пришлось прибавить к обеим частям yfx, то при x < 0 данное уравнение необходимо рассмотреть отдельно, и тогда получим еще и корень х = —1.) |
|
Объяснение и обоснование 1. Конечная ОДЗ. Напомним, что в случае, когда дано уравнение f (x) = g (x), общая область определения для функций f (x) и g (x) называется областью допустимых значений этого уравнения. Понятно, что каждый корень заданного уравнения принадлежит как области определения функции f (x), так и области определения функции g (x). Таким образом, каждый корень |
уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях за счет анализа ОДЗ получить решение уравнения. Например, если дано уравнение л/x — 2 + V4 — 2x = 3x — 6, то его ОДЗ можно [x — 210 Jx 12, задать с помощью системы Решая эту систему, получаем — {4 — 2x 10. {x < 2, то есть х = 2. Таким образом, ОДЗ данного уравнения состоит только из одного значения х = 2. Но если только для одного числа необходимо выяснить, является ли оно корнем данного уравнения, то достаточно подставить это значение переменной в уравнение. В результате получаем верное числовое равенство (0 = 0). Следовательно, х = 2 — корень данного уравнения. Других корней у этого уравнения быть не может, поскольку все корни уравнения находятся в его ОДЗ, а там нет других значений, кроме х = 2. Рассмотренный пример позволяет выделить о р и е н т и р для решения аналогичных уравнений: |
Если f (x) > а, то равенство f (x) = g (x) не может выполняться, потому что g (x) < а, то есть при f (x) > а данное уравнение корней не имеет. Остается только случай f (x) = a, но, учитывая необходимость выполнения равенства f (x) = g (x), имеем, что тогда и g (x) = а. Таким образом, мы обосновали, что выполнение равенства f (x) = g (x) (при условии f (x) 1 а и g (x) < а) гарантирует одновременное выполнение равенств f (x) = а и g (x) = а (и наоборот, если одновременно выполняются равенства f (x) = а и g (x) = а, то выполняется и равенство f (x) = g (x)). Как было показано в п. 3.1, это и |
Пример использования такого приема решения уравнений приведен в пункте 2 таблицы 8. Аналогично предыдущим рассуждениям обосновывается и ориентир по решению уравнения f1 (x) + f2 (x) + … + fn (x) = 0, в котором все функции- слагаемые неотрицательны (f1 (x) 1 0; f2 (x) 1 0; …; fn (x) 1 0). • Если предположить, что f1 (x) > 0, то сумма всех функций, стоящих в левой части этого уравнения, может равняться нулю только тогда, когда сумма f2 (x) + . .. + fn (x) будет отрицательной. Но это невозможно, поскольку по условию все функции неотрицательные. Таким образом, при f1 (x) > 0 данное уравнение не имеет корней. Эти же рассуждения можно повторить для любой другой функции-слагаемого. Остается единственная возможность — все функции-слагаемые равны нулю (очевидно, что в этом случае равенство f1 (x) + f2 (x) + … + fn (x) = 0 обязательно будет выполняться). Таким образом, сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю. Например, чтобы решить уравнение x4 + | x — 1 | = 2x2 — 1, достаточно перенести все члены в одну сторону, записать уравнение в виде (x2 — 1)2 + | x — 1 | = 0 и учесть, что функции (x2 — 1)2 и | x — 1 | неотрицательные. Таким образом, данное уравнение равносильно системе |
Из второго уравнения получаем х = 1, что удовлетворяет и всей системе. Следовательно, данное уравнение имеет единственный корень х = 1. 3. Использование возрастания и убывания функций к решению уравнений опирается на такое свойство: возрастающая или убывающая функция принимает каждое свое значение только в одной точке ее области определения. Полезно помнить специальные теоремы о корнях уравнения. Теор ем а 1. Если в уравнении f (я) = а функция f (я) возрастает (убывает) на некотором промежутке, то это уравнение может иметь не более чем один корень на этом промежутке. Графически утверждение теоремы проиллюстрировано на рисунке 39. Прямая у = а пересекает график возрастающей на промежутке [а; в] функции у = f (x) только в одной точке. Это и означает, что уравнение f (x) = а не может иметь больше одного корня на промежутке [а; в]. Докажем это утверждение аналитически. |
9 Если на промежутке [а; в] уравнение имеет корень x0, то f (x0) = а. Других корней быть не может, поскольку для возрастающей функции f (x) при x > x0 получаем неравенство f (x) > f (x0) = а, а при x < x0 — неравенство f (x) < f (x0) = а. Таким образом, при x Ф x0 f (x) Ф а. Аналогично и для убывающей функции при x Ф x0 получаем f (x) Ф а. Теор ема 2. Если в уравнении f (x) = g (x) функция f (x) возрастает на некотором промежутке, а функция g (x) убывает на этом же промежутке (или наоборот), то это уравнение может иметь не более чем один корень на этом промежутке. Графически утверждение теоремы проиллюстрировано на рисунке 40. |
в Если на промежутке [а; в] уравнение имеет корень x0, то f (x0) = g (x0) = а. Других корней быть не может, поскольку, например, для возрастающей функции f (x) и убывающей функции g (x) при x > x0 имеем f (x) > а, a g (x) < а, таким образом, f (x) Ф g (x). Аналогично и при x < x0 f (x) Ф g (x). Каждая из этих теорем утверждает, что в рассмотренном промежутке данное уравнение может иметь не более чем один корень, то есть или это уравнение совсем не имеет корней, или оно имеет единственный корень. Если нам удалось подобрать один корень такого уравнения, то других корней в заданном промежутке уравнение не имеет. Например, чтобы решить уравнение x3 + x = 10, достаточно заметить, что функция f (x) = x3 + x является возрастающей на всей числовой прямой (как сумма двух возрастающих функций) и что x = 2 — корень* этого уравнения (23 + 2 = 10; 10 = 10). Таким образом, данное уравнение f (x) = 10 имеет единственный корень x = 2. Заметим, что каждая из этих теорем гарантирует единственность корня уравнения (если он есть) только на промежутке возрастания (или убывания) соответствующей функции. Если функция имеет несколько промежутков возрастания и убывания, то приходится рассматривать каждый из них отдельно. |
Решим с помощью теоремы 2 уравнение x + x = —. |
► Сначала следует учесть его ОДЗ: x Ф 0 и вспомнить, что функция у = 2 на |
всей области определения не является ни убывающей, ни возрастающей (с. 28), но она убывает на каждом из промежутков (—то; 0) и (0; +“). Поэтому рассмотрим каждый из этих промежутков отдельно. |
1) При x > 0 данное уравнение имеет корень x = 1 (1 +1 = -,2 = 2). Функция f (x) = x3 + x возрастает при x > 0 (как было показано выше, она 2 возрастает на множестве R), а функция g (x) = — убывает на промежутке x x > 0. Таким образом, данное уравнение f (x) = g (x) при x > 0 имеет единственный корень x = 1. |
Комментарий Если раскрыть скобки и привести обе части уравнения к общему знаменателю, то для нахождения корней полученного уравнения придется решать полное уравнение восьмой степени, все корни которого мы не сможем найти. Попытаемся оценить области значений функций, стоящих в левой и правой частях уравнения. Поскольку на ОДЗ (х Ф 0) x4 > 0, то в левой части уравнения стоит сумма двух взаимно обратных положительных чисел, которая всегда больше или равна 2. |
Задача 2 Решите систему уравнений |
Рассмотрим функцию |
Решение Jx 10, f (t) = Vt +13. На своей области определения (t 1 0) эта функция является возрастающей (как сумма двух возрастающих функций). Тогда первое уравнение заданной системы, которое имеет вид f (x) = f (у), равносильно уравнению x = у. Таким образом, на ОДЗ заданная система равносильна Jx = у, системе — [x2 + 3у2 = 36. Подставляя x = у во второе уравнение системы, имеем 4у2 = 36, у2 = 9, у = ±3. Учитывая, что на ОДЗ у 1 0, получаем у = 3. Тогда x = у = 3. Ответ: (3; 3). <1 |
\4x- -x2 + 3у2 = 36. Комментарий Иногда свойства функций удается применить при решении систем уравнений. Если заметить, что в левой и правой частях первого уравнения заданной системы стоят значения одной и той же функции, которая является возрастающей (как сумма двух возрастающих функций), то равенство f (x) = f (у) для возрастающей функции возможно тогда и только тогда, когда х = у, поскольку возрастающая функция может принимать одинаковые значения только при одном значении аргумента. а = в. Вопросы для контроля 1. Объясните на примерах, как можно использовать свойства функций при решении уравнений. 2*. Обоснуйте правильность ориентиров по решению уравнений с использованием свойств функций, приведенных в таблице 8 (с. 60). |
1 | Найти точное значение | грех(30) | |
2 | Найти точное значение | грех(45) | |
3 | Найти точное значение | грех(30 градусов) | |
4 | Найти точное значение | грех(60 градусов) | |
5 | Найти точное значение | загар (30 градусов) | |
6 | Найти точное значение | угловой синус(-1) | |
7 | Найти точное значение | грех(пи/6) | |
8 | Найти точное значение | cos(pi/4) | |
9 | Найти точное значение | грех(45 градусов) | |
10 | Найти точное значение | грех(пи/3) | |
11 | Найти точное значение | арктан(-1) | |
12 | Найти точное значение | cos(45 градусов) | |
13 | Найти точное значение | cos(30 градусов) | |
14 | Найти точное значение | желтовато-коричневый(60) | |
15 | Найти точное значение | csc(45 градусов) | |
16 | Найти точное значение | загар (60 градусов) | |
17 | Найти точное значение | сек(30 градусов) | |
18 | Найти точное значение | cos(60 градусов) | |
19 | Найти точное значение | cos(150) | |
20 | Найти точное значение | грех(60) | |
21 | Найти точное значение | cos(pi/2) | |
22 | Найти точное значение | загар (45 градусов) | |
23 | Найти точное значение | arctan(- квадратный корень из 3) | |
24 | Найти точное значение | csc(60 градусов) | |
25 | Найти точное значение | сек(45 градусов) | |
26 | Найти точное значение | csc(30 градусов) | |
27 | Найти точное значение | грех(0) | |
28 | Найти точное значение | грех(120) | |
29 | Найти точное значение | соз(90) | |
30 | Преобразовать из радианов в градусы | пи/3 | |
31 | Найти точное значение | желтовато-коричневый(30) | |
32 | 92|||
35 | Преобразовать из радианов в градусы | пи/6 | |
36 | Найти точное значение | детская кроватка(30 градусов) | |
37 | Найти точное значение | арккос(-1) | |
38 | Найти точное значение | арктический(0) | |
39 | Найти точное значение | детская кроватка(60 градусов) | |
40 | Преобразование градусов в радианы | 30 | |
41 | Преобразовать из радианов в градусы | (2 шт. )/3 | |
42 | Найти точное значение | sin((5pi)/3) | |
43 | Найти точное значение | sin((3pi)/4) | |
44 | Найти точное значение | тан(пи/2) | |
45 | Найти точное значение | грех(300) | |
46 | Найти точное значение | соз(30) | |
47 | Найти точное значение | соз(60) | |
48 | Найти точное значение | соз(0) | |
49 | Найти точное значение | соз(135) | |
50 | Найти точное значение | cos((5pi)/3) | |
51 | Найти точное значение | cos(210) | |
52 | Найти точное значение | сек(60 градусов) | |
53 | Найти точное значение | грех(300 градусов) | |
54 | Преобразование градусов в радианы | 135 | |
55 | Преобразование градусов в радианы | 150 | |
56 | Преобразовать из радианов в градусы | (5 дюймов)/6 | |
57 | Преобразовать из радианов в градусы | (5 дюймов)/3 | |
58 | Преобразование градусов в радианы | 89 градусов | |
59 | Преобразование градусов в радианы | 60 | |
60 | Найти точное значение | грех(135 градусов) | |
61 | Найти точное значение | грех(150) | |
62 | Найти точное значение | грех(240 градусов) | |
63 | Найти точное значение | детская кроватка(45 градусов) | |
64 | Преобразовать из радианов в градусы | (5 дюймов)/4 | |
65 | Найти точное значение | грех(225) | |
66 | Найти точное значение | грех(240) | |
67 | Найти точное значение | cos(150 градусов) | |
68 | Найти точное значение | желтовато-коричневый(45) | |
69 | Оценить | грех(30 градусов) | |
70 | Найти точное значение | сек(0) | |
71 | Найти точное значение | cos((5pi)/6) | |
72 | Найти точное значение | КСК(30) | |
73 | Найти точное значение | arcsin(( квадратный корень из 2)/2) | |
74 | Найти точное значение | загар((5pi)/3) | |
75 | Найти точное значение | желтовато-коричневый(0) | |
76 | Оценить | грех(60 градусов) | |
77 | Найти точное значение | arctan(-( квадратный корень из 3)/3) | |
78 | Преобразовать из радианов в градусы | (3 пи)/4 | |
79 | Найти точное значение | sin((7pi)/4) | |
80 | Найти точное значение | угловой синус(-1/2) | |
81 | Найти точное значение | sin((4pi)/3) | |
82 | Найти точное значение | КСК(45) | |
83 | Упростить | арктан(квадратный корень из 3) | |
84 | Найти точное значение | грех(135) | |
85 | Найти точное значение | грех(105) | |
86 | Найти точное значение | грех(150 градусов) | |
87 | Найти точное значение | sin((2pi)/3) | |
88 | Найти точное значение | загар((2pi)/3) | |
89 | Преобразовать из радианов в градусы | пи/4 | |
90 | Найти точное значение | грех(пи/2) | |
91 | Найти точное значение | сек(45) | |
92 | Найти точное значение | cos((5pi)/4) | |
93 | Найти точное значение | cos((7pi)/6) | |
94 | Найти точное значение | угловой синус(0) | |
95 | Найти точное значение | грех(120 градусов) | |
96 | Найти точное значение | желтовато-коричневый ((7pi)/6) | |
97 | Найти точное значение | соз(270) | |
98 | Найти точное значение | sin((7pi)/6) | |
99 | Найти точное значение | arcsin(-( квадратный корень из 2)/2) | |
100 | Преобразование градусов в радианы | 88 градусов |
Является ли кубический корень тем же самым, что и возведение в степень 1/3?
Недавно я столкнулся с интересным несоответствием, касающимся функции кубического корня.
Кубический корень
В Wolfram|Alpha (который использует систему компьютерной алгебры Mathematica в своей основе), если вы попросите его построить график, вы получите следующее, как и ожидалось:
[Источник изображения: Wolfram|Alpha]В поле поиска я ввел «кубический корень из x», и он указал, что «Результат» был правильно записан как .
Этот график является отражением графика y = х 3 в строке у = х . Это обратные функции.
Мы знаем, что этот кубический корень из отрицательного числа является отрицательным, поэтому, например, и мы можем видеть, что это имеет смысл на графике выше.
Wolfram|Alpha утверждает, что существует один корень ( x = 0), а домен и диапазон являются действительными числами, что согласуется с графиком выше.
ПРИМЕЧАНИЕ: Мелким шрифтом Wolfram|Alpha указано:
Предполагая, что «кубический корень из» является действительным корнем.
Есть возможность посмотреть «главный корень», но это дало тот же результат.
Возведение в степень 1/3
На раннем этапе изучения корней и дробных степеней мы узнаем, что можем записывать корни в терминах дробных показателей. В общем, это означает:
Таким образом, для квадратного корня мы имеем:
и для кубического корня:
.
Таким образом, мы ожидаем, что график для будет таким же, как и график для .
Но это не так. Вот что возвращает Wolfram|Alpha, когда я прошу его построить график:
[Источник изображения: Wolfram|Alpha]Синяя кривая помечена как «реальная часть», а красная — как «воображаемая часть».
Любопытно, что значение «Ввод» указано как: , но на самом деле это не то, что я ввел. Итак, часть ответа касается, а остальная часть ответа — нет.
Мы знаем из раздела о комплексных корнях (см. особенно Упражнение 4 в конце), что кубическое уравнение будет иметь 3 корня (точно так же, как квадратное уравнение имеет 2 корня). Эти 3 корня могут быть действительными или смесью действительных и комплексных корней.
Wolfram|Alpha верно указывает, что есть мнимые части, но правилен ли их график? Ведь кубический корень из отрицательного числа должен быть отрицательным?
Пример: Чему равны все кубические корни из −8?
Я немного уменьшил масштаб, чтобы получить этот график, и добавил несколько направляющих сегментов (зеленые):
[Источник изображения: Wolfram|Alpha]Используя то же мышление, что и в упражнении 4, упомянутом ранее, комплексные решения для x 3 = −8 должны находиться на расстоянии 120° друг от друга, что дает (где):
x = −2
x = 1 + 1,73j
x = 1 − 1,73j
График выше дает нам одно из этих решений (среднее один, так как мы можем видеть действительная часть равна 1, а мнимая часть равна 1,73), но не дает двух других решений.
И снова страница сообщает нам, что предполагается «главный корень», и дает нам возможность выбрать «действительнозначный корень». Если мы сделаем это на этот раз, мы получим настоящую версию только для root, выглядящую как график в верхней части страницы.
Ответ Scientific Notebook
Scientific Notebook дает следующие 2 графика, которые я наложил друг на друга.
Синий график — , и Scientific Notebook дает полное действительное решение (в первом и третьем квадрантах), а пурпурный (розовый) график — только в положительном квадранте.
Ответы Geogebra и Desmos
И Geogebra, и Desmos дают один и тот же график «полного реального значения» для обоих и .
Аналогично квадратному корню
Я уже писал о количестве решений для √16. Конечно, ответ есть одно решение, тогда как если вас попросят решить, вы получите 2 решения.
Wolfram|Alpha и Scientific Notebook признают, что есть разница между (каждый раз есть один «главный» ответ) и , где нам нужно помнить комплексные корни.
Заключение
Не верьте компьютеру на слово, когда он дает вам график или решение какого-то уравнения.