Четность или нечетность функции: Чётные и нечётные функции — урок. Алгебра, 9 класс.

Содержание

Чётность функции | это… Что такое Чётность функции?

ТолкованиеПеревод

Чётность функции

f(x) = x — пример нечётной функции.

f(x) = x2 — пример чётной функции.

f(x) = x3, нечётная

f(x) = x3 + 1 ни чётная, ни нечётная


Нечётная фу́нкция — функция, меняющая знак при изменении знака независимого переменного.

Чётная фу́нкция — это функция, не изменяющая своего значения при изменении знака независимого переменного.

Или по-другому

Нечётная фу́нкция — функция, симметричная относительно центра координат, а чётная — функция, симметричная относительно оси ординат.

Содержание

  • 1 Определения
  • 2 Свойства
  • 3 Примеры
    • 3. 1 Нечётные функции
    • 3.2 Чётные функции
  • 4 Вариации и обобщения

Определения

  • Функция называется нечётной, если справедливо равенство
  • Функция f называется чётной, если справедливо равенство
  • Если не выполняется ни одно из этих равенств, то функция называется функцией общего вида.

Свойства

  • График нечётной функции симметричен относительно начала координат O.
  • График чётной функции симметричен относительно оси ординат Oy.
  • Произвольная функция может быть представлена в виде суммы нечётной и чётной функций:
f(x) = g(x) + h(x),

где

  • Функция  — единственная функция, одновременно являющаяся нечётной и чётной.
  • Сумма, разность и вообще любая линейная комбинация чётных функций чётна, а нечётных — нечётна.
  • Произведение или дробь двух нечётных функций чётно.
  • Произведение или дробь двух чётных функций чётно.
  • Произведение или дробь нечётной и чётной функций нечётно.
  • Композиция двух нечётных функция нечётна.
  • Композиция двух чётных функций чётна.
  • Композиция чётной функции с нечётной чётна.
  • Композиция любой функции с чётной чётна (но не наоборот).
  • Функция, обратная чётной, чётна, а нечётной — нечётна.
  • Производная чётной функции нечётна, а нечётной — чётна.
    • То же верно про производную третьего, пятого и вообще любого нечётного порядка.
  • Производная чётного порядка сохраняет чётность.

Примеры

Нечётные функции

  • Нечётная степень где  — произвольное целое число.
  • Синус .
  • Тангенс .

Чётные функции

  • Чётная степень где  — произвольное целое число.
  • Косинус .

Вариации и обобщения

  • Понятие чётности и нечётности функций естественно обобщаются на случай отображений между векторными пространствами.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

  • Чётность (математика)
  • Чётные числа

Полезное


Определить четность нечетность функции. Четные и нечетные функции

Функция — это одно из важнейших математических понятий. Функция — зависимость переменной у от переменной x , если каждому значению х соответствует единственное значение у . Переменную х называют независимой переменной или аргументом. Переменную у называют зависимой переменной. Все значения независимой переменной (переменной

x ) образуют область определения функции. Все значения, которые принимает зависимая переменная (переменная y ), образуют область значений функции.

Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции, тоесть по оси абсцисс откладываются значения переменной x , а по оси ординат откладываются значения переменной y . Для построения графика функции необходимо знать свойства функции. Основные свойства функции будут рассмотрены далее!

Для построения графика функции советуем использовать нашу программу — Построение графиков функций онлайн. Если при изучении материала на данной странице у Вас возникнут вопросы, Вы всегда можете задать их на нашем форуме. Также на форуме Вам помогут решить задачи по математике, химии, геометрии, теории вероятности и многим другим предметам!

Основные свойства функций.

1) Область определения функции и область значений функции .

Область определения функции — это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена.
Область значений функции — это множество всех действительных значений y , которые принимает функция.

В элементарной математике изучаются функции только на множестве действительных чисел.

2) Нули функции .

Значения х , при которых y=0 , называется нулями функции . Это абсциссы точек пересечения графика функции с осью Ох.

3) Промежутки знакопостоянства функции .

Промежутки знакопостоянства функции – такие промежутки значений

x , на которых значения функции y либо только положительные, либо только отрицательные, называются промежутками знакопостоянства функции.

4) Монотонность функции .

Возрастающая функция (в некотором промежутке) — функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

Убывающая функция (в некотором промежутке) — функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

5) Четность (нечетность) функции .

Четная функция — функция, у которой область определения симметрична относительно начала координат и для любого х f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

Нечетная функция — функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = — f(x ).

График нечетной функции симметричен относительно начала координат.

Четная функция
1) Область определения симметрична относительно точки (0; 0), то есть если точка a принадлежит области определения, то точка -a также принадлежит области определения.
2) Для любого значения x f(-x)=f(x)
3) График четной функции симметричен относительно оси Оу.

Нечетная функция обладает следующими свойствами:
1) Область определения симметрична относительно точки (0; 0).
2) для любого значения x , принадлежащего области определения, выполняется равенство f(-x)=-f(x)
3) График нечетной функции симметричен относительно начала координат (0; 0).

Не всякая функция является четной или нечетной. Функции общего вида не являются ни четными, ни нечетными.

6) Ограниченная и неограниченная функции .

Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . {2}-3 , можно вычислить только одно значение функции, которое ему соответствует. Функцию можно представить в виде таблицы:

x−2−10123
y−4−3−2−101

Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3 ; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

Еще функции возможно задать, используя графики. С помощью графика устанавливается какое значение функции соотносится с определенным значением x . Наиболее часто, это будет приближенное значение функции.

Четная и нечетная функция

Функция является четной функцией , когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy . {2}} \neq 1 для любого x \in [-1;1] .

Ограниченной принято называть функцию y=f(x), x \in X тогда, когда существует такое число K > 0 , для которого выполняется неравенство \left | f(x) \right | \neq K для любого x \in X .

Пример ограниченной функции: y=\sin x ограничена на всей числовой оси, так как \left | \sin x \right | \neq 1 .

Возрастающая и убывающая функция

О функции, что возрастает на рассматриваемом промежутке принято говорить как о возрастающей функции тогда, когда большему значению x будет соответствовать большее значение функции y=f(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значения аргумента x_{1} и x_{2} , причем x_{1} > x_{2} , будет y(x_{1}) > y(x_{2}) .

Функция, что убывает на рассматриваемом промежутке, называется убывающей функцией тогда, когда большему значению x будет соответствовать меньшее значение функции y(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значений аргумента x_{1} и x_{2} , причем x_{1} > x_{2} , будет y(x_{1})

Корнями функции принято называть точки, в которых функция F=y(x) пересекает ось абсцисс (они получаются в результате решения уравнения y(x)=0 ).

а) Если при x > 0 четная функция возрастает, то убывает она при x

б) Когда при x > 0 четная функция убывает, то возрастает она при x

в) Когда при x > 0 нечетная функция возрастает, то возрастает она и при x

г) Когда нечетная функция будет убывать при x > 0 , то она будет убывать и при x

Экстремумы функции

Точкой минимума функции y=f(x) принято называть такую точку x=x_{0} , у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняться неравенство f(x) > f(x_{0}) . y_{min} — обозначение функции в точке min.

Точкой максимума функции y=f(x) принято называть такую точку x=x_{0} , у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняется неравенство f(x)

Необходимое условие

Согласно теореме Ферма: f»(x)=0 тогда, когда у функции f(x) , что дифференцируема в точке x_{0} , появится экстремум в этой точке.

Достаточное условие

  1. Когда у производной знак меняется с плюса на минус, то x_{0} будет точкой минимума;
  2. x_{0} — будет точкой максимума только тогда, когда у производной меняется знак с минуса на плюс при переходе через стационарную точку x_{0} .

Наибольшее и наименьшее значение функции на промежутке

Шаги вычислений:

  1. Ищется производная f»(x) ;
  2. Находятся стационарные и критические точки функции и выбирают принадлежащие отрезку ;
  3. Находятся значения функции f(x) в стационарных и критических точках и концах отрезка. Меньшее из полученных результатов будет являться наименьшим значением функции , а большее — наибольшим .
. Для этого воспользуйтесь миллиметровкой или графическим калькулятором. Выберите несколько любых числовых значений независимой переменной x {\displaystyle x} и подставьте их в функцию, чтобы вычислить значения зависимой переменной y {\displaystyle y} . Найденные координаты точек нанесите на координатную плоскость, а затем соедините эти точки, чтобы построить график функции. {2}+1} . Подставьте в нее следующие значения x {\displaystyle x} :

Проверьте, симметричен ли график функции относительно оси Y. Под симметрией подразумевается зеркальное отображение графика относительно оси ординат. Если часть графика справа от оси Y (положительные значения независимой переменной) совпадает с частью графика слева от оси Y (отрицательные значения независимой переменной), график симметричен относительно оси Y. Если функция симметрична относительно оси ординат, такая функция четная.

Проверьте, симметричен ли график функции относительно начала координат. Начало координат – это точка с координатами (0,0). Симметрия относительно начала координат означает, что положительному значению y {\displaystyle y} (при положительном значении x {\displaystyle x} ) соответствует отрицательное значение y {\displaystyle y} (при отрицательном значении x {\displaystyle x} ), и наоборот. Нечетные функции обладают симметрией относительно начала координат. {2}} . Будучи записанной в такой форме, функция кажется четной, потому что присутствует четный показатель степени. Но этот пример доказывает, что вид функции нельзя быстро определить, если независимая переменная заключена в скобки. В этом случае нужно раскрыть скобки и проанализировать полученные показатели степени.

Четность и нечетность функции являются одним из основных ее свойств, и на четность занимает внушительную часть школьного курса по математике. Она во много определяет характер поведения функции и значительно облегчает построение соответствующего графика.

Определим четность функции. Вообще говоря, исследуемую функцию считают четной, если для противоположных значений независимой переменной (x), находящихся в ее области определения, соответствующие значения y (функции) окажутся равными.

Дадим более строгое определение. Рассмотрим некоторую функцию f (x), которая задана в области D. Она будет четной, если для любой точки x, находящейся в области определения:

  • -x (противоположная точка) также лежит в данной области определения,
  • f (-x) = f (x). (-x))=- h(x). Следовательно, h(x) — нечетная.

    Кстати, следует напомнить, что есть функции, которые невозможно классифицировать по этим признакам, их называют ни четными, ни нечетными.

    Четные функции обладают рядом интересных свойств:

    • в результате сложения подобных функций получают четную;
    • в результате вычитания таких функций получают четную;
    • четной, также четная;
    • в результате умножения двух таких функций получают четную;
    • в результате умножения нечетной и четной функций получают нечетную;
    • в результате деления нечетной и четной функций получают нечетную;
    • производная такой функции — нечетная;
    • если возвести нечетную функцию в квадрат, получим четную.

    Четность функции можно использовать при решении уравнений.

    Чтобы решить уравнение типа g(x) = 0, где левая часть уравнения представляет из себя четную функцию, будет вполне достаточно найти ее решения для неотрицательных значений переменной. Полученные корни уравнения необходимо объединить с противоположными числами. 2+2 может быть нечетным, причем для любого значения параметра. Действительно, легко проверить, что множество корней данного уравнения содержит решения «парами». Проверим, является ли 0 корнем. При подстановке его в уравнение, получаем 2=2 . Таким образом, кроме «парных» 0 также является корнем, что и доказывает их нечетное количество.

    Функция называется четной (нечетной), если для любогои выполняется равенство

    .

    График четной функции симметричен относительно оси
    .

    График нечетной функции симметричен относительно начала координат.

    Пример 6.2. Исследовать на четность или нечетность функции

    1)
    ; 2)
    ; 3)
    .

    Решение .

    1) Функция определена при
    . Найдем
    .

    Т.е.
    . Значит, данная функция является четной.

    2) Функция определена при

    Т.е.
    . Таким образом, данная функция нечетная.

    3) функция определена для , т.е. для

    ,
    . Поэтому функция не является ни четной, ни нечетной. Назовем ее функцией общего вида.

    3. Исследование функции на монотонность.

    Функция
    называется возрастающей (убывающей) на некотором интервале, если в этом интервале каждому большему значению аргумента соответствует большее (меньшее) значение функции.

    Функции возрастающие (убывающие) на некотором интервале называются монотонными.

    Если функция
    дифференцируема на интервале
    и имеет положительную (отрицательную) производную
    , то функция
    возрастает (убывает) на этом интервале.

    Пример 6.3 . Найти интервалы монотонности функций

    1)
    ; 3)
    .

    Решение .

    1) Данная функция определена на всей числовой оси. Найдем производную .

    Производная равна нулю, если
    и
    . Область определения – числовая ось, разбивается точками
    ,
    на интервалы. Определим знак производной в каждом интервале.

    В интервале
    производная отрицательна, функция на этом интервале убывает.

    В интервале
    производная положительна, следовательно, функция на этом интервале возрастает.

    2) Данная функция определена, если
    или

    .

    Определяем знак квадратного трехчлена в каждом интервале.

    Таким образом, область определения функции

    Найдем производную
    ,
    , если
    , т.е.
    , но
    . Определим знак производной в интервалах
    .

    В интервале
    производная отрицательна, следовательно, функция убывает на интервале
    . В интервале
    производная положительна, функция возрастает на интервале
    .

    4. Исследование функции на экстремум.

    Точка
    называется точкой максимума (минимума) функции
    , если существует такая окрестность точки, что для всех
    из этой окрестности выполняется неравенство

    .

    Точки максимума и минимума функции называются точками экстремума.

    Если функция
    в точкеимеет экстремум, то производная функции в этой точке равна нулю или не существует (необходимое условие существования экстремума).

    Точки, в которых производная равна нулю или не существует называются критическими.

    5. Достаточные условия существования экстремума.

    Правило 1 . Если при переходе (слева направо) через критическую точку производная
    меняет знак с «+» на «–», то в точкефункция
    имеет максимум; если с «–» на «+», то минимум; если
    не меняет знак, то экстремума нет.

    Правило 2 . Пусть в точке
    первая производная функции
    равна нулю
    , а вторая производная существует и отлична от нуля. Если
    , то– точка максимума, если
    , то– точка минимума функции.

    Пример 6.4 . Исследовать на максимум и минимум функции:

    1)
    ; 2)
    ; 3)
    ;

    4)
    .

    Решение.

    1) Функция определена и непрерывна на интервале
    .

    Найдем производную
    и решим уравнение
    , т.е.
    .Отсюда
    – критические точки.

    Определим знак производной в интервалах ,
    .

    При переходе через точки
    и
    производная меняет знак с «–» на «+», поэтому по правилу 1
    – точки минимума.

    При переходе через точку
    производная меняет знак с «+» на «–», поэтому
    – точка максимума.

    ,
    .

    2) Функция определена и непрерывна в интервале
    . Найдем производную
    .

    Решив уравнение
    , найдем
    и
    – критические точки. Если знаменатель
    , т.е.
    , то производная не существует. Итак,
    – третья критическая точка. Определим знак производной в интервалах.

    Следовательно, функция имеет минимум в точке
    , максимум в точках
    и
    .

    3) Функция определена и непрерывна, если
    , т.е. при
    .

    Найдем производную

    .

    Найдем критические точки:

    Окрестности точек
    не принадлежат области определения, поэтому они не являются т. экстремума. Итак, исследуем критические точки
    и
    .

    4) Функция определена и непрерывна на интервале
    . Используем правило 2. Найдем производную
    .

    Найдем критические точки:

    Найдем вторую производную
    и определим ее знак в точках

    В точках
    функция имеет минимум.

    В точках
    функция имеет максимум.

    {3}\\f(x)=x3

    или

    f(x)=1xf\left(x\right)=\frac{1}{x}\\f(x)=x1​

    были отразив по обеим осям , результатом будет исходный график.

    Рис. 12. (a) Кубическая функция инструментария (b) Горизонтальное отражение кубической функции набора инструментов (c) Горизонтальные и вертикальные отражения воспроизводят исходную кубическую функцию.

    Мы говорим, что эти графы симметричны относительно начала координат. Функция с графиком, симметричным относительно начала координат, называется 9{x}\\f(x)=2x

    не является ни четным, ни нечетным. Кроме того, единственная функция, которая одновременно является четной и нечетной, — это постоянная функция

    f(x)=0f\left(x\right)=0\\f(x)=0

    .

    A Общее примечание: четные и нечетные функции

    Функция называется четной, если для каждого входа )=f\left(-x\right)\\f(x)=f(−x)

    График четной функции симметричен относительно

    y-y\text{-}\\y-

    ось.

    Функция называется нечетной, если для каждого входа

    xx\\x

    f(x)=−f(−x)f\left(x\right)=-f\left(-x\right) )\\f(x)=−f(−x)

    График нечетной функции симметричен относительно начала координат.

    Как: Имея формулу функции, определить, является ли функция четной, нечетной или ни одной из них.

    1. Определить, удовлетворяет ли функция

      f(x)=f(−x)f\left(x\right)=f\left(-x\right)\\f(x)=f(−x)

      . Если да, то даже. 9{2}+7\\f(s)=s4+3s2+7

      четное, нечетное или ни то, ни другое? Решение

      Лицензии и атрибуты

      Контент с лицензией CC, совместно используемый ранее
      • Precalculus. Автор : Джей Абрамсон и др.. Предоставлено : OpenStax. Расположен по адресу : https://openstax.org/books/precalculus/pages/1-introduction-to-functions. Лицензия : CC BY: Attribution . Условия лицензии : Скачать бесплатно по адресу: http://cnx. org/contents/[email protected]
      Все права защищены. Содержание
      • Знакомство с нечетными и четными функциями. Автор : Mathispower4u. Лицензия : Все права защищены . Условия лицензии. 6

        (1) Четная функция: Если положить (–x) вместо x в данной функции, и если f(–x) = f(x), ∀ x ∈ domain, то функция f(x) называется четной функцией. например f (х) = е x + e -x , f(x) = x 2 , f(x) = x sin x, f(x) = cos x, f(x) = x 2 cos x все равны даже функции.

        Примеры:

        1. f(x) = x 2 + 1
        2. f(x) = cos x

        90 019 (2) Нечетная функция: Если мы поместим (-x) в место x в заданной функции, и если f(–x) = –f(x), ∀ x ∈ domain, то f(x) называется нечетной функцией. например f(x) = e x – e -x , f(x) = x 3 , f(x) = sin x, f(x) = x cos x, f(x) = x 2 sin x все являются нечетными функциями.

        Примеры:

        1. f(x) = x 3 – x
        2. f(x) = sin x

        Свойства четных и нечетной функции

        • График четной функции всегда симметричны относительно оси Y. График нечетной функции всегда симметричен относительно начала координат.
        • Произведение двух четных функций является четной функцией.
        • Сумма и разность двух четных функций является четной функцией.
        • Сумма и разность двух нечетных функций является нечетной функцией.
        • Произведение двух нечетных функций является четной функцией.
        • Произведение четной и нечетной функций является нечетной функцией. Не обязательно, чтобы каждая функция была четной или нечетной. Некоторые функции могут быть ни четными, ни нечетными. например f(x) = x 2 + x 3 , f(x) = log e х, f(x) = е х .
        • Сумма четной и нечетной функций не является ни четной, ни нечетной функцией.
        • Нулевая функция f(x) = 0 — единственная функция, которая одновременно является четной и нечетной.

        Периодическая функция

        Функция называется периодической, если каждое ее значение повторяется через определенный интервал. Таким образом, функция f(x) будет периодической, если существует положительное действительное число T такое, что f(x + T) = f(x), ∀ x ∈ domain. Здесь наименьшее положительное значение T называется периодом функции.

        Ясно, что f(x) = f(x + T) = f(x + 2T) = f(x + 3T) = …… e . g ., sin x, cos x, tan x — периодические функции с периодом 2π, 2π и π соответственно.

        Некоторые стандартные результаты о периодических функциях

        Составная функция

        Если f : A ⟶ B и g : B ⟶ C – две функции, то составная функция f и g, gof A ⟶ C, будет определена как gof(x) = g[f(x)], ∀ x ∈ A.

        Свойства композиции функции:

        1. f четный, g четный ⇒ функция тумана четный.
        2. f нечетно, g нечетно ⇒ туман – нечетная функция.
        3. f – четное значение, g – нечетное значение ⇒ туман – четная функция.
        4. f — нечетное, g — четное ⇒ туман — четная функция.
        5. Композиция функций не коммутативна, т. е. туман ≠ гоф.
        6. Композиция функций является ассоциативной, т. е. (туман) oh = fo(goh)
        7. Если f : A ⟶ B биекция, а g : B ⟶ A обратна f. Тогда туман = I B и гоф = I A , где I A и I B — тождественные функции на множествах A и B соответственно.
        8. Если f : A ⟶ B и g : B ⟶ C две биекции, то gof A ⟶ C биекция и (gof) -1 = (f -1 og -1 ).
        9. туман ≠ гоф, но если туман = гоф, то либо f -1 = g, либо g -1 = f также, (туман)(x) = (gof)(x) = (x).
        10. gof(x) — это просто g-образ f(x), где f(x) — f-образ элементов x ∈ A.
        11. Функция gof будет существовать только тогда, когда диапазон f является подмножеством области определения г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *