Как Π½Π°ΠΉΡ‚ΠΈ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ зная ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹: Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹

БкалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

НС ΠΎΡ‚ΠΊΠ»Π°Π΄Ρ‹Π²Π°ΠΉΡ‚Π΅! Π—ΠΠ“ΠžΠ’ΠžΠ Π˜Π’Π• Π½Π° Английском!

Π—ΠΠœΠ£Π§Π˜Π›Π˜ Π‘ΠžΠ›Π˜ Π’ Π‘ΠŸΠ˜ΠΠ•?

АлСксандр | 2013-11-30

БкалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (Π΄Π°Π»Π΅Π΅ Π² тСкстС БП). Π”ΠΎΡ€ΠΎΠ³ΠΈΠ΅ Π΄Ρ€ΡƒΠ·ΡŒΡ! Π’ состав экзамСна ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π³Ρ€ΡƒΠΏΠΏΠ° Π·Π°Π΄Π°Ρ‡ Π½Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². НСкоторыС Π·Π°Π΄Π°Ρ‡ΠΈ ΠΌΡ‹ ΡƒΠΆΠ΅ рассмотрСли. ΠœΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΈΡ… Π² ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ Β«Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹Β».Β  Π’ Ρ†Π΅Π»ΠΎΠΌ, тСория Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² нСслоТная, Π³Π»Π°Π²Π½ΠΎΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π΅Ρ‘ ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ. ВычислСния ΠΈ дСйствия с Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ Π² школьном курсС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ просты, Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π½Π΅ слоТныС.  ЗаглянитС Π² справочник. Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΡ‹ Ρ€Π°Π·Π±Π΅Ρ€Ρ‘ΠΌ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° БП Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (входят Π² Π•Π“Π­). Π’Π΅ΠΏΠ΅Ρ€ΡŒ Β«ΠΏΠΎΠ³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅Β» Π² Ρ‚Π΅ΠΎΡ€ΠΈΡŽ:

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π½ΡƒΠΆΠ½ΠΎ ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π΅Π³ΠΎ ΠΊΠΎΠ½Ρ†Π° Π²Ρ‹Ρ‡Π΅ΡΡ‚ΡŒΒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π΅Π³ΠΎ Π½Π°Ρ‡Π°Π»Π°

И Π΅Ρ‰Ρ‘:

*Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (ΠΌΠΎΠ΄ΡƒΠ»ΡŒ) опрСдСляСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π”Π°Π½Π½Ρ‹Π΅ Β Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ!!!

ПокаТСм ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ:

ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ·ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠΎΡ‚ 0 Π΄ΠΎ 1800Β (ΠΈΠ»ΠΈ Π² Ρ€Π°Π΄ΠΈΠ°Π½Π°Ρ… ΠΎΡ‚ 0 Π΄ΠΎ Пи).

МоТСм ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Ρ‹Π²ΠΎΠ΄Ρ‹ ΠΎ Π·Π½Π°ΠΊΠ΅ скалярного произвСдСния. Π”Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠ΅ΡŽΡ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, это ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ. Π—Π½Π°Ρ‡ΠΈΡ‚ Π·Π½Π°ΠΊ скалярного произвСдСния зависит ΠΎΡ‚ значСния косинуса ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ.

Π’ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ случаи:

1. Если ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ острый (ΠΎΡ‚ 00 Π΄ΠΎ 900), Ρ‚ΠΎ косинус ΡƒΠ³Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

2. Если ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ Ρ‚ΡƒΠΏΠΎΠΉ (ΠΎΡ‚ 900Β Π΄ΠΎ 1800), Ρ‚ΠΎ косинус ΡƒΠ³Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅Β  Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

*ΠŸΡ€ΠΈ Π½ΡƒΠ»Π΅ градусов, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅, косинус Ρ€Π°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅ ΠΈ соотвСтствСнно Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ.

ΠŸΡ€ΠΈΒ  180ΠΎ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ направлСния, косинус Ρ€Π°Π²Π΅Π½ минус Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅,Β Β ΠΈ соотвСтствСнно Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ВАЖНЫЙ ΠœΠžΠœΠ•ΠΠ’!

ΠŸΡ€ΠΈ 90ΠΎ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ пСрпСндикулярны Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ, косинус Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Π° Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΈ БП Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ. Π­Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚ (слСдствиС, Π²Ρ‹Π²ΠΎΠ΄) ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡, Π³Π΄Π΅ Ρ€Π΅Ρ‡ΡŒ ΠΈΠ΄Ρ‘Ρ‚ ΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠΌ располоТСнии Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π² Ρ‚ΠΎΠΌ числС ΠΈ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… входящих Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΉ Π±Π°Π½ΠΊ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.

Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅:Β  скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π΄Π°Π½Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π»Π΅ΠΆΠ°Ρ‚ Π½Π° пСрпСндикулярных прямых.

Π˜Ρ‚Π°ΠΊ, Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ БП Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²:

Если извСстны ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠ»ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈΡ… Π½Π°Ρ‡Π°Π» ΠΈ ΠΊΠΎΠ½Ρ†ΠΎΠ², Ρ‚ΠΎ всСгда смоТСм Π½Π°ΠΉΡ‚ΠΈ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ:

Рассмотрим Π·Π°Π΄Π°Ρ‡ΠΈ:

27724 НайдитС скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a ΠΈ b.

БкалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π΄Π²ΡƒΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ»:

Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ нСизвСстСн, Π½ΠΎ ΠΌΡ‹ Π±Π΅Π· Ρ‚Ρ€ΡƒΠ΄Π° ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π΄Π°Π»Π΅Π΅ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π½Π°Ρ‡Π°Π»Π° ΠΎΠ±ΠΎΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ с Π½Π°Ρ‡Π°Π»ΠΎΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‚ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Ρ€Π°Π²Π½Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ ΠΈΡ… ΠΊΠΎΠ½Ρ†ΠΎΠ², Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

Как Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΎ Π² этой ΡΡ‚Π°Ρ‚ΡŒΠ΅.

ВычисляСм:

ΠžΡ‚Π²Π΅Ρ‚: 40

Найдём ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ:

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΊΠΎΠ½Ρ†Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π²Ρ‹Ρ‡Π΅ΡΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π΅Π³ΠΎ Π½Π°Ρ‡Π°Π»Π°, Π·Π½Π°Ρ‡ΠΈΡ‚

ВычисляСм скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:

ΠžΡ‚Π²Π΅Ρ‚: 40

НайдитС ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ a ΠΈ b. ΠžΡ‚Π²Π΅Ρ‚ Π΄Π°ΠΉΡ‚Π΅ Π² градусах.

ΠŸΡƒΡΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄:

Для нахоТдСния ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ скалярного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²:

ΠšΠΎΡΠΈΠ½ΡƒΡ ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ:

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ:

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Ρ€Π°Π²Π½Ρ‹:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ ΠΈΡ… Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ Ρ€Π°Π²Π΅Π½ 45 градусам.

ΠžΡ‚Π²Π΅Ρ‚: 45

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅

27710. Π”Π²Π΅ стороны ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABCD Ρ€Π°Π²Π½Ρ‹ 6 ΠΈ 8. НайдитС скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² АВ ΠΈ AD.

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅

27719. Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€ΠΎΠΌΠ±Π° ABCD ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ О ΠΈ Ρ€Π°Π²Π½Ρ‹ 12 ΠΈ 16. НайдитС скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² AB ΠΈ BO.

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅

27719. Π‘Ρ‚ΠΎΡ€ΠΎΠ½Ρ‹ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABC Ρ€Π°Π²Π½Ρ‹ 3. НайдитС скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² AB ΠΈ АБ.

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅

На этом  всё! УспСхов Π²Π°ΠΌ!Β 

Π‘ ΡƒΠ²Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ, АлСксандр ΠšΡ€ΡƒΡ‚ΠΈΡ†ΠΊΠΈΡ….

На ΡƒΡ€ΠΎΠΊΠ΅ Ρ„ΠΈΠ·ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹:Β β€” Π’Π°ΠΊ, ΠΏΠ°Ρ€Π½ΠΈ, ΠΊΡ‚ΠΎ ΠΈΠ· вас ΠΊΡƒΡ€ΠΈΡ‚? ЧСстно! НС Π²Ρ€Π°Ρ‚ΡŒ! Π’Π°ΠΊ. … Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‚Ρ‹… ΠΈ Ρ‚Ρ‹. … ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ… Π—Π½Π°Ρ‡ΠΈΡ‚, Ρ‚Π°ΠΊ: ΠΌΡ‹ с Π²Π°ΠΌΠΈ ΠΏΠΎΠΊΡƒΡ€ΠΈΠΌ, ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΒ β€” ΠΏΡΡ‚ΡŒ ΠΊΡ€ΡƒΠ³ΠΎΠ² ΠΏΠΎ стадиону.

P.S: Π‘ΡƒΠ΄Ρƒ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π΅Π½ Π’Π°ΠΌ, Ссли расскаТСтС ΠΎ сайтС Π² ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… сСтях.


ΠšΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΡ: Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ | Π•Π“Π­-β„–1Π£Π³Π»Ρ‹

НЕ ΠžΠ’ΠšΠ›ΠΠ”Π«Π’ΠΠ™! Π—Π°Π³ΠΎΠ²ΠΎΡ€ΠΈ Π½Π° английском!

Π”ΠžΠ›ΠžΠ™ ΠΎΠ±ΠΈΠ΄Π½Ρ‹Π΅ ошибки Π½Π° Π•Π“Π­!!

ΠŸΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° ΠΊ Π•Π“Π­, ΠΎΠ½Π»Π°ΠΉΠ½-ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ с Ѐоксворд!

Π—Π°ΠΌΡƒΡ‡ΠΈΠ»ΠΈ боль ΠΈ ΡΠΊΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ Π² ΠΌΡ‹ΡˆΡ†Π°Ρ… спины?

*НаТимая Π½Π° ΠΊΠ½ΠΎΠΏΠΊΡƒ, я даю согласиС Π½Π° рассылку, ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽ ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΡƒ ΠΊΠΎΠ½Ρ„ΠΈΠ΄Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.


Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΈΠΊ ΠΏΠΎ Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Β Β 

Выгодский М.Π―. Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΈΠΊ ΠΏΠΎ Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Изд-Π²ΠΎ «ΠΠ°ΡƒΠΊΠ°». М. 1977 Π³.

Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΈΠΊ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ вСсь ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π», входящий Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡƒ основного курса ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π²Ρ‹ΡΡˆΠΈΡ… ΡƒΡ‡Π΅Π±Π½Ρ‹Ρ… Π·Π°Π²Π΅Π΄Π΅Π½ΠΈΠΉ. Π”Π΅Ρ‚Π°Π»ΡŒΠ½Π°Ρ рубрикация ΠΈ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΉ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½Ρ‹ΠΉ ΡƒΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ быстро ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ.

Книга ΠΎΠΊΠ°ΠΆΠ΅Ρ‚ Π½Π΅ΠΎΡ†Π΅Π½ΠΈΠΌΡƒΡŽ ΠΏΠΎΠΌΠΎΡ‰ΡŒ студСнтам, ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π°ΠΌ ΠΈ Π½Π°ΡƒΡ‡Π½Ρ‹ΠΌ Ρ€Π°Π±ΠΎΡ‚Π½ΠΈΠΊΠ°ΠΌ.



ОглавлСниС

ΠŸΠ Π•Π”Π˜Π‘Π›ΠžΠ’Π˜Π•
ΠΠΠΠ›Π˜Π’Π˜Π§Π•Π‘ΠšΠΠ― Π“Π•ΠžΠœΠ•Π’Π Π˜Π― НА ΠŸΠ›ΠžΠ‘ΠšΠžΠ‘Π’Π˜
Β§ 1. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΎ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π΅ аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ
Β§ 2. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹
Β§ 3. ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚
Β§ 4. ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹
Β§ 5. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ ΡƒΠ³Π»Ρ‹
Β§ 6. ΠšΠΎΡΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚
Β§ 7. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π»ΠΈΠ½ΠΈΠΈ
Β§ 8. Π’Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС Π»ΠΈΠ½ΠΈΠΈ ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ
Β§ 9. Π’Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС Π΄Π²ΡƒΡ… Π»ΠΈΠ½ΠΈΠΉ
Β§ 10. РасстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ
Β§ 11. Π”Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ
Β§ 11Π°. Π”Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ
Β§ 12. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 13. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°
Β§ 14. ΠŸΡ€ΡΠΌΠ°Ρ линия; ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½Π½ΠΎΠ΅ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ (с ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ коэффициСнтом)
Β§ 15. ΠŸΡ€ΡΠΌΠ°Ρ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ оси
Β§ 16. ΠžΠ±Ρ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой
Β§ 17. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ прямой ΠΏΠΎ Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ
Β§ 18. УсловиС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых
Β§ 19. ΠŸΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅Π½ΠΈΠ΅ прямых
Β§ 20. УсловиС пСрпСндикулярности Π΄Π²ΡƒΡ… прямых
Β§ 21. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя прямыми
Β§ 22. УсловиС, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой
Β§ 23. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ
Β§ 24. ΠŸΡƒΡ‡ΠΎΠΊ прямых
Β§ 25. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠΉ прямой
Β§ 26. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно Π΄Π°Π½Π½ΠΎΠΉ прямой
Β§ 27. Π’Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС прямой ΠΈ ΠΏΠ°Ρ€Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ
Β§ 28. РасстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ прямой
Β§ 29. ΠŸΠΎΠ»ΡΡ€Π½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ прямой
Β§ 30. ΠΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой
Β§ 31. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ уравнСния прямой ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ
Β§ 32. ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ Π½Π° осях
Β§ 33. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой Π² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°Ρ…
Β§ 34. ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (постановка вопроса)
Β§ 35. ΠŸΠ΅Ρ€Π΅Π½ΠΎΡ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚
Β§ 36. ΠŸΠΎΠ²ΠΎΡ€ΠΎΡ‚ осСй
Β§ 37. АлгСбраичСскиС Π»ΠΈΠ½ΠΈΠΈ ΠΈ ΠΈΡ… порядок
Β§ 38. ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ
Β§ 39. НахоТдСниС Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΈ радиуса окруТности
Β§ 40. Эллипс ΠΊΠ°ΠΊ сТатая ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ
Β§ 41. Π”Ρ€ΡƒΠ³ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ эллипса
Β§ 42. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ эллипса ΠΏΠΎ Π΅Π³ΠΎ осям
Β§ 43. 2+bx+c
Β§ 51. ДирСктрисы эллипса ΠΈ Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Ρ‹
Β§ 52. ΠžΠ±Ρ‰Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ эллипса, Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Ρ‹ ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹
Β§ 53. ΠšΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ сСчСния
Β§ 54. Π”ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Ρ‹ коничСского сСчСния
Β§ 55. Π”ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Ρ‹ эллипса
Β§ 56. Π”ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Ρ‹
Β§ 57. Π”ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹
Β§ 58. Π›ΠΈΠ½ΠΈΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 59. Π—Π°ΠΏΠΈΡΡŒ ΠΎΠ±Ρ‰Π΅Π³ΠΎ уравнСния Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни
Β§ 60. Π£ΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠ΅ уравнСния Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни; ΠΎΠ±Ρ‰ΠΈΠ΅ замСчания
Β§ 61. ΠŸΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ уравнСния Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни
Β§ 62. Π—Π°Π²Π΅Ρ€ΡˆΠ°ΡŽΡ‰Π΅Π΅ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ уравнСния Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни
Β§ 63. О ΠΏΡ€ΠΈΠ΅ΠΌΠ°Ρ…, ΠΎΠ±Π»Π΅Π³Ρ‡Π°ΡŽΡ‰ΠΈΡ… ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠ΅ уравнСния Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни
Β§ 64. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ распадСния Π»ΠΈΠ½ΠΈΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 65. НахоТдСниС прямых, ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Ρ€Π°ΡΠΏΠ°Π΄Π°ΡŽΡ‰ΡƒΡŽΡΡ линию Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 66. Π˜Π½Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ уравнСния Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни
Β§ 67. Π’Ρ€ΠΈ Ρ‚ΠΈΠΏΠ° Π»ΠΈΠ½ΠΈΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 68. Π¦Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ Π½Π΅Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 69. НахоТдСниС Ρ†Π΅Π½Ρ‚Ρ€Π° Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 70. Π£ΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠ΅ уравнСния Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 71. Равносторонняя Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Π° ΠΊΠ°ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊ уравнСния y=k/x
Β§ 72. Равносторонняя Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Π° ΠΊΠ°ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊ уравнСния y=(mx+n)/(px+q)
Β§ 73. ΠŸΠΎΠ»ΡΡ€Π½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹
Β§ 74. Бвязь ΠΌΠ΅ΠΆΠ΄Ρƒ полярными ΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ
Β§ 75. АрхимСдова ΡΠΏΠΈΡ€Π°Π»ΡŒ
Β§ 76. ΠŸΠΎΠ»ΡΡ€Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой
Β§ 77. ΠŸΠΎΠ»ΡΡ€Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ коничСского сСчСния
ΠΠΠΠ›Π˜Π’Π˜Π§Π•Π‘ΠšΠΠ― Π“Π•ΠžΠœΠ•Π’Π Π˜Π― Π’ ΠŸΠ ΠžΠ‘Π’Π ΠΠΠ‘Π’Π’Π•
Β§ 78. ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… ΠΈ скалярах
Β§ 79. Π’Π΅ΠΊΡ‚ΠΎΡ€ Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ
Β§ 80. ВСкторная Π°Π»Π³Π΅Π±Ρ€Π°
Β§ 81. ΠšΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹
Β§ 82. ΠΡƒΠ»ΡŒ-Π²Π΅ΠΊΡ‚ΠΎΡ€
Β§ 83. РавСнство Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
Β§ 84. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π½Π°Ρ‡Π°Π»Ρƒ
Β§ 85. ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹
Β§ 86. Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
Β§ 87. Π‘ΡƒΠΌΠΌΠ° Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
Β§ 88. Π’Ρ‹Ρ‡ΠΈΡ‚Π°Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
Β§ 89. Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° число
Β§ 90. Взаимная связь ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€)
Β§ 91. ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ось
Β§ 92. ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° ось
Β§ 93. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΎ проСкциях Π²Π΅ΠΊΡ‚ΠΎΡ€Π°
Β§ 94. ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² пространствС
Β§ 95. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ
Β§ 96. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°
Β§ 97. ВыраТСния Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ ΠΈ Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹
Β§ 98. ДСйствия Π½Π°Π΄ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌΠΈ своими ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ
Β§ 99. Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‡Π΅Ρ€Π΅Π· радиусы-Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π΅Π³ΠΎ Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π°
Β§ 100. Π”Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. РасстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ
Β§ 101. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ осью ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ
Β§ 102. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ коллинСарности (ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ) Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
Β§ 103. Π”Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ
Β§ 104. БкалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
Β§ 104Π°. ЀизичСский смысл скалярного произвСдСния
Β§ 105. Бвойства скалярного произвСдСния
Β§ 106. БкалярныС произвСдСния основных Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
Β§ 107. Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ скалярного произвСдСния Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ сомноТитСлСй
Β§ 108. УсловиС пСрпСндикулярности Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
Β§ 109. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ
Β§ 110. ΠŸΡ€Π°Π²Π°Ρ ΠΈ лСвая систСмы Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
Β§ 111. Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
Β§ 112. Бвойства Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния
Β§ 113. Π’Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Π΅ произвСдСния основных Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
Β§ 114. Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ сомноТитСлСй
Β§ 115. ΠšΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹
Β§ 116. БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅
Β§ 117. Бвойства смСшанного произвСдСния
Β§ 118. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ порядка
Β§ 119. Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ смСшанного произвСдСния Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ сомноТитСлСй
Β§ 120. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ компланарности Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅
Β§ 121. ОбъСм ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°
Β§ 122. Π”Π²ΠΎΠΉΠ½ΠΎΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅
Β§ 123. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости
Β§ 124. ΠžΡΠΎΠ±Ρ‹Π΅ случаи полоТСния плоскости ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚
Β§ 125. УсловиС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ плоскостСй
Β§ 126. УсловиС пСрпСндикулярности плоскостСй
Β§ 127. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя плоскостями
Β§ 128. ΠŸΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, проходящая Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠΉ плоскости
Β§ 129. ΠŸΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, проходящая Ρ‡Π΅Ρ€Π΅Π· Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ
Β§ 130. ΠžΡ‚Ρ€Π΅Π·ΠΊΠΈ Π½Π° осях
Β§ 131. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости Π² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°Ρ…
Β§ 132. ΠŸΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, проходящая Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрпСндикулярно Π΄Π°Π½Π½ΠΎΠΉ плоскости
Β§ 133. ΠŸΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, проходящая Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно Π΄Π²ΡƒΠΌ плоскостям
Β§ 134. Π’ΠΎΡ‡ΠΊΠ° пСрСсСчСния Ρ‚Ρ€Π΅Ρ… плоскостСй
Β§ 135. Π’Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС плоскости ΠΈ ΠΏΠ°Ρ€Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ
Β§ 136. РасстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ плоскости
Β§ 137. ΠŸΠΎΠ»ΡΡ€Π½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ плоскости
Β§ 138. ΠΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости
Β§ 139. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ уравнСния плоскости ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ
Β§ 140. УравнСния прямой Π² пространствС
Β§ 141. УсловиС, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π΄Π²Π° уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠΉ стСпСни ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΏΡ€ΡΠΌΡƒΡŽ
Β§ 142. ΠŸΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅Π½ΠΈΠ΅ прямой с ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
Β§ 143. ΠΠ°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€
Β§ 144. Π£Π³Π»Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ прямой ΠΈ осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚
Β§ 145. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя прямыми
Β§ 146. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ прямой ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
Β§ 147. Условия ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ пСрпСндикулярности прямой ΠΈ плоскости
Β§ 148. ΠŸΡƒΡ‡ΠΎΠΊ плоскостСй
Β§ 149. ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ прямой Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ плоскости
Β§ 150. Π‘ΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Π΅ уравнСния прямой
Β§ 151. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ прямой ΠΊ симмСтричному Π²ΠΈΠ΄Ρƒ
Β§ 152. ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ уравнСния прямой
Β§ 153. ΠŸΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅Π½ΠΈΠ΅ плоскости с прямой, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ парамСтричСски
Β§ 154. УравнСния прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ Π΄Π°Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ
Β§ 155. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно Π΄Π°Π½Π½ΠΎΠΉ прямой
Β§ 156. УравнСния прямой, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрпСндикулярно Π΄Π°Π½Π½ΠΎΠΉ плоскости
Β§ 157. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΈ Π΄Π°Π½Π½ΡƒΡŽ ΠΏΡ€ΡΠΌΡƒΡŽ
Β§ 158. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄Π²ΡƒΠΌ Π΄Π°Π½Π½Ρ‹ΠΌ прямым
Β§ 159. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ ΠΏΡ€ΡΠΌΡƒΡŽ ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄Ρ€ΡƒΠ³ΠΎΠΉ Π΄Π°Π½Π½ΠΎΠΉ прямой
Β§ 160. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ ΠΏΡ€ΡΠΌΡƒΡŽ ΠΈ пСрпСндикулярной Π΄Π°Π½Π½ΠΎΠΉ плоскости
Β§ 161. УравнСния пСрпСндикуляра, ΠΎΠΏΡƒΡ‰Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ· Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Π΄Π°Π½Π½ΡƒΡŽ ΠΏΡ€ΡΠΌΡƒΡŽ
Β§ 162. Π”Π»ΠΈΠ½Π° пСрпСндикуляра, ΠΎΠΏΡƒΡ‰Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ· Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Π΄Π°Π½Π½ΡƒΡŽ ΠΏΡ€ΡΠΌΡƒΡŽ
Β§ 163. УсловиС, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π΄Π²Π΅ прямыС ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ ΠΈΠ»ΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости
Β§ 164. УравнСния ΠΎΠ±Ρ‰Π΅Π³ΠΎ пСрпСндикуляра ΠΊ Π΄Π²ΡƒΠΌ Π΄Π°Π½Π½Ρ‹ΠΌ прямым
Β§ 165. ΠšΡ€Π°Ρ‚Ρ‡Π°ΠΉΡˆΠ΅Π΅ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ двумя прямыми
Β§ 165Π°. ΠŸΡ€Π°Π²Ρ‹Π΅ ΠΈ Π»Π΅Π²Ρ‹Π΅ ΠΏΠ°Ρ€Ρ‹ прямых
Β§ 166. ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚
Β§ 167. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ повСрхности
Β§ 168. ЦилиндричСскиС повСрхности, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· осСй ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚
Β§ 169. УравнСния Π»ΠΈΠ½ΠΈΠΈ
Β§ 170. ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π»ΠΈΠ½ΠΈΠΈ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ
Β§ 171. АлгСбраичСскиС повСрхности ΠΈ ΠΈΡ… порядок
Β§ 172. Π‘Ρ„Π΅Ρ€Π°
§ 173. Эллипсоид
Β§ 174. ΠžΠ΄Π½ΠΎΠΏΠΎΠ»ΠΎΡΡ‚Π½Ρ‹ΠΉ Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»ΠΎΠΈΠ΄
Β§ 175. Двуполостный Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»ΠΎΠΈΠ΄
Β§ 176. ΠšΠΎΠ½ΡƒΡ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 177. ЭллиптичСский ΠΏΠ°Ρ€Π°Π±ΠΎΠ»ΠΎΠΈΠ΄
Β§ 178. ГипСрболичСский ΠΏΠ°Ρ€Π°Π±ΠΎΠ»ΠΎΠΈΠ΄
Β§ 179. ΠŸΠ΅Ρ€Π΅Ρ‡Π΅Π½ΡŒ повСрхностСй Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 180. ΠŸΡ€ΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ повСрхностСй Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 181. ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΠΈ вращСния
Β§ 182. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ порядков
Β§ 183. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΠΈ Π²Ρ‹ΡΡˆΠΈΡ… порядков
Β§ 184. Бвойства ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»Π΅ΠΉ
Β§ 185. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΏΡ€ΠΈΠ΅ΠΌ вычислСния ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»Π΅ΠΉ
Β§ 186. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΊ исслСдованию ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ систСмы ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ
Β§ 187. Π”Π²Π° уравнСния с двумя нСизвСстными
Β§ 188. Π”Π²Π° уравнСния с двумя нСизвСстными
Β§ 189. ΠžΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Π°Ρ систСма Π΄Π²ΡƒΡ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с трСмя нСизвСстными
Β§ 190. Π”Π²Π° уравнСния с двумя нСизвСстными
Β§ 190Π°. БистСма n ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с n нСизвСстными
ΠžΠ‘ΠΠžΠ’ΠΠ«Π• ПОНЯВИЯ ΠœΠΠ’Π•ΠœΠΠ’Π˜Π§Π•Π‘ΠšΠžΠ“Πž ΠΠΠΠ›Π˜Π—Π
Β§ 192. Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ числа
Β§ 193. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ (вСщСствСнныС) числа
§ 194. Числовая ось
Β§ 195. ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΈ постоянныС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹
Β§ 196. Ѐункция
Β§ 197. Бпособы задания Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 198. ΠžΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 199. ΠŸΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ
Β§ 200. ΠšΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ
Β§ 201. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ элСмСнтарныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 202. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 203. ΠŸΡ€Π΅Π΄Π΅Π» ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ
Β§ 204. ΠŸΡ€Π΅Π΄Π΅Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 205. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€Π΅Π΄Π΅Π»Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 206. ΠŸΡ€Π΅Π΄Π΅Π» постоянной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹
Β§ 207. БСсконСчно малая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°
Β§ 208. БСсконСчно большая Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°
Β§ 209. Бвязь ΠΌΠ΅ΠΆΠ΄Ρƒ бСсконСчно большими ΠΈ бСсконСчно ΠΌΠ°Π»Ρ‹ΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ
Β§ 210. ΠžΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹
Β§ 211. Π Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ понятия ΠΏΡ€Π΅Π΄Π΅ΠΏΠ°
Β§ 212. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ свойства бСсконСчно ΠΌΠ°Π»Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½
Β§ 213. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ…
§ 214. Число С
Β§ 215. ΠŸΡ€Π΅Π΄Π΅Π» sinx/x ΠΏΡ€ΠΈ x стрСмящСмся ΠΊ 0
Β§ 216. Π­ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ‚Π½Ρ‹Π΅ бСсконСчно ΠΌΠ°Π»Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹
Β§ 217. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ бСсконСчно ΠΌΠ°Π»Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½
Β§ 217Π°. ΠŸΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹
Β§ 218. ΠΠ΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅
Β§ 219. Бвойства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π² Ρ‚ΠΎΡ‡ΠΊΠ΅
Β§ 219Π°. ΠžΠ΄Π½ΠΎΡΡ‚ΠΎΡ€ΠΎΠ½Π½ΠΈΠΉ ΠΏΡ€Π΅Π΄Π΅Π»; скачок Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 220. ΠΠ΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅
Β§ 221. Бвойства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π½Π° Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅
Π”Π˜Π€Π€Π•Π Π•ΠΠ¦Π˜ΠΠ›Π¬ΠΠžΠ• Π˜Π‘Π§Π˜Π‘Π›Π•ΠΠ˜Π•
Β§ 223. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ
Β§ 224. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 225. ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ
Β§ 226. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ
Β§ 227. Бвойства ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ
Β§ 228. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»
Β§ 229. ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ смысл Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°
Β§ 230. ГСомСтричСский смысл Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°
Β§ 231. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 232. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Ρ‹ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ
Β§ 233. Бвойства Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°
Β§ 234. Π˜Π½Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ выраТСния f'(x)dx
Β§ 235. Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ‡Π΅Ρ€Π΅Π· Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Ρ‹
Β§ 236. Ѐункция ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (слоТная функция)
Β§ 237. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 238. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 239. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ произвСдСния
Β§ 240. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ частного (Π΄Ρ€ΠΎΠ±ΠΈ)
Β§ 241. ΠžΠ±Ρ€Π°Ρ‚Π½Π°Ρ функция
Β§ 242. ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Π΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡ‹
Β§ 243. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ логарифмичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 244. ЛогарифмичСскоС Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
Β§ 245. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 246. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ
Β§ 247. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Ρ… тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ
Β§ 247Π°. НСкоторыС ΠΏΠΎΡƒΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹
Β§ 248. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Π² ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Ρ… вычислСниях
Β§ 249. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° ΠΊ ΠΎΡ†Π΅Π½ΠΊΠ΅ ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»
Β§ 250. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ нСявных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ
Β§ 251. ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ Π»ΠΈΠ½ΠΈΠΈ
Β§ 252. ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 253. Π¦ΠΈΠΊΠ»ΠΎΠΈΠ΄Π°
Β§ 254. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ плоской Π»ΠΈΠ½ΠΈΠΈ
Β§ 254Π°. ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΊ ΠΊΡ€ΠΈΠ²Ρ‹ΠΌ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 255. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ
Β§ 256. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π²Ρ‹ΡΡˆΠΈΡ… порядков
Β§ 257. ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ смысл Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ
Β§ 258. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Ρ‹ Π²Ρ‹ΡΡˆΠΈΡ… порядков
Β§ 259. Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π²Ρ‹ΡΡˆΠΈΡ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Ρ‡Π΅Ρ€Π΅Π· Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Ρ‹
Β§ 260. Π’Ρ‹ΡΡˆΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… парамСтричСски
Β§ 261. Π’Ρ‹ΡΡˆΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ нСявных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ
Β§ 262. ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ Π›Π΅ΠΉΠ±Π½ΠΈΡ†Π°
Β§ 263. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Ролля
Β§ 264. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π›Π°Π³Ρ€Π°Π½ΠΆΠ° ΠΎ срСднСм Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ
Β§ 265. Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠΉ
Β§ 266. ΠžΠ±ΠΎΠ±Ρ‰Π΅Π½Π½Π°Ρ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΎ срСднСм Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ (Коши)
Β§ 267. РаскрытиС нСопрСдСлСнности Π²ΠΈΠ΄Π° 0/0
Β§ 268. РаскрытиС нСопрСдСлСнности Π²ΠΈΠ΄Π° Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡ‚ΡŒ Π½Π° Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ
Β§ 269. НСопрСдСлСнныС выраТСния Π΄Ρ€ΡƒΠ³ΠΈΡ… Π²ΠΈΠ΄ΠΎΠ²
Β§ 270. Π˜ΡΡ‚ΠΎΡ€ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свСдСния ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π’Π΅ΠΉΠ»ΠΎΡ€Π°
Β§ 271. Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π’Π΅ΠΉΠ»ΠΎΡ€Π°
Β§ 272. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π’Π΅ΠΉΠ»ΠΎΡ€Π° ΠΊ Π²Ρ‹Ρ‡ΠΈΡΠ»Π΅Π½ΠΈΡŽ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 273. ВозрастаниС ΠΈ ΡƒΠ±Ρ‹Π²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 274. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ возрастания ΠΈ убывания Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅
Β§ 274Π°. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ возрастания ΠΈ убывания Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅
Β§ 275. ΠœΠ°ΠΊΡΠΈΠΌΡƒΠΌ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ
Β§ 276. НСобходимоС условиС максимума ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°
Β§ 277. ΠŸΠ΅Ρ€Π²ΠΎΠ΅ достаточноС условиС максимума ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°
Β§ 278. ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ нахоТдСния максимумов ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ²
Β§ 279. Π’Ρ‚ΠΎΡ€ΠΎΠ΅ достаточноС условиС максимума ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°
Β§ 280. НахоТдСниС наибольшСго ΠΈ наимСньшСго Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 281. Π’Ρ‹ΠΏΡƒΠΊΠ»ΠΎΡΡ‚ΡŒ плоских ΠΊΡ€ΠΈΠ²Ρ‹Ρ…; Ρ‚ΠΎΡ‡ΠΊΠ° ΠΏΠ΅Ρ€Π΅Π³ΠΈΠ±Π°
Β§ 282. Π‘Ρ‚ΠΎΡ€ΠΎΠ½Π° вогнутости
Β§ 283. ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ для нахоТдСния Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΏΠ΅Ρ€Π΅Π³ΠΈΠ±Π°
Β§ 284. Асимптоты
Β§ 285. НахоТдСниС асимптот, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌ осям
Β§ 286. НахоТдСниС асимптот, Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚
Β§ 287. ΠŸΡ€ΠΈΠ΅ΠΌΡ‹ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ²
Β§ 288. РСшСниС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. ΠžΠ±Ρ‰ΠΈΠ΅ замСчания
Β§ 289. РСшСниС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. Бпособ Ρ…ΠΎΡ€Π΄
Β§ 290. РСшСниС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. Бпособ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ…
Β§ 291. ΠšΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ…ΠΎΡ€Π΄ ΠΈ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ…
Π˜ΠΠ’Π•Π“Π ΠΠ›Π¬ΠΠžΠ• Π˜Π‘Π§Π˜Π‘Π›Π•ΠΠ˜Π•
Β§ 293. ΠŸΠ΅Ρ€Π²ΠΎΠΎΠ±Ρ€Π°Π·Π½Π°Ρ функция
Β§ 294. НСопрСдСлСнный ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»
Β§ 295. ГСомСтричСский смысл интСгрирования
Β§ 296. ВычислСниС постоянной интСгрирования ΠΏΠΎ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΌ Π΄Π°Π½Π½Ρ‹ΠΌ
Β§ 297. Бвойства Π½Π΅ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
Β§ 298. Π’Π°Π±Π»ΠΈΡ†Π° ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ²
Β§ 299. НСпосрСдствСнноС ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
Β§ 300. Бпособ подстановки (ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ‡Π΅Ρ€Π΅Π· Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ)
Β§ 301. Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎ частям
Β§ 302. Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… тригономСтричСских Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ
Β§ 303. ВригономСтричСскиС подстановки
Β§ 304. Π Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 304Π°. Π˜ΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Ρ†Π΅Π»ΠΎΠΉ части
Β§ 305. О ΠΏΡ€ΠΈΠ΅ΠΌΠ°Ρ… интСгрирования Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ
Β§ 306. Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ… Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ
Β§ 307. Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (ΠΎΠ±Ρ‰ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄)
Β§ 308. О Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ
Β§ 309. Об интСгрируСмости Π² элСмСнтарных функциях
Β§ 310. НСкоторыС ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹, зависящиС ΠΎΡ‚ Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΠΎΠ²
Β§ 311. Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π» ΠΎΡ‚ биномиального Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°
Β§ 312. Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹ Π²ΠΈΠ΄Π° …
Β§ 313. Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹ Π²ΠΈΠ΄Π° S R(sinx, cosx)dx
Β§ 314. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»
Β§ 315. Бвойства ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
Β§ 316. ГСомСтричСский смысл ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
Β§ 317. ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ смысл ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
Β§ 318. ΠžΡ†Π΅Π½ΠΊΠ° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
Β§ 318Π°. НСравСнство Буняковского
Β§ 319. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΎ срСднСм ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исчислСния
Β§ 320. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΊΠ°ΠΊ функция Π²Π΅Ρ€Ρ…Π½Π΅Π³ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π°
Β§ 321. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
Β§ 322. Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π» Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°. Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΡŒΡŽΡ‚ΠΎΠ½Π° β€” Π›Π΅ΠΉΠ±Π½ΠΈΡ†Π°
Β§ 323. ВычислСниС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π½Π΅ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ
Β§ 324. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎ частям
Β§ 325. Бпособ подстановки Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π΅
Β§ 326. О нСсобствСнных ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°Ρ…
Β§ 327. Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹ с бСсконСчными ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ
Β§ 328. Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΈΠΌΠ΅ΡŽΡ‰Π΅ΠΉ Ρ€Π°Π·Ρ€Ρ‹Π²
Β§ 329. О ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠΌ вычислСнии ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
Β§ 330. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ²
Β§ 331. Π€ΠΎΡ€ΠΌΡƒΠ»Π° Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ
Β§ 332. Π€ΠΎΡ€ΠΌΡƒΠ»Π° Бимпсона (параболичСских Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ)
Β§ 333. ΠŸΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ„ΠΈΠ³ΡƒΡ€, отнСсСнных ΠΊ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ
Β§ 334. Π‘Ρ…Π΅ΠΌΠ° примСнСния ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
Β§ 335. ΠŸΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ„ΠΈΠ³ΡƒΡ€, отнСсСнных ΠΊ полярным ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ
Β§ 336. ОбъСм Ρ‚Π΅Π»Π° ΠΏΠΎ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹ΠΌ сСчСниям
Β§ 337. ОбъСм Ρ‚Π΅Π»Π° вращСния
Β§ 338. Π”Π»ΠΈΠ½Π° Π΄ΡƒΠ³ΠΈ плоской Π»ΠΈΠ½ΠΈΠΈ
Β§ 339. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Π΄ΡƒΠ³ΠΈ
Β§ 340. Π”Π»ΠΈΠ½Π° Π΄ΡƒΠ³ΠΈ ΠΈ Π΅Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Π² полярных ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ…
Β§ 341. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности вращСния
ΠžΠ‘ΠΠžΠ’ΠΠ«Π• Π‘Π’Π•Π”Π•ΠΠ˜Π― О ΠŸΠ›ΠžΠ‘ΠšΠ˜Π₯ И ΠŸΠ ΠžΠ‘Π’Π ΠΠΠ‘Π’Π’Π•ΠΠΠ«Π₯ Π›Π˜ΠΠ˜Π―Π₯
Β§ 342. ΠšΡ€ΠΈΠ²ΠΈΠ·Π½Π°
Β§ 343. Π¦Π΅Π½Ρ‚Ρ€, радиус ΠΈ ΠΊΡ€ΡƒΠ³ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ плоской Π»ΠΈΠ½ΠΈΠΈ
Β§ 344. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹, радиуса ΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ плоской Π»ΠΈΠ½ΠΈΠΈ
Β§ 345. Π­Π²ΠΎΠ»ΡŽΡ‚Π° плоской Π»ΠΈΠ½ΠΈΠΈ
Β§ 346. Бвойства ΡΠ²ΠΎΠ»ΡŽΡ‚Ρ‹ плоской Π»ΠΈΠ½ΠΈΠΈ
Β§ 347. Π Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠ° (ΡΠ²ΠΎΠ»ΡŒΠ²Π΅Π½Ρ‚Π°) плоской Π»ΠΈΠ½ΠΈΠΈ
Β§ 348. ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ пространствСнной Π»ΠΈΠ½ΠΈΠΈ
Β§ 349. Винтовая линия
Β§ 350. Π”Π»ΠΈΠ½Π° Π΄ΡƒΠ³ΠΈ пространствСнной Π»ΠΈΠ½ΠΈΠΈ
Β§ 351. ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΊ пространствСнной Π»ΠΈΠ½ΠΈΠΈ
Β§ 352. ΠΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Π°Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ
Β§ 353. Π’Π΅ΠΊΡ‚ΠΎΡ€-функция скалярного Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°
Β§ 354. ΠŸΡ€Π΅Π΄Π΅Π» Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 355. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 356. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 357. Бвойства ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 358. Π‘ΠΎΠΏΡ€ΠΈΠΊΠ°ΡΠ°ΡŽΡ‰Π°ΡΡΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ
Β§ 359. Главная Π½ΠΎΡ€ΠΌΠ°Π»ΡŒ. Π‘ΠΎΠΏΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ Ρ‚Ρ€Π΅Ρ…Π³Ρ€Π°Π½Π½ΠΈΠΊ
Β§ 360. Π’Π·Π°ΠΈΠΌΠ½ΠΎΠ΅ располоТСниС Π»ΠΈΠ½ΠΈΠΈ ΠΈ плоскости
Β§ 361. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΡΠΎΠΏΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ‚Ρ€Π΅Ρ…Π³Ρ€Π°Π½Π½ΠΈΠΊΠ°
Β§ 362. Π¦Π΅Π½Ρ‚Ρ€, ось ΠΈ радиус ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ пространствСнной Π»ΠΈΠ½ΠΈΠΈ
Β§ 363. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹, радиуса ΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹ пространствСнной Π»ΠΈΠ½ΠΈΠΈ
Β§ 364. О Π·Π½Π°ΠΊΠ΅ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρ‹
Β§ 365. ΠšΡ€ΡƒΡ‡Π΅Π½ΠΈΠ΅
Π Π―Π”Π«
Β§ 367. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ряда
Β§ 368. БходящиСся ΠΈ расходящиСся ряды
Β§ 369. НСобходимоС условиС сходимости ряда
Β§ 370. ΠžΡΡ‚Π°Ρ‚ΠΎΠΊ ряда
Β§ 371. ΠŸΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅ дСйствия Π½Π°Π΄ рядами
Β§ 372. ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ряды
Β§ 373. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… рядов
Β§ 374. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ Π”Π°Π»Π°ΠΌΠ±Π΅Ρ€Π° для ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ряда
Β§ 375. Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ сходимости
Β§ 376. Π—Π½Π°ΠΊΠΎΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΉ ряд. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ Π›Π΅ΠΉΠ±Π½ΠΈΡ†Π°
Β§ 377. ΠΠ±ΡΠΎΠ»ΡŽΡ‚Π½Π°Ρ ΠΈ условная ΡΡ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ
Β§ 378. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ Π”Π°Π»Π°ΠΌΠ±Π΅Ρ€Π° для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ряда
Β§ 379. ΠŸΠ΅Ρ€Π΅ΡΡ‚Π°Π½ΠΎΠ²ΠΊΠ° Ρ‡Π»Π΅Π½ΠΎΠ² ряда
Β§ 380. Π“Ρ€ΡƒΠΏΠΏΠΈΡ€ΠΎΠ²ΠΊΠ° Ρ‡Π»Π΅Π½ΠΎΠ² ряда
Β§ 381. Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ рядов
Β§ 382. Π”Π΅Π»Π΅Π½ΠΈΠ΅ рядов
Β§ 383. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ ряд
Β§ 384. ΠžΠ±Π»Π°ΡΡ‚ΡŒ сходимости Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ряда
Β§ 385. О Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΈ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ сходимости
Β§ 386. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΈ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ сходимости
Β§ 387. ГСомСтричСский смысл Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΈ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ сходимости
Β§ 388. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ сходимости; ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ряды
Β§ 389. ΠΠ΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒ суммы ряда
Β§ 390. Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ рядов
Β§ 391. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ рядов
Β§ 392. Π‘Ρ‚Π΅ΠΏΠ΅Π½Π½ΠΎΠΉ ряд
Β§ 393. ΠŸΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ ΠΈ радиус сходимости стСпСнного ряда
Β§ 394. НахоТдСниС радиуса сходимости
Β§ 395. ΠžΠ±Π»Π°ΡΡ‚ΡŒ сходимости ряда, располоТСнного ΠΏΠΎ стСпСням Ρ… – Ρ…0
Β§ 396. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° АбСля
Β§ 397. ДСйствия со стСпСнными рядами
Β§ 398. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ стСпСнного ряда
Β§ 399. Ряд Π’Π΅ΠΉΠ»ΠΎΡ€Π°
Β§ 400. Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² стСпСнной ряд
Β§ 401. Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π² стСпСнныС ряды
Β§ 402. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ рядов ΠΊ Π²Ρ‹Ρ‡ΠΈΡΠ»Π΅Π½ΠΈΡŽ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ²
Β§ 403. ГипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 404. ΠžΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 405. ΠŸΡ€ΠΎΠΈΡΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΠΎΠ²Π°Π½ΠΈΠΉ гипСрболичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ
Β§ 406. О комплСксных числах
Β§ 407. КомплСксная функция Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°
Β§ 408. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ комплСксной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 409. Π’ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа Π² ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡƒΡŽ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ
Β§ 410. Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π­ΠΉΠ»Π΅Ρ€Π°
Β§ 411. ВригономСтричСский ряд
Β§ 412. Π˜ΡΡ‚ΠΎΡ€ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свСдСния ΠΎ тригономСтричСских рядах
Β§ 413. ΠžΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ систСмы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ cos nx, sin nx
Β§ 414. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π­ΠΉΠ»Π΅Ρ€Π°-Π€ΡƒΡ€ΡŒΠ΅
Β§ 415. Ряд Π€ΡƒΡ€ΡŒΠ΅
Β§ 416. Ряд Π€ΡƒΡ€ΡŒΠ΅ для Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 417. Ряд Π€ΡƒΡ€ΡŒΠ΅ для Ρ‡Π΅Ρ‚Π½ΠΎΠΉ ΠΈ Π½Π΅Ρ‡Π΅Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 418. Ряд Π€ΡƒΡ€ΡŒΠ΅ для Ρ€Π°Π·Ρ€Ρ‹Π²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Π”Π˜Π€Π€Π•Π Π•ΠΠ¦Π˜Π ΠžΠ’ΠΠΠ˜Π• И Π˜ΠΠ’Π•Π“Π Π˜Π ΠžΠ’ΠΠΠ˜Π• Π€Π£ΠΠšΠ¦Π˜Π™ ΠΠ•Π‘ΠšΠžΠ›Π¬ΠšΠ˜Π₯ ΠΠ Π“Π£ΠœΠ•ΠΠ’ΠžΠ’
Β§ 420. Ѐункция Ρ‚Ρ€Π΅Ρ… ΠΈ большСго числа Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ²
Β§ 421. Бпособы задания Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ²
Β§ 422. ΠŸΡ€Π΅Π΄Π΅Π» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ²
Β§ 424. ΠΠ΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ²
Β§ 425. ЧастныС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅
Β§ 426. ГСомСтричСский смысл частных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… для случая Π΄Π²ΡƒΡ… Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ²
Β§ 427. ПолноС ΠΈ частноС приращСния
Β§ 428. Частный Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»
Β§ 429. О Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ частной ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ‡Π΅Ρ€Π΅Π· Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»
Β§ 430. ΠŸΠΎΠ»Π½Ρ‹ΠΉ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»
Β§ 431. ГСомСтричСский смысл ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π° (случай Π΄Π²ΡƒΡ… Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ²)
Β§ 432. Π˜Π½Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ выраТСния … ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°
Β§ 433. Π’Π΅Ρ…Π½ΠΈΠΊΠ° диффСрСнцирования
Β§ 434. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 435. ΠšΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒ ΠΊ повСрхности
Β§ 436. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ плоскости
Β§ 437. УравнСния Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ
Β§ 438. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 439. Π—Π°ΠΌΠ΅Π½Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ полярными
Β§ 440. Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
Β§ 441. Полная производная
Β§ 442. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ нСявной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…
Β§ 443. ЧастныС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π²Ρ‹ΡΡˆΠΈΡ… порядков
Β§ 444. ΠŸΠΎΠ»Π½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Ρ‹ Π²Ρ‹ΡΡˆΠΈΡ… порядков
Β§ 445. Π’Π΅Ρ…Π½ΠΈΠΊΠ° ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ диффСрСнцирования
Β§ 446. УсловноС ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠ²
Β§ 447. Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π’Π΅ΠΉΠ»ΠΎΡ€Π° для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ²
Β§ 448. ЭкстрСмум (максимум ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ²
Β§ 449. ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ нахоТдСния экстрСмума
Β§ 450. ДостаточныС условия экстрСмума (случай Π΄Π²ΡƒΡ… Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ²)
Β§ 451. Π”Π²ΠΎΠΉΠ½ΠΎΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»
Β§ 452. ГСомСтричСский смысл Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
Β§ 453. Бвойства Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
Β§ 454. ΠžΡ†Π΅Π½ΠΊΠ° Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
Β§ 455. ВычислСниС Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° (ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠΉ случай)
Β§ 456. ВычислСниС Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° (ΠΎΠ±Ρ‰ΠΈΠΉ случай)
Β§ 457. Ѐункция Ρ‚ΠΎΡ‡ΠΊΠΈ
Β§ 458. Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Ρ‡Π΅Ρ€Π΅Π· полярныС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹
Β§ 459. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ куска повСрхности
Β§ 460. Π’Ρ€ΠΎΠΉΠ½ΠΎΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»
Β§ 461. ВычислСниС Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° (ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠΉ случай)
Β§ 462. ВычислСниС Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° (ΠΎΠ±Ρ‰ΠΈΠΉ случай)
Β§ 463. ЦилиндричСскиС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹
Β§ 464. Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Ρ‡Π΅Ρ€Π΅Π· цилиндричСскиС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹
Β§ 465. БфСричСскиС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹
Β§ 466. Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Ρ‡Π΅Ρ€Π΅Π· сфСричСскиС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹
Β§ 467. Π‘Ρ…Π΅ΠΌΠ° примСнСния Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈ Ρ‚Ρ€ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ²
Β§ 468. ΠœΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ
Β§ 471. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»
Β§ 472. ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ смысл ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
Β§ 473. ВычислСниС ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
Β§ 474. Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π“Ρ€ΠΈΠ½Π°
Β§ 475. УсловиС, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Π½Π΅ зависит ΠΎΡ‚ ΠΏΡƒΡ‚ΠΈ
Β§ 476. Другая Ρ„ΠΎΡ€ΠΌΠ° условия ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ ΠΏΠ°Ρ€Π°Π³Ρ€Π°Ρ„Π°
Π”Π˜Π€Π€Π•Π Π•ΠΠ¦Π˜ΠΠ›Π¬ΠΠ«Π• Π£Π ΠΠ’ΠΠ•ΠΠ˜Π―
Β§ 478. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка
Β§ 479. ГСомСтричСский смысл уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка
Β§ 480. Π˜Π·ΠΎΠΊΠ»ΠΈΠ½Ρ‹
Β§ 481. ЧастноС ΠΈ ΠΎΠ±Ρ‰Π΅Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка
Β§ 482. УравнСния с Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ
Β§ 483. Π Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…. ОсобоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅
Β§ 484. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² ΠΏΠΎΠ»Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»Π°Ρ…
Β§ 484Π°. Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ
Β§ 485. ΠžΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅
Β§ 486. Π›ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка
Β§ 487. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠšΠ»Π΅Ρ€ΠΎ
Β§ 488. ΠžΠ³ΠΈΠ±Π°ΡŽΡ‰Π°Ρ
Β§ 489. Об интСгрируСмости Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ
Β§ 490. ΠŸΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π­ΠΉΠ»Π΅Ρ€Π°
Β§ 491. Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ рядов
Β§ 492. О составлСнии Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ
Β§ 493. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 494. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ n-Π³ΠΎ порядка
Β§ 495. Π‘Π»ΡƒΡ‡Π°ΠΈ пониТСния порядка
Β§ 496. Π›ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка
Β§ 497. Π›ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка с постоянными коэффициСнтами
Β§ 498. Π›ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка с постоянными коэффициСнтами Π±Π΅Π· ΠΏΡ€Π°Π²ΠΎΠΉ части
Β§ 498Π°. Бвязь ΠΌΠ΅ΠΆΠ΄Ρƒ случаями 1 ΠΈ 3 Β§ 498
Β§ 499. Π›ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка с постоянными коэффициСнтами с ΠΏΡ€Π°Π²ΠΎΠΉ Ρ‡Π°ΡΡ‚ΡŒΡŽ
Β§ 500. Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ уравнСния любого порядка
Β§ 501. ΠœΠ΅Ρ‚ΠΎΠ΄ Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ постоянных
Β§ 502. БистСмы Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ систСмы
ΠΠ•ΠšΠžΠ’ΠžΠ Π«Π• Π—ΠΠœΠ•Π§ΠΠ’Π•Π›Π¬ΠΠ«Π• ΠšΠ Π˜Π’Π«Π•
Β§ 503. Π‘Ρ‚Ρ€ΠΎΡ„ΠΎΠΈΠ΄Π°
Β§ 504. Циссоида Π”ΠΈΠΎΠΊΠ»Π°
Β§ 505. Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ² лист
Β§ 506. Π’Π΅Ρ€Π·ΡŒΠ΅Ρ€Π° АньСзи
Β§ 507. ΠšΠΎΠ½Ρ…ΠΎΠΈΠ΄Π° НикомСда
Β§ 508. Π£Π»ΠΈΡ‚ΠΊΠ° Паскаля; ΠΊΠ°Ρ€Π΄ΠΈΠΎΠΈΠ΄Π°
Β§ 509. Линия Кассини
Β§ 510. ЛСмниската Π‘Π΅Ρ€Π½ΡƒΠ»Π»ΠΈ
Β§ 511. АрхимСдова ΡΠΏΠΈΡ€Π°Π»ΡŒ
Β§ 512. Π­Π²ΠΎΠ»ΡŒΠ²Π΅Π½Ρ‚Π° (Ρ€Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠ°) ΠΊΡ€ΡƒΠ³Π°
Β§ 513. ЛогарифмичСская ΡΠΏΠΈΡ€Π°Π»ΡŒ
Β§ 514. Π¦ΠΈΠΊΠ»ΠΎΠΈΠ΄Ρ‹
Β§ 515. Π­ΠΏΠΈΡ†ΠΈΠΊΠ»ΠΎΠΈΠ΄Ρ‹ ΠΈ Π³ΠΈΠΏΠΎΡ†ΠΈΠΊΠ»ΠΎΠΈΠ΄Ρ‹
Β§ 516. Врактриса
§ 517. ЦСпная линия

python — Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ?

Π’ ΠΎΠ±Ρ‰Π΅ΠΌ, ΡƒΠ³ΠΎΠ» Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (x, y) ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ math.atan2(y, x) . Π’Π΅ΠΊΡ‚ΠΎΡ€ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π·Π°Π΄Π°Π½ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ (x1, y1) ΠΈ (x2, y2) Π½Π° Π»ΠΈΠ½ΠΈΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΡƒΠ³ΠΎΠ» Π»ΠΈΠ½ΠΈΠΈ Ρ€Π°Π²Π΅Π½ math. atan2(y2-y1, x2-x1) . Π˜ΠΌΠ΅ΠΉΡ‚Π΅ Π² Π²ΠΈΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ ось Y Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠ΅Ρ€Π΅Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ ( -y соотвСтствСнно y1-y2 ), ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ось Y ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π²Π²Π΅Ρ€Ρ…, Π½ΠΎ Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ PyGame ось Y ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π²Π½ΠΈΠ·. Π•Π΄ΠΈΠ½ΠΈΡ†Π° ΡƒΠ³Π»Π° Π² Python 9ΠœΠΎΠ΄ΡƒΠ»ΡŒ 0005 math β€” это Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹, Π½ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅ΠΉ измСрСния ΡƒΠ³Π»Π° Π² функциях PyGame, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ pygame.transform.rotate() , являСтся градус. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΡƒΠ³ΠΎΠ» Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ ΠΈΠ· Ρ€Π°Π΄ΠΈΠ°Π½ΠΎΠ² Π² градусы с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ math.degrees :

 import math
ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π°_Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (Ρ…, Ρƒ):
    Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ math.стСпСни(math.atan2(-y, x))
ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π°_Π»ΠΈΠ½ΠΈΠΈ (x1, y1, x2, y2):
    Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ math.стСпСни(math.atan2(-(y2-y1), x2-x1))
 

Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ angle_to ΠΈΠ· pygame.math.Vector2 ΠΎΠ±ΡŠΠ΅ΠΊΡ‚. Π­Ρ‚ΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ вычисляСт ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ PyGame Π² градусах. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π½Π΅Ρ‚ нСобходимости ΠΏΠ΅Ρ€Π΅Π²ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ ось Y ΠΈ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ Ρ€Π°Π΄ΠΈΠ°Π½Ρ‹ Π² градусы. ΠŸΡ€ΠΎΡΡ‚ΠΎ вычислитС ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΈ (1, 0) :

 def angle_of_vector(x, y):
    Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ pygame. math.Vector2 (x, y).angle_to ((1, 0))
ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π°_Π»ΠΈΠ½ΠΈΠΈ (x1, y1, x2, y2):
    Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ angle_of_vector (x2-x1, y2-y1)
 

ΠœΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

 import pygame
ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ
ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π°_Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (Ρ…, Ρƒ):
    #return math.стСпСни(math.atan2(-y, x)) # 1: с math.atan
    return pygame.math.Vector2(x, y).angle_to((1, 0)) # 2: с pygame.math.Vector2.angle_to
    
ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π°_Π»ΠΈΠ½ΠΈΠΈ (x1, y1, x2, y2):
    #return math.стСпСни(math.atan2(-y1-y2, x2-x1)) # 1: math.atan
    Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ angle_of_vector(x2-x1, y2-y1) # 2: pygame.math.Vector2.angle_to
    
pygame.init()
ΠΎΠΊΠ½ΠΎ = pygame.display.set_mode((400, 400))
часы = pygame.time.Clock()
ΡˆΡ€ΠΈΡ„Ρ‚ = pygame.font.SysFont (Π½Π΅Ρ‚, 50)
ΡƒΠ³ΠΎΠ» = 0
радиус = 150
vec = (радиус, 0)
Π·Π°ΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ = Π˜ΡΡ‚ΠΈΠ½Π°
Π²ΠΎ врСмя Ρ€Π°Π±ΠΎΡ‚Ρ‹:
    часы.Ρ‚ΠΈΠΊ(60)
    для события Π² pygame.event.get():
        Ссли event.type == pygame.Π’Π«Π™Π’Π˜:
            Π·Π°ΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ = Π›ΠΎΠΆΡŒ
    cpt = ΠΎΠΊΠ½ΠΎ.get_rect().Ρ†Π΅Π½Ρ‚Ρ€
    pt = cpt[0] + vec[0], cpt[1] + vec[1]
    ΡƒΠ³ΠΎΠ» = ΡƒΠ³ΠΎΠ»_Π²Π΅ΠΊΡ‚ΠΎΡ€Π°(*vec)
    ΠΎΠΊΠ½ΠΎ. Π·Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ((255, 255, 255))
    pygame.draw.circle (ΠΎΠΊΠ½ΠΎ, (0, 0, 0), cpt, радиус, 1)
    pygame.draw.line (ΠΎΠΊΠ½ΠΎ, (0, 255, 0), cpt, (cpt [0] + радиус, cpt [1]), 3)
    pygame.draw.line (ΠΎΠΊΠ½ΠΎ, (255, 0, 0), cpt, pt, 3)
    text_surf = font.render(str(round(angle/5)*5) + "Β°", True, (255, 0, 0))
    text_surf.set_alpha(127)
    window.blit(text_surf, text_surf.get_rect(Π½ΠΈΠΆΠ½ΠΈΠΉ Π»Π΅Π²Ρ‹ΠΉ = (cpt[0]+20, cpt[1]-20)))
    pygame.display.flip()
    ΡƒΠ³ΠΎΠ» = (ΡƒΠ³ΠΎΠ» + 1)% 360
    vec = радиус * math.cos(ΡƒΠ³ΠΎΠ»*math.pi/180), радиус * -math.sin(ΡƒΠ³ΠΎΠ»*math.pi/180)
pygame.Π²Ρ‹ΠΉΡ‚ΠΈ()
Π’Ρ‹Ρ…ΠΎΠ΄()
 

angle_to ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для вычислСния ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈΠ»ΠΈ линиями:

 def angle_between_vectors(x1, y1, x2, y2):
    Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ pygame.math.Vector2 (x1, y1).angle_to ((x2, y2))
 

ΠœΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

 ΠΈΠΌΠΏΠΎΡ€Ρ‚ pygame
ΠΈΠΌΠΏΠΎΡ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ
def angle_between_vectors (x1, y1, x2, y2):
    Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ pygame.math.Vector2 (x1, y1).angle_to ((x2, y2))
ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π°_Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (Ρ…, Ρƒ):
    Π²Π΅Ρ€Π½ΡƒΡ‚ΡŒ pygame. math.Vector2 (x, y).angle_to ((1, 0))
    
pygame.init()
ΠΎΠΊΠ½ΠΎ = pygame.display.set_mode((400, 400))
часы = pygame.time.Clock()
ΡˆΡ€ΠΈΡ„Ρ‚ = pygame.font.SysFont (Π½Π΅Ρ‚, 50)
ΡƒΠ³ΠΎΠ» = 0
радиус = 150
vec1 = (радиус, 0)
vec2 = (радиус, 0)
Π·Π°ΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ = Π˜ΡΡ‚ΠΈΠ½Π°
Π²ΠΎ врСмя Ρ€Π°Π±ΠΎΡ‚Ρ‹:
    часы.Ρ‚ΠΈΠΊ(60)
    для события Π² pygame.event.get():
        Ссли event.type == pygame.Π’Π«Π™Π’Π˜:
            Π·Π°ΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ = Π›ΠΎΠΆΡŒ
    cpt = ΠΎΠΊΠ½ΠΎ.get_rect().Ρ†Π΅Π½Ρ‚Ρ€
    pt1 = cpt[0] + vec1[0], cpt[1] + vec1[1]
    pt2 = cpt[0] + vec2[0], cpt[1] + vec2[1]
    ΡƒΠ³ΠΎΠ» = ΡƒΠ³ΠΎΠ»_ΠΌΠ΅ΠΆΠ΄Ρƒ_Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ(*vec2, *vec1)
    ΠΎΠΊΠ½ΠΎ.Π·Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ((255, 255, 255))
    pygame.draw.circle (ΠΎΠΊΠ½ΠΎ, (0, 0, 0), cpt, радиус, 1)
    pygame.draw.line (ΠΎΠΊΠ½ΠΎ, (0, 255, 0), cpt, pt1, 3)
    pygame.draw.line(ΠΎΠΊΠ½ΠΎ, (255, 0, 0), cpt, pt2, 3)
    text_surf = font.render(str(round(angle/5)*5) + "Β°", True, (255, 0, 0))
    text_surf.set_alpha(127)
    window.blit(text_surf, text_surf.get_rect(Π½ΠΈΠΆΠ½ΠΈΠΉ Π»Π΅Π²Ρ‹ΠΉ = (cpt[0]+20, cpt[1]-20)))
    pygame.display.flip()
    ΡƒΠ³ΠΎΠ»1 = (ΡƒΠ³ΠΎΠ»_Π²Π΅ΠΊΡ‚ΠΎΡ€Π°(*vec1) + 1/3)% 360
    vec1 = радиус * math. cos(ΡƒΠ³ΠΎΠ»1*math.pi/180), радиус * -math.sin(ΡƒΠ³ΠΎΠ»1*math.pi/180)
    ΡƒΠ³ΠΎΠ»2 = (ΡƒΠ³ΠΎΠ»_Π²Π΅ΠΊΡ‚ΠΎΡ€Π°(*vec2) + 1)% 360
    vec2 = радиус * math.cos(ΡƒΠ³ΠΎΠ»2*math.pi/180), радиус * -math.sin(ΡƒΠ³ΠΎΠ»2*math.pi/180)
pygame.Π²Ρ‹ΠΉΡ‚ΠΈ()
Π’Ρ‹Ρ…ΠΎΠ΄()
 

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ β€” это бСсплатный инструмСнт, простой Π² использовании, ΠΎΠ½ ΠΎΡ‡Π΅Π½ΡŒ быстро вычисляСт ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ. Однако, Ссли вас интСрСсуСт Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚, Π½ΠΎ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π·Π½Π°Π½ΠΈΠΉ, чувствуйтС сСбя ΠΊΠ°ΠΊ Π΄ΠΎΠΌΠ° ΠΈ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΡŒΡ‚Π΅ΡΡŒ с содСрТаниСм Π½Π° этой страницС, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° нашСм сайтС.

Наши прСдлоТСния для Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΈ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π° Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π°Π»Π³Π΅Π±Ρ€Π΅: ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ, ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния ΠΈ, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ ΠΆΠ΅, эта ΡΡ‚Π°Ρ‚ΡŒΡ. Π’Π°ΠΊΠΆΠ΅ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΡŒΡ‚Π΅ΡΡŒ с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ нашими ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈ ΠΎΡΡ‚Π°Π²ΡŒΡ‚Π΅ ΠΎΡ‚Π·Ρ‹Π². Нам всСгда приятно ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΎ Π²Π°ΡˆΠΈΡ… впСчатлСниях ΠΎ нашСй Ρ€Π°Π±ΠΎΡ‚Π΅.

МногиС студСнты подходят ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π°Π»Π³Π΅Π±Ρ€Π΅ со страхом ΠΈ Ρ€Π°Π·ΠΎΡ‡Π°Ρ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ. Если Π²Ρ‹ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π½ΠΈΡ…, Π²ΠΎΡ‚ ΠΏΠΎΡ‡Π΅ΠΌΡƒ это происходит с Π²Π°ΠΌΠΈ. НС Π½ΠΎΠ²ΠΎΡΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ взгляд Π½Π° Π·Π°ΠΊΠΎΠ½Ρ‹ ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹, особСнно Π½Π° рисунки, относящиСся ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π°Π»Π³Π΅Π±Ρ€Π΅, сбиваСт с Ρ‚ΠΎΠ»ΠΊΡƒ. Π’ΠΎΡ‡Π½Π΅Π΅, ΠΎΡ‚ всСх этих символов, Π½ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ² ΠΈ Π·Π°ΠΏΡƒΡ‚Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Ρƒ вас затуманиваСтся Π³ΠΎΠ»ΠΎΠ²Π°, ΠΈ Π²Ρ‹ тСряСтС интСрСс Π΄Π°ΠΆΠ΅ ΠΊ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠ°ΠΌ Π΅Π΅ Π²Ρ‹ΡƒΡ‡ΠΈΡ‚ΡŒ.

Π§Ρ‚ΠΎ, Ссли ΠΌΡ‹ ΠΏΠΎΠΎΠ±Π΅Ρ‰Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ эта ΡΡ‚Π°Ρ‚ΡŒΡ прСдоставит Π²Π°ΠΌ всС Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π΄Π΅Ρ‚Π°Π»ΠΈ, ΠΎΡΡ‚Π°Π²Π°ΡΡΡŒ ΠΏΡ€ΠΈ этом Π»Π΅Π³ΠΊΠΎ Ρ‡ΠΈΡ‚Π°Π΅ΠΌΠΎΠΉ? ΠœΡ‹ Π΄ΡƒΠΌΠ°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π²Π°ΠΌ Π±Ρ‹ это ΠΏΠΎΠ½Ρ€Π°Π²ΠΈΠ»ΠΎΡΡŒ. ИмСнно поэтому ΠΊΠΎΠΌΠ°Π½Π΄Π° ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠ² CalCon Ρ€Π΅ΡˆΠΈΠ»Π° Π²Π°ΡˆΡƒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ. РСшСниС, ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΌΡ‹ Π³ΠΎΠ²ΠΎΡ€ΠΈΠΌ, β€” это ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ слСдуСт ΡΡ‚Π°Ρ‚ΡŒΡ.

Π’Π΅ΠΊΡ‚ΠΎΡ€ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π§Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ нашС ΠΎΠ±Π΅Ρ‰Π°Π½ΠΈΠ΅, Π²ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, ΠΌΡ‹ объясним, Ρ‡Ρ‚ΠΎ прСдставляСт собой Π²Π΅ΠΊΡ‚ΠΎΡ€ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π’Π΅Ρ€ΠΌΠΈΠ½ Β«Π²Π΅ΠΊΡ‚ΠΎΡ€ Β» ΡƒΠ²ΠΈΠ΄Π΅Π» свСт Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π°Ρ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π² ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅. Напротив, Ρ‚Π΅, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π΅ΡΡ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ скаляров . Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ двумя ΠΈΠ»ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ.

НаиболСС распространСнныС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ связаны с Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ пространства, Π³Π΄Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ Π½Π° прямой Π»ΠΈΠ½ΠΈΠΈ, опрСдСляСтся Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ. Π£ΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰Π°Ρ стрСлка опрСдСляСт своС Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ вдоль прямой Π»ΠΈΠ½ΠΈΠΈ, Π° Π΅Π΅ Π΄Π»ΠΈΠ½Π° ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π° Π΅Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅.

Π’ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅, Π²Π΅ΠΊΡ‚ΠΎΡ€ Π² n-ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС описываСтся n ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ (Π³Π΄Π΅ n — любоС число). Но Π΄Π°Π²Π°ΠΉΡ‚Π΅ посмотрим Π½Π° Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ² Π²Π΅ΠΊΡ‚ΠΎΡ€, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π΅ΡΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅, ΠΈ, согласно ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌΡƒ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΡŽ, это Π΄Π²ΡƒΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€. Π­Ρ‚ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ прСдставляСт собой ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ Π»ΠΈΠ½ΠΈΠΈ с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ»ΠΈ, графичСски, стрСлку, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΡƒΡŽ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ (А) с ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ (Π’). ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ΡΡ ΠΊΠ°ΠΊ \vec{AB}.

Если Π² любом случаС это Π±Ρ‹Π»ΠΎ нСдостаточно ясно, ΠΌΡ‹ считаСм, Ρ‡Ρ‚ΠΎ ΠŸΡ€ΠΈΠΌΠ΅Ρ€ ΠΈΠ· Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ подстСгнСт вашС Π²ΠΎΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠ½ΡΡ‚ΡŒ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Ρ‹, упомянутыС Ρ€Π°Π½Π΅Π΅. Для ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΠΈ прСдставим сСбС Π±Π΅Π³ΡƒΠ½Π°, стоящСго Π½Π° стартовой Π»ΠΈΠ½ΠΈΠΈ ΠΈ Π³ΠΎΡ‚ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ±Π΅ΠΆΠ°Ρ‚ΡŒ ΠΌΠ°Ρ€Π°Ρ„ΠΎΠ½ Π½Π° ΠΏΡΡ‚ΡŒΠ΄Π΅ΡΡΡ‚ ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΠΎ прямой трассС.

Π’Π°ΠΊ ΠΊΠ°ΠΊ этот ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΎΠ΄Π»Π΅Π½ Π² ΠΎΠ±ΠΎΠΈΡ… направлСниях, ΠΏΡ€ΠΈ этом образуя ΠΏΡ€ΡΠΌΡƒΡŽ линию , Ρ‡Π°ΡΡ‚ΡŒ, выбранная Π² качСствС Π΄Π»ΠΈΠ½Ρ‹ ΠΌΠ°Ρ€Π°Ρ„ΠΎΠ½Π°, Π»Π΅ΠΆΠΈΡ‚ Π½Π° этой прямой. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, линиями старта ΠΈ Ρ„ΠΈΠ½ΠΈΡˆΠ° ΡΠ²Π»ΡΡŽΡ‚ΡΡ стартовых (А) ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… (Π’) Ρ‚ΠΎΡ‡Π΅ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Π˜Ρ‚Π°ΠΊ, Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° β€” это Π΄Π»ΠΈΠ½Π° ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚Π°, Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ опрСдСляСтся Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π±Π΅Π³ΡƒΠ½Π°, Π±Π΅Π³ΡƒΡ‰Π΅Π³ΠΎ ΠΊ Ρ„ΠΈΠ½ΠΈΡˆΡƒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ?

Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ β€” это Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΉ ΡƒΠ³ΠΎΠ», ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ соСдинСниСм хвостов Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π’Π°ΠΆΠ½ΠΎ ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠ½ΡƒΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΡƒΠ³ΠΎΠ» образуСтся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡƒΡ‚Π΅ΠΌ соСдинСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Ρ€Π΅ΡˆΠΊΠ°ΠΌΠΈ, Π° Π½Π΅ Ρ€Π΅ΡˆΠΊΠ°ΠΌΠΈ ΠΈΠ»ΠΈ Ρ€Π΅ΡˆΠΊΠ°-Π³ΠΎΠ»ΠΎΠ²Π°. Π§Ρ‚ΠΎ касаСтся возмоТности Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ это ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ±ΠΈΠ²Π°Ρ‚ΡŒ с Ρ‚ΠΎΠ»ΠΊΡƒ, ΠΌΡ‹ ΠΏΠΎΠΊΠ°ΠΆΠ΅ΠΌ это Π½Π° ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ΅.

Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ

Π’Π°ΠΊΠΆΠ΅ Π²Π°ΠΆΠ½ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ для соСдинСния хвостов Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΌΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ сдвиг.

Как Π½Π°ΠΉΡ‚ΠΈ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ

НахоТдСниС ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ Π±ΡƒΠ΄Π΅Ρ‚ описано Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… ΡˆΠ°Π³Π°Ρ…:

  1. ΠœΡ‹ Π½Π°Ρ‡Π½Π΅ΠΌ с нахоТдСния скалярного произвСдСния Π½Π°ΡˆΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²:
 \vec{a } \cdot \vec{b} = |\vec{a}| \cdot|\vec{b}| \cdot \cos(\alpha) 

БкалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся скалярным ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊ Π½Π°Π±ΠΎΡ€Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌ числом ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ. Π‘ΠΈΠΌΠ²ΠΎΠ» скалярного произвСдСния β€” толстая Ρ‚ΠΎΡ‡ΠΊΠ°. 9{2}}}

ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Ссли Π²Ρ‹ Π·Π½Π°Π΅Ρ‚Π΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΡƒΡŽ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π²Π°ΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… Π² ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½ΡƒΡŽ Π½ΠΎΡ‚Π°Ρ†ΠΈΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². НапримСр, Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€ описываСтся Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ A=[x_1, y_1] ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ B=[x_2, y_2] , Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€ \vec {a} ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ ΠΊΠ°ΠΊ: \vec {a} = [ x_2 — x_1, y_2 — y_1]

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ

Для Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ понимания ΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹ с Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ Π² этом ΠΏΠ°Ρ€Π°Π³Ρ€Π°Ρ„Π΅ ΠΌΡ‹ Ρ€Π°Π·Π΄Π΅Π»ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ Π² 2D ΠΈ 3D пространствС. 9{2}}}

Если Π²Π΅ΠΊΡ‚ΠΎΡ€ описываСтся Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ , Ρ‚ΠΎ сначала Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹:

Π’Π΅ΠΊΡ‚ΠΎΡ€ Π² Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС

Для Π²Π΅ΠΊΡ‚ΠΎΡ€Π° \vec {a} : A = [x_ {1}, y_{1}], B = [x_{2}, y_{2}], поэтому Π²Π΅ΠΊΡ‚ΠΎΡ€ \vec {a} = [x_{2} — x_{1}, y_{2} — y_{ 1}]

Для Π²Π΅ΠΊΡ‚ΠΎΡ€Π° \vec {b}: C = [x_{3}, y_{3}] , D = [x_{4}, y_{4}] , поэтому Π²Π΅ΠΊΡ‚ΠΎΡ€ \vec {b} = [ x_{4} — x_{3}, y_{4} — y_{3}]

Π’Π΅ΠΏΠ΅Ρ€ΡŒ подставим эти ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ: 9{2}}}

Если гСомСтрия Π²Π΅ΠΊΡ‚ΠΎΡ€Π° описываСтся Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ , Ρ‚ΠΎ сначала Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹:

Π’Π΅ΠΊΡ‚ΠΎΡ€ Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС

Для Π²Π΅ΠΊΡ‚ΠΎΡ€Π° \vec {a}: A = [ x_1, y_1, z_1], B = [x_2, y_2, z_2] , поэтому \vec {a} = [x_2 — x_1, y_2 — y_1, z_2 — z_1]

Для Π²Π΅ΠΊΡ‚ΠΎΡ€Π° \vec {b}: C = [ x_3, y_3, z_3], D = [x_4, y_4, z_4] , поэтому \vec {b} = [x_4 — x_3, y_4 — y_3, z_4 — z_3]

Как Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΌΡ‹ познакомимся с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ Π½Π°ΡˆΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², подставляСм ΠΈΡ… Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ: 9{2}}}

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ β€” ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ?

Учитывая ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ, ΠΌΡ‹ прСуспСли Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ этот ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ максимально простым Π² использовании. БоотвСтствСнно, ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ инструкции Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΈ ΡƒΠ΄ΠΎΠ±ΠΎΠ²Π°Ρ€ΠΈΠΌΡ‹ для Π½ΠΎΠ²ΠΈΡ‡ΠΊΠ°:

  1. Π’ самом Π½Π°Ρ‡Π°Π»Π΅ Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅, находится Π»ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π² 2D ΠΈΠ»ΠΈ 3D пространствС,
  2. Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°: Π²Π΅ΠΊΡ‚ΠΎΡ€ прСдставлСн с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ ΠΈΠ»ΠΈ ΠΏΠΎ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ.
  3. ПослС этого Π²Π²Π΅Π΄ΠΈΡ‚Π΅ Π² ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ поля ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° значСния, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².
  4. ПослС выполнСния послСднСго шага ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΈ появится Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚.

Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ β€” ΠΏΡ€ΠΈΠΌΠ΅Ρ€

Π’ этом ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ \vec{a}=[7,1] ΠΈ \vec{b}=[5,5] . Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠΉΡ‚ΠΈ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ шаги:

9{2}}=5\ΠΊΠ²{2}

И, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ:

ΡƒΠ³ΠΎΠ» = \ arccos \ frac {\ vec {a} \ cdot \ vec {b}} }{|\ vec {a} | \cdot |\vec{b}|}=arccos\frac{40}{5\sqrt{2} \cdot 5\sqrt{2}}=36,87 \градус

ИспользованиС ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ избавляСт вас ΠΎΡ‚ Ρ€ΡƒΡ‡Π½Ρ‹Ρ… расчСтов ΠΈ Π² Ρ‚ΠΎ ΠΆΠ΅ врСмя являСтся простым Π² использовании.

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *