2 корень квадратный из 3: Mathway | Популярные задачи

2

Три простых правила относительно квадратного корня. Часть 3

GRE Mathematics уделяет особое внимание заданиям на квадратный корень. В двух предыдущих частях статьи, мы рассматривали, что делать, если все числа в задании положительные. Если же это не так, то следует применять ещё 2 правила GRE Maths.

Правило №2: если x2 = 9, то x = 3, x = -3

Эта ситуация отлична от описанных ранее . Мы больше не имеем знака квадратного корня, зато здесь есть показатель степени. Если 3 возвести в квадрат, то мы получим 9. Если мы возведем -3 в квадрат – мы также получим 9. Следовательно, оба числа являются возможным значением x, потому что оба делают равенство верным.

С математической точки зрения, мы бы сказали, что x = 3 или  x = -3. Если вы выполняете задание в разделе Quantitative Comparison, подумайте об этом следующим образом: если одно из них является возможным значением x, то оба варианта должны быть рассмотрены возможными значениями при сравнении Величины А и Величины В.

Правило №3: √(x)2 = 3, если x = 3, x = -3

Итак, вернемся к знаку квадратного корня, но теперь у нас есть и показатель степени! Что дальше? Указывать только положительное число, потому что мы имеем знак корня? Или указывать оба значения, потому что есть показатель степени?

Сначала вычислите значение x: возведите в степень оба значения √(x)2 = 3, чтобы получить x2 = 9. Вычислите квадратный корень, чтобы получить x = 3, x = -3 (как в правиле №2).

Подставьте оба числа в данное равенство,  √x2 = 3, и посмотрите, делают ли они равенство верным.  Если мы подставим 3 в равенство √x2 = 3, мы получим: √(3)2 = 3. Верно ли это? Да: √(3)2 = √9 и это действительно равняется 3.

Теперь подставьте в равенство -3: √(-3)2= 3. Под корнем у нас стоит отрицательное число, но также в скобках у нас есть квадратная степень. Следуйте установленному порядку действий: возведите число в квадрат, чтобы получить √9.

Больше нет никаких отрицательных чисел под знаком корня! Заканчивая решение задачи, мы получаем √9, и снова это должно равняться 3, поэтому -3 тоже является возможным значением x. X может быть равен как 3, так и -3.

Запомните: в первом примере представлено либо действительное число, либо очевидная переменная (не возведение в степень!) под знаком квадратного корня. В обоих случаях мы должны получить решение с положительными значениями  корня, но не отрицательными.

Второй и третий примеры имеют квадратную степень. Во втором правиле нет знака квадратного корня – в этом случае  мы можем получить и положительный, и отрицательный ответ. В нашем третьем правиле есть и знак квадратного корня, и степень в квадрате. В этой ситуации мы должны произвести расчеты, как показано в примере. Сначала мы решаем оба варианта, а затем подставляем их в исходное равенство. Если эти варианты делают равенство верным, то это и есть правильный  ответ.

Подготовка к GRE Test включает в себя штудирование не только официальных учебников, но также изучение советов и подсказок, которые представлены здесь. Возможно, на самом тесте вам пригодятся именно они! Успехов!

Пример несложного задания на квадратные корни в тесте GRE:

 

По материалам сайта: www.manhattanprep.com

3-8 9 Оценить
квадратный корень из 12 10 Оценить квадратный корень из 20 11 Оценить квадратный корень из 50 94 18 Оценить квадратный корень из 45 19 Оценить квадратный корень из 32 20 Оценить квадратный корень из 18 92

Квадратный корень из 3 — Как найти квадратный корень из 3?

LearnPracticeDownload

Квадратный корень из 3 выражается как √3 в радикальной форме и как (3)

½ или (3) 0,5 в экспоненциальной форме. Квадратный корень из 3, округленный до 7 знаков после запятой, равен 1,7320508. Это положительное решение уравнения x 2 = 3.

  • Корень квадратный из 3: 1,7320508075688772 909:20
  • Квадратный корень из 3 в экспоненциальной форме: (3) ½ или (3) 0,5
  • Квадратный корень из 3 в подкоренной форме: √3
1. Что такое квадратный корень из 3?
2. Является ли квадратный корень из 3 рациональным или иррациональным?
3. Как найти квадратный корень из 3?
4. Важные примечания 
5. Часто задаваемые вопросы о квадратном корне из 3
6. Сложные вопросы

Что такое квадратный корень из 3?

Квадратный корень из числа — это число, которое при умножении само на себя дает исходное число. Например, квадратный корень из 25 равен 5, так как 5 умножить на 5 дает 25. Однако у вас также могут быть квадратные корни некоторых чисел, которые не дают целых чисел, например 3. Мы можем выразить квадратный корень из 3 по-разному

  • Десятичная форма: 1,732.
  • Радикальная форма: √3
  • Форма экспонента: 3 1/2

Является ли квадратный корень из 3 рациональным или иррациональным?

  • Десятичная часть квадратного корня из 3 не является конечной. Это определение иррационального числа.
  • Глядя на десятичную форму корня 3, мы видим, что она бесконечна —
    √3 = 1,732050807…….
  • Следовательно, мы можем заключить, что
    Квадратный корень из 3 иррационален

Как найти квадратный корень из 3?

Поскольку мы пришли к выводу, что квадратный корень из 3 не является конечным, мы можем использовать только метод длинного деления для вычисления его значения.

  • Шаг 1: Для начала запишем 3 как 3.000000 и сгруппируем 0 после запятой в пары по 2 слева направо, как показано ниже. (для цифр слева от запятой соединяйте их справа налево) 909:20
  • Шаг 2: Задумайте число, которое при умножении само на себя меньше или равно 3. В этом случае это число будет 1.
  • Шаг 3: Разделив 3 на 1 с частным, равным 1, мы получим остаток 2. 
  • Шаг 4:  Перетащите пару нулей вниз и закрасьте ее рядом с 2 , чтобы получить делимое 200. 
  • Шаг 5: Делитель, который здесь равен 1, добавляется к самому себе и записывается ниже. Теперь у нас есть 2X в качестве нового делителя, и нам нужно найти значение X, которое делает произведение 2X × X меньше или равным 200. В этом случае 27 — это искомое значение 9.09:20
  • Шаг 6: Число 7 ставится в частном после запятой. Новый делитель для следующего деления будет 2X + X, что в данном случае равно 34.
    Действуя таким же образом и повторяя с шага 4, мы можем вычислить остальные десятичные дроби.

Изучение квадратных корней с помощью иллюстраций и интерактивных примеров

  • Квадратный корень из 4
  • Квадратный корень из 2
  • Квадратный корень из 5
  • Квадратный корень из 9
  • Квадратный корень из 15

Важные примечания

  • Действительные корни √3 равны ± 1,732.
  • Квадратный корень из полного квадрата — это всегда рациональное целое число, а корень других чисел всегда иррационален. Например, √16 = 4, а √17 = 4,1231…
  • .

Загадочные вопросы

  • Найдите значение √√3.
  • Какова длина стороны квадрата площадью 10? (Подсказка: используйте метод длинного деления)
  • Найдите квадратный корень из 33.

 

 

  1. Пример 1

    Джон интересовался, совпадает ли значение -√3 с √-3. Что вы думаете?

    Решение

    Отрицательные квадратные корни не могут быть действительными числами.
    -√3 — действительное число.
    Но √-3 — мнимое число.
    Следовательно, они не совпадают, а -√3 не совпадает с √-3.

  2.  

    Пример 2

    Майкл едет по шоссе со средней скоростью 50√3 км/ч ровно 1 час. Какое расстояние он преодолевает?

    Решение

    Нам нужно использовать формулу Расстояние = Скорость * Время
    Скорость = 50√3 = 86,603 км/ч
    Время = 1 час
    Используя формулу, Расстояние = 86,603 * 1 = 86,603

    Следовательно, Майкл преодолевает расстояние 86,603 км

  3. Пример: Если площадь круга равна 3π в 2 . Найдите радиус окружности.

    Решение:

    Пусть ‘r’ будет радиусом окружности.
    ⇒ Площадь круга = πr 2 = 3π в 2
    ⇒ г = ±√3 в
    Так как радиус не может быть отрицательным,
    ⇒ г = √3
    Квадратный корень из 3 равен 1,732.
    ⇒ г = 1,732 в

перейти к слайдуперейти к слайдуперейти к слайду

 

Хотите создать прочную основу для изучения математики?

Выйдите за рамки заучивания формул и поймите «почему», стоящее за ними. Испытайте Cuemath и приступайте к работе.

Забронируйте бесплатный пробный урок

Часто задаваемые вопросы о квадратном корне из 3

Каково значение квадратного корня из 3?

Квадратный корень из 3 равен 1,73205.

Почему квадратный корень из 3 является иррациональным числом?

Число 3 простое. Отсюда следует, что число 3 беспарное и не находится в степени двойки. Следовательно, квадратный корень из 3 иррационален.

Если квадратный корень из 3 равен 1,732. Найдите значение квадратного корня из 0,03.

Представим √0,03 в форме p/q, т.е. √(3/100) = 0,03/10 = 0,173. Следовательно, значение √0,03 = 0,173

Вычислить 14 плюс 16 квадратный корень 3

Данное выражение равно 14 + 16 √3.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *