Π‘ΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ²
ΠΠ΅ ΠΎΡΠΊΠ»Π°Π΄ΡΠ²Π°ΠΉΡΠ΅! ΠΠΠΠΠΠΠ ΠΠ’Π Π½Π° ΠΠ½Π³Π»ΠΈΠΉΡΠΊΠΎΠΌ!
ΠΠΠΠ£Π§ΠΠΠ ΠΠΠΠ Π Π‘ΠΠΠΠ?
ΠΠ»Π΅ΠΊΡΠ°Π½Π΄Ρ | 2013-11-30
Π‘ΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² (Π΄Π°Π»Π΅Π΅ Π² ΡΠ΅ΠΊΡΡΠ΅ Π‘Π). ΠΠΎΡΠΎΠ³ΠΈΠ΅ Π΄ΡΡΠ·ΡΡ! Π ΡΠΎΡΡΠ°Π² ΡΠΊΠ·Π°ΠΌΠ΅Π½Π° ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π²Ρ ΠΎΠ΄ΠΈΡ Π³ΡΡΠΏΠΏΠ° Π·Π°Π΄Π°Ρ Π½Π° ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ². ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ Π·Π°Π΄Π°ΡΠΈ ΠΌΡ ΡΠΆΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π»ΠΈ. ΠΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΠΈΡ Π² ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ Β«ΠΠ΅ΠΊΡΠΎΡΡΒ».Β Π ΡΠ΅Π»ΠΎΠΌ, ΡΠ΅ΠΎΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Π½Π΅ΡΠ»ΠΎΠΆΠ½Π°Ρ, Π³Π»Π°Π²Π½ΠΎΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π΅Ρ ΠΈΠ·ΡΡΠΈΡΡ. ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ Π² ΡΠΊΠΎΠ»ΡΠ½ΠΎΠΌ ΠΊΡΡΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΏΡΠΎΡΡΡ, ΡΠΎΡΠΌΡΠ»Ρ Π½Π΅ ΡΠ»ΠΎΠΆΠ½ΡΠ΅. Β ΠΠ°Π³Π»ΡΠ½ΠΈΡΠ΅ Π² ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ. Π ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΌΡ ΡΠ°Π·Π±Π΅ΡΡΠΌ Π·Π°Π΄Π°ΡΠΈ Π½Π° Π‘Π Π²Π΅ΠΊΡΠΎΡΠΎΠ² (Π²Ρ ΠΎΠ΄ΡΡ Π² ΠΠΠ). Π’Π΅ΠΏΠ΅ΡΡ Β«ΠΏΠΎΠ³ΡΡΠΆΠ΅Π½ΠΈΠ΅Β» Π² ΡΠ΅ΠΎΡΠΈΡ:
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΠ°, Π½ΡΠΆΠ½ΠΎ ΠΈΠ· ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π΅Π³ΠΎ ΠΊΠΎΠ½ΡΠ° Π²ΡΡΠ΅ΡΡΡΒ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π΅Π³ΠΎ Π½Π°ΡΠ°Π»Π°
Π Π΅ΡΡ:
*ΠΠ»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° (ΠΌΠΎΠ΄ΡΠ»Ρ) ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΠ°Π½Π½ΡΠ΅ Β ΡΠΎΡΠΌΡΠ»Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ!!!
ΠΠΎΠΊΠ°ΠΆΠ΅ΠΌ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ:
ΠΠΎΠ½ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΎΡ 0 Π΄ΠΎ 1800Β (ΠΈΠ»ΠΈ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ ΠΎΡ 0 Π΄ΠΎ ΠΠΈ).
ΠΠΎΠΆΠ΅ΠΌ ΡΠ΄Π΅Π»Π°ΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ ΠΎ Π·Π½Π°ΠΊΠ΅ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ. ΠΠ»ΠΈΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΈΠΌΠ΅ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΡΡΠΎ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎ. ΠΠ½Π°ΡΠΈΡ Π·Π½Π°ΠΊ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ.
ΠΠΎΠ·ΠΌΠΎΠΆΠ½Ρ ΡΠ»ΡΡΠ°ΠΈ:
1. ΠΡΠ»ΠΈ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ ΠΎΡΡΡΡΠΉ (ΠΎΡ 00 Π΄ΠΎ 900), ΡΠΎ ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅.
2. ΠΡΠ»ΠΈ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ ΡΡΠΏΠΎΠΉ (ΠΎΡ 900Β Π΄ΠΎ 1800), ΡΠΎ ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅Β Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅.
*ΠΡΠΈ Π½ΡΠ»Π΅ Π³ΡΠ°Π΄ΡΡΠΎΠ², ΡΠΎ Π΅ΡΡΡ ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡΠΎΡΡ ΠΈΠΌΠ΅ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ.
ΠΡΠΈΒ 180ΠΎ, ΡΠΎ Π΅ΡΡΡ ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡΠΎΡΡ ΠΈΠΌΠ΅ΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ, ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ°Π²Π΅Π½ ΠΌΠΈΠ½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅,Β Β ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π±ΡΠ΄Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ.
Π’Π΅ΠΏΠ΅ΡΡ ΠΠΠΠΠ«Π ΠΠΠΠΠΠ’!
ΠΡΠΈ 90ΠΎ, ΡΠΎ Π΅ΡΡΡ ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡΠΎΡΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Ρ Π΄ΡΡΠ³ Π΄ΡΡΠ³Ρ, ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, Π° Π·Π½Π°ΡΠΈΡ ΠΈ Π‘Π ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ. ΠΡΠΎΡ ΡΠ°ΠΊΡ (ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅, Π²ΡΠ²ΠΎΠ΄) ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΈΡ Π·Π°Π΄Π°Ρ, Π³Π΄Π΅ ΡΠ΅ΡΡ ΠΈΠ΄ΡΡ ΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠΌ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΠΎΠ², Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΠΈ Π² Π·Π°Π΄Π°ΡΠ°Ρ Π²Ρ ΠΎΠ΄ΡΡΠΈΡ Π² ΠΎΡΠΊΡΡΡΡΠΉ Π±Π°Π½ΠΊ Π·Π°Π΄Π°Π½ΠΈΠΉ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅.
Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅:Β ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ ΡΠΎΠ³Π΄Π° ΠΈ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π΄Π°Π½Π½ΡΠ΅ Π²Π΅ΠΊΡΠΎΡΡ Π»Π΅ΠΆΠ°Ρ Π½Π° ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΡΡ ΠΏΡΡΠΌΡΡ .
ΠΡΠ°ΠΊ, ΡΠΎΡΠΌΡΠ»Ρ Π‘Π Π²Π΅ΠΊΡΠΎΡΠΎΠ²:
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΈΠ»ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠ΅ΠΊ ΠΈΡ Π½Π°ΡΠ°Π» ΠΈ ΠΊΠΎΠ½ΡΠΎΠ², ΡΠΎ Π²ΡΠ΅Π³Π΄Π° ΡΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡΠΈ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π·Π°Π΄Π°ΡΠΈ:
27724 ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² a ΠΈ b.
Π‘ΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π΄Π²ΡΡ ΡΠΎΡΠΌΡΠ»:
Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ΅Π½, Π½ΠΎ ΠΌΡ Π±Π΅Π· ΡΡΡΠ΄Π° ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΈ Π΄Π°Π»Π΅Π΅ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π½Π°ΡΠ°Π»Π° ΠΎΠ±ΠΎΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ Ρ Π½Π°ΡΠ°Π»ΠΎΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΡΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π΄Π°Π½Π½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠ°Π²Π½Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌ ΠΈΡ ΠΊΠΎΠ½ΡΠΎΠ², ΡΠΎ Π΅ΡΡΡ
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΠ° ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΎ Π² ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠ΅.
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ:
ΠΡΠ²Π΅Ρ: 40
ΠΠ°ΠΉΠ΄ΡΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΈ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΠ· ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΊΠΎΠ½ΡΠ° Π²Π΅ΠΊΡΠΎΡΠ° Π²ΡΡΠ΅ΡΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π΅Π³ΠΎ Π½Π°ΡΠ°Π»Π°, Π·Π½Π°ΡΠΈΡ
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:
ΠΡΠ²Π΅Ρ: 40
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ a ΠΈ b. ΠΡΠ²Π΅Ρ Π΄Π°ΠΉΡΠ΅ Π² Π³ΡΠ°Π΄ΡΡΠ°Ρ .
ΠΡΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΈΠΌΠ΅ΡΡ Π²ΠΈΠ΄:
ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ²:
ΠΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ:
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ:
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π΄Π°Π½Π½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠ°Π²Π½Ρ:
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ ΠΈΡ Π² ΡΠΎΡΠΌΡΠ»Ρ:
Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ ΡΠ°Π²Π΅Π½ 45 Π³ΡΠ°Π΄ΡΡΠ°ΠΌ.
ΠΡΠ²Π΅Ρ: 45
ΠΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅
ΠΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅
27710. ΠΠ²Π΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ABCD ΡΠ°Π²Π½Ρ 6 ΠΈ 8. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΠ ΠΈ AD.
ΠΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅
27719. ΠΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΡΠΎΠΌΠ±Π° ABCD ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΡΡ Π² ΡΠΎΡΠΊΠ΅ Π ΠΈ ΡΠ°Π²Π½Ρ 12 ΠΈ 16. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² AB ΠΈ BO.
ΠΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅
27719. Π‘ΡΠΎΡΠΎΠ½Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ABC ΡΠ°Π²Π½Ρ 3. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² AB ΠΈ ΠΠ‘.
ΠΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ° ΡΡΠΎΠΌΒ Π²ΡΡ! Π£ΡΠΏΠ΅Ρ ΠΎΠ² Π²Π°ΠΌ!Β
Π‘ ΡΠ²Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ, ΠΠ»Π΅ΠΊΡΠ°Π½Π΄Ρ ΠΡΡΡΠΈΡΠΊΠΈΡ .
ΠΠ° ΡΡΠΎΠΊΠ΅ ΡΠΈΠ·ΠΊΡΠ»ΡΡΡΡΡ:Β β Π’Π°ΠΊ, ΠΏΠ°ΡΠ½ΠΈ, ΠΊΡΠΎ ΠΈΠ· Π²Π°Ρ ΠΊΡΡΠΈΡ? Π§Π΅ΡΡΠ½ΠΎ! ΠΠ΅ Π²ΡΠ°ΡΡ! Π’Π°ΠΊ. … Π·Π½Π°ΡΠΈΡ, ΡΡ… ΠΈ ΡΡ. … ΠΠΎΠ½ΡΡΠ½ΠΎ… ΠΠ½Π°ΡΠΈΡ, ΡΠ°ΠΊ: ΠΌΡ Ρ Π²Π°ΠΌΠΈ ΠΏΠΎΠΊΡΡΠΈΠΌ, ΠΎΡΡΠ°Π»ΡΠ½ΡΠΌΒ β ΠΏΡΡΡ ΠΊΡΡΠ³ΠΎΠ² ΠΏΠΎ ΡΡΠ°Π΄ΠΈΠΎΠ½Ρ.
P.S: ΠΡΠ΄Ρ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΠ΅Π½ ΠΠ°ΠΌ, Π΅ΡΠ»ΠΈ ΡΠ°ΡΡΠΊΠ°ΠΆΠ΅ΡΠ΅ ΠΎ ΡΠ°ΠΉΡΠ΅ Π² ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠ΅ΡΡΡ .
ΠΠ°ΡΠ΅Π³ΠΎΡΠΈΡ: ΠΠ΅ΠΊΡΠΎΡΡ | ΠΠΠ-β1Π£Π³Π»Ρ
ΠΠ ΠΠ’ΠΠΠΠΠ«ΠΠΠ! ΠΠ°Π³ΠΎΠ²ΠΎΡΠΈ Π½Π° Π°Π½Π³Π»ΠΈΠΉΡΠΊΠΎΠΌ!
ΠΠΠΠΠ ΠΎΠ±ΠΈΠ΄Π½ΡΠ΅ ΠΎΡΠΈΠ±ΠΊΠΈ Π½Π° ΠΠΠ!!
ΠΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΊ ΠΠΠ, ΠΎΠ½Π»Π°ΠΉΠ½-ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ Ρ Π€ΠΎΠΊΡΠ²ΠΎΡΠ΄!
ΠΠ°ΠΌΡΡΠΈΠ»ΠΈ Π±ΠΎΠ»Ρ ΠΈ ΡΠΊΠΎΠ²Π°Π½Π½ΠΎΡΡΡ Π² ΠΌΡΡΡΠ°Ρ ΡΠΏΠΈΠ½Ρ?
*ΠΠ°ΠΆΠΈΠΌΠ°Ρ Π½Π° ΠΊΠ½ΠΎΠΏΠΊΡ, Ρ Π΄Π°Ρ ΡΠΎΠ³Π»Π°ΡΠΈΠ΅ Π½Π° ΡΠ°ΡΡΡΠ»ΠΊΡ, ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΡ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»ΡΠ½ΡΡ Π΄Π°Π½Π½ΡΡ ΠΈ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Ρ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΡ ΠΊΠΎΠ½ΡΠΈΠ΄Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΡΡΠΈ.
ΠΠ³Π»Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΠ ΠΠΠΠ‘ΠΠΠΠΠΠΠΠΠΠΠ’ΠΠ§ΠΠ‘ΠΠΠ― ΠΠΠΠΠΠ’Π ΠΠ― ΠΠ ΠΠΠΠ‘ΠΠΠ‘Π’Π Β§ 1. ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΎ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ΅ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ Β§ 2. ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Β§ 3. ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Β§ 4. ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Β§ 5. ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΠ΅ ΡΠ³Π»Ρ Β§ 6. ΠΠΎΡΠΎΡΠ³ΠΎΠ»ΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Β§ 8. ΠΠ·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π»ΠΈΠ½ΠΈΠΈ ΠΈ ΡΠΎΡΠΊΠΈ Β§ 9. ΠΠ·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄Π²ΡΡ Π»ΠΈΠ½ΠΈΠΉ Β§ 10. Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΡΠΎΡΠΊΠ°ΠΌΠΈ Β§ 11. ΠΠ΅Π»Π΅Π½ΠΈΠ΅ ΠΎΡΡΠ΅Π·ΠΊΠ° Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Β§ 11Π°. ΠΠ΅Π»Π΅Π½ΠΈΠ΅ ΠΎΡΡΠ΅Π·ΠΊΠ° ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ Β§ 12. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 13. ΠΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Β§ 14. ΠΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ; ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΡΠ°Π·ΡΠ΅ΡΠ΅Π½Π½ΠΎΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ (Ρ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ) Β§ 15. ΠΡΡΠΌΠ°Ρ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ Β§ 16. ΠΠ±ΡΠ΅Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ Β§ 17. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ ΠΏΠΎ Π΅Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Β§ 18. Π£ΡΠ»ΠΎΠ²ΠΈΠ΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΡΡΠΌΡΡ Β§ 19. ΠΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΡΡ Β§ 20. Π£ΡΠ»ΠΎΠ²ΠΈΠ΅ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΡΡΠΈ Π΄Π²ΡΡ ΠΏΡΡΠΌΡΡ Β§ 21. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΠΏΡΡΠΌΡΠΌΠΈ Β§ 22. Π£ΡΠ»ΠΎΠ²ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΡΠΈ ΡΠΎΡΠΊΠΈ Π»Π΅ΠΆΠ°Ρ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ Β§ 23. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ Β§ 24. ΠΡΡΠΎΠΊ ΠΏΡΡΠΌΡΡ Β§ 25. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠΊΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ Β§ 26. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ Β§ 27. ΠΠ·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΏΠ°ΡΡ ΡΠΎΡΠ΅ΠΊ Β§ 28. Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠΎΡΠΊΠΈ Π΄ΠΎ ΠΏΡΡΠΌΠΎΠΉ Β§ 29. ΠΠΎΠ»ΡΡΠ½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΏΡΡΠΌΠΎΠΉ Β§ 30. ΠΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ Β§ 31. ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ ΠΊ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΌΡ Π²ΠΈΠ΄Ρ Β§ 32. ΠΡΡΠ΅Π·ΠΊΠΈ Π½Π° ΠΎΡΡΡ Β§ 33. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ Π² ΠΎΡΡΠ΅Π·ΠΊΠ°Ρ Β§ 34. ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ (ΠΏΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠ° Π²ΠΎΠΏΡΠΎΡΠ°) Β§ 35. ΠΠ΅ΡΠ΅Π½ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Β§ 36. ΠΠΎΠ²ΠΎΡΠΎΡ ΠΎΡΠ΅ΠΉ Β§ 37. ΠΠ»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π»ΠΈΠ½ΠΈΠΈ ΠΈ ΠΈΡ ΠΏΠΎΡΡΠ΄ΠΎΠΊ Β§ 38. ΠΠΊΡΡΠΆΠ½ΠΎΡΡΡ Β§ 39. ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠ΅Π½ΡΡΠ° ΠΈ ΡΠ°Π΄ΠΈΡΡΠ° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Β§ 40. ΠΠ»Π»ΠΈΠΏΡ ΠΊΠ°ΠΊ ΡΠΆΠ°ΡΠ°Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ Β§ 41. ΠΡΡΠ³ΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ»Π»ΠΈΠΏΡΠ° Β§ 42. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΠ»Π»ΠΈΠΏΡΠ° ΠΏΠΎ Π΅Π³ΠΎ ΠΎΡΡΠΌ Β§ 43. 2+bx+c Β§ 51. ΠΠΈΡΠ΅ΠΊΡΡΠΈΡΡ ΡΠ»Π»ΠΈΠΏΡΠ° ΠΈ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Ρ Β§ 52. ΠΠ±ΡΠ΅Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ»Π»ΠΈΠΏΡΠ°, Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Ρ ΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Β§ 54. ΠΠΈΠ°ΠΌΠ΅ΡΡΡ ΠΊΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Β§ 55. ΠΠΈΠ°ΠΌΠ΅ΡΡΡ ΡΠ»Π»ΠΈΠΏΡΠ° Β§ 56. ΠΠΈΠ°ΠΌΠ΅ΡΡΡ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Ρ Β§ 57. ΠΠΈΠ°ΠΌΠ΅ΡΡΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Β§ 58. ΠΠΈΠ½ΠΈΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 59. ΠΠ°ΠΏΠΈΡΡ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Β§ 60. Π£ΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ; ΠΎΠ±ΡΠΈΠ΅ Π·Π°ΠΌΠ΅ΡΠ°Π½ΠΈΡ Β§ 61. ΠΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Β§ 62. ΠΠ°Π²Π΅ΡΡΠ°ΡΡΠ΅Π΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Β§ 63. Π ΠΏΡΠΈΠ΅ΠΌΠ°Ρ , ΠΎΠ±Π»Π΅Π³ΡΠ°ΡΡΠΈΡ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Β§ 64. ΠΡΠΈΠ·Π½Π°ΠΊ ΡΠ°ΡΠΏΠ°Π΄Π΅Π½ΠΈΡ Π»ΠΈΠ½ΠΈΠΉ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 65. ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΡΡ , ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ ΡΠ°ΡΠΏΠ°Π΄Π°ΡΡΡΡΡΡ Π»ΠΈΠ½ΠΈΡ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 66. ΠΠ½Π²Π°ΡΠΈΠ°Π½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Β§ 67. Π’ΡΠΈ ΡΠΈΠΏΠ° Π»ΠΈΠ½ΠΈΠΉ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 68. Π¦Π΅Π½ΡΡΠ°Π»ΡΠ½ΡΠ΅ ΠΈ Π½Π΅ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΠ΅ Π»ΠΈΠ½ΠΈΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 69. ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠ΅Π½ΡΡΠ° ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 70. Π£ΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 71. Π Π°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΡΡ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π° ΠΊΠ°ΠΊ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ y=k/x Β§ 72. Π Π°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΡΡ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π° ΠΊΠ°ΠΊ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ y=(mx+n)/(px+q) Β§ 73. ΠΠΎΠ»ΡΡΠ½ΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Β§ 74. Π‘Π²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠΎΠ»ΡΡΠ½ΡΠΌΠΈ ΠΈ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ Β§ 75. ΠΡΡ ΠΈΠΌΠ΅Π΄ΠΎΠ²Π° ΡΠΏΠΈΡΠ°Π»Ρ Β§ 76. ΠΠΎΠ»ΡΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ Β§ 77. ΠΠΎΠ»ΡΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΠΠΠΠΠ’ΠΠ§ΠΠ‘ΠΠΠ― ΠΠΠΠΠΠ’Π ΠΠ― Π ΠΠ ΠΠ‘Π’Π ΠΠΠ‘Π’ΠΠ Β§ 78. ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΎ Π²Π΅ΠΊΡΠΎΡΠ°Ρ ΠΈ ΡΠΊΠ°Π»ΡΡΠ°Ρ Β§ 79. ΠΠ΅ΠΊΡΠΎΡ Π² Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ Β§ 80. ΠΠ΅ΠΊΡΠΎΡΠ½Π°Ρ Π°Π»Π³Π΅Π±ΡΠ° Β§ 81. ΠΠΎΠ»Π»ΠΈΠ½Π΅Π°ΡΠ½ΡΠ΅ Π²Π΅ΠΊΡΠΎΡΡ Β§ 82. ΠΡΠ»Ρ-Π²Π΅ΠΊΡΠΎΡ Β§ 83. Π Π°Π²Π΅Π½ΡΡΠ²ΠΎ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Β§ 84. ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π½Π°ΡΠ°Π»Ρ Β§ 85. ΠΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ Π²Π΅ΠΊΡΠΎΡΡ Β§ 86. Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Β§ 87. Π‘ΡΠΌΠΌΠ° Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Β§ 88. ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Β§ 89. Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π° ΡΠΈΡΠ»ΠΎ Β§ 90. ΠΠ·Π°ΠΈΠΌΠ½Π°Ρ ΡΠ²ΡΠ·Ρ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°ΡΠ½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² (Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π° Π²Π΅ΠΊΡΠΎΡ) Β§ 91. ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΎΡΠΊΠΈ Π½Π° ΠΎΡΡ Β§ 92. ΠΡΠΎΠ΅ΠΊΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° Π½Π° ΠΎΡΡ Β§ 93. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΡ Π²Π΅ΠΊΡΠΎΡΠ° Β§ 94. ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Β§ 96. ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π²Π΅ΠΊΡΠΎΡΠ° Β§ 97. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ΅ΡΠ΅Π· ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΠΈ ΡΠ΅ΡΠ΅Π· ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Β§ 98. ΠΠ΅ΠΉΡΡΠ²ΠΈΡ Π½Π°Π΄ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ, Π·Π°Π΄Π°Π½Π½ΡΠΌΠΈ ΡΠ²ΠΎΠΈΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ Β§ 99. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ΅ΡΠ΅Π· ΡΠ°Π΄ΠΈΡΡΡ-Π²Π΅ΠΊΡΠΎΡΡ Π΅Π³ΠΎ Π½Π°ΡΠ°Π»Π° ΠΈ ΠΊΠΎΠ½ΡΠ° Β§ 100. ΠΠ»ΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ°. Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΡΠΎΡΠΊΠ°ΠΌΠΈ Β§ 101. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ Β§ 102. ΠΡΠΈΠ·Π½Π°ΠΊ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°ΡΠ½ΠΎΡΡΠΈ (ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΡΡΠΈ) Π²Π΅ΠΊΡΠΎΡΠΎΠ² Β§ 103. ΠΠ΅Π»Π΅Π½ΠΈΠ΅ ΠΎΡΡΠ΅Π·ΠΊΠ° Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Β§ 104. Π‘ΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Β§ 104Π°. Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Β§ 105. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Β§ 106. Π‘ΠΊΠ°Π»ΡΡΠ½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Β§ 107. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Β§ 108. Π£ΡΠ»ΠΎΠ²ΠΈΠ΅ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΡΡΠΈ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Β§ 109. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ Β§ 110. ΠΡΠ°Π²Π°Ρ ΠΈ Π»Π΅Π²Π°Ρ ΡΠΈΡΡΠ΅ΠΌΡ ΡΡΠ΅Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Β§ 111. ΠΠ΅ΠΊΡΠΎΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Β§ 112. Π‘Π²ΠΎΠΉΡΡΠ²Π° Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Β§ 113. ΠΠ΅ΠΊΡΠΎΡΠ½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Β§ 114. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Β§ 115. ΠΠΎΠΌΠΏΠ»Π°Π½Π°ΡΠ½ΡΠ΅ Π²Π΅ΠΊΡΠΎΡΡ Β§ 116. Π‘ΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Β§ 117. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Β§ 118. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ ΡΡΠ΅ΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 119. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Β§ 120. ΠΡΠΈΠ·Π½Π°ΠΊ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°ΡΠ½ΠΎΡΡΠΈ Π² ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΠ΅ Β§ 121. ΠΠ±ΡΠ΅ΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° Β§ 122. ΠΠ²ΠΎΠΉΠ½ΠΎΠ΅ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Β§ 123. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Β§ 124. ΠΡΠΎΠ±ΡΠ΅ ΡΠ»ΡΡΠ°ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Β§ 125. Π£ΡΠ»ΠΎΠ²ΠΈΠ΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠ΅ΠΉ Β§ 126. Π£ΡΠ»ΠΎΠ²ΠΈΠ΅ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΡΡΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠ΅ΠΉ Β§ 127. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΠΌΠΈ Β§ 128. ΠΠ»ΠΎΡΠΊΠΎΡΡΡ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠΊΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Β§ 130. ΠΡΡΠ΅Π·ΠΊΠΈ Π½Π° ΠΎΡΡΡ Β§ 131. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π² ΠΎΡΡΠ΅Π·ΠΊΠ°Ρ Β§ 132. ΠΠ»ΠΎΡΠΊΠΎΡΡΡ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Β§ 133. ΠΠ»ΠΎΡΠΊΠΎΡΡΡ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ Π΄Π²ΡΠΌ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΠΌ Β§ 134. Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΅Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠ΅ΠΉ Β§ 135. ΠΠ·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΈ ΠΏΠ°ΡΡ ΡΠΎΡΠ΅ΠΊ Β§ 136. Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠΎΡΠΊΠΈ Π΄ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Β§ 137. ΠΠΎΠ»ΡΡΠ½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Β§ 138. ΠΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Β§ 139. ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΊ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΌΡ Π²ΠΈΠ΄Ρ Β§ 140. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Β§ 141. Π£ΡΠ»ΠΎΠ²ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π΄Π²Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΠΏΡΡΠΌΡΡ Β§ 142. ΠΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΡ Β§ 143. ΠΠ°ΠΏΡΠ°Π²Π»ΡΡΡΠΈΠΉ Π²Π΅ΠΊΡΠΎΡ Β§ 144. Π£Π³Π»Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Β§ 145. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΠΏΡΡΠΌΡΠΌΠΈ Β§ 146. Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΡ Β§ 147. Π£ΡΠ»ΠΎΠ²ΠΈΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΡΡΠΈ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Β§ 148. ΠΡΡΠΎΠΊ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠ΅ΠΉ Β§ 149. ΠΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΡΡΠΌΠΎΠΉ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Β§ 150. Π‘ΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ Β§ 151. ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΡΡΠΌΠΎΠΉ ΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎΠΌΡ Π²ΠΈΠ΄Ρ Β§ 152. ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ Β§ 153. ΠΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Ρ ΠΏΡΡΠΌΠΎΠΉ, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈ Β§ 154. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ Β§ 155. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ Β§ 156. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Β§ 157. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠΊΡ ΠΈ Π΄Π°Π½Π½ΡΡ ΠΏΡΡΠΌΡΡ Β§ 158. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠΊΡ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ Π΄Π²ΡΠΌ Π΄Π°Π½Π½ΡΠΌ ΠΏΡΡΠΌΡΠΌ Β§ 159. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π°Π½Π½ΡΡ ΠΏΡΡΠΌΡΡ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ Π΄ΡΡΠ³ΠΎΠΉ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ Β§ 161. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ°, ΠΎΠΏΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ· Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠΈ Π½Π° Π΄Π°Π½Π½ΡΡ ΠΏΡΡΠΌΡΡ Β§ 162. ΠΠ»ΠΈΠ½Π° ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ°, ΠΎΠΏΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ· Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠΈ Π½Π° Π΄Π°Π½Π½ΡΡ ΠΏΡΡΠΌΡΡ Β§ 163. Π£ΡΠ»ΠΎΠ²ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π΄Π²Π΅ ΠΏΡΡΠΌΡΠ΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΡΡ ΠΈΠ»ΠΈ Π»Π΅ΠΆΠ°Ρ Π² ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Β§ 164. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ° ΠΊ Π΄Π²ΡΠΌ Π΄Π°Π½Π½ΡΠΌ ΠΏΡΡΠΌΡΠΌ Β§ 165. ΠΡΠ°ΡΡΠ°ΠΉΡΠ΅Π΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ ΠΏΡΡΠΌΡΠΌΠΈ Β§ 165Π°. ΠΡΠ°Π²ΡΠ΅ ΠΈ Π»Π΅Π²ΡΠ΅ ΠΏΠ°ΡΡ ΠΏΡΡΠΌΡΡ Β§ 166. ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Β§ 167. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ Β§ 168. Π¦ΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ, Ρ ΠΊΠΎΡΠΎΡΡΡ ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΠ΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΎΡΠ΅ΠΉ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Β§ 169. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ Π»ΠΈΠ½ΠΈΠΈ Β§ 170. ΠΡΠΎΠ΅ΠΊΡΠΈΡ Π»ΠΈΠ½ΠΈΠΈ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ Β§ 171. ΠΠ»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ ΠΈ ΠΈΡ ΠΏΠΎΡΡΠ΄ΠΎΠΊ Β§ 172. Π‘ΡΠ΅ΡΠ° Β§ 173. ΠΠ»Π»ΠΈΠΏΡΠΎΠΈΠ΄ Β§ 174. ΠΠ΄Π½ΠΎΠΏΠΎΠ»ΠΎΡΡΠ½ΡΠΉ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΎΠΈΠ΄ Β§ 175. ΠΠ²ΡΠΏΠΎΠ»ΠΎΡΡΠ½ΡΠΉ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΎΠΈΠ΄ Β§ 176. ΠΠΎΠ½ΡΡ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 177. ΠΠ»Π»ΠΈΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»ΠΎΠΈΠ΄ Β§ 178. ΠΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»ΠΎΠΈΠ΄ Β§ 179. ΠΠ΅ΡΠ΅ΡΠ΅Π½Ρ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ΅ΠΉ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 180. ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΠ΅ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ΅ΠΉ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 181. ΠΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Β§ 182. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΠΈ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΈ ΡΡΠ΅ΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ² Β§ 183. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΠΈ Π²ΡΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ² Β§ 184. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»Π΅ΠΉ Β§ 185. ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΡΠΈΠ΅ΠΌ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»Π΅ΠΉ Β§ 186. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»Π΅ΠΉ ΠΊ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Β§ 187. ΠΠ²Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π΄Π²ΡΠΌΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌΠΈ Β§ 188. ΠΠ²Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π΄Π²ΡΠΌΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌΠΈ Β§ 189. ΠΠ΄Π½ΠΎΡΠΎΠ΄Π½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° Π΄Π²ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ ΡΡΠ΅ΠΌΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌΠΈ Β§ 190. ΠΠ²Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π΄Π²ΡΠΌΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌΠΈ Β§ 190Π°. Π‘ΠΈΡΡΠ΅ΠΌΠ° n ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ n Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌΠΈ ΠΠ‘ΠΠΠΠΠ«Π ΠΠΠΠ―Π’ΠΠ― ΠΠΠ’ΠΠΠΠ’ΠΠ§ΠΠ‘ΠΠΠΠ ΠΠΠΠΠΠΠ Β§ 192. Π Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π° Β§ 193. ΠΠ΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ (Π²Π΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅) ΡΠΈΡΠ»Π° Β§ 194. Π§ΠΈΡΠ»ΠΎΠ²Π°Ρ ΠΎΡΡ Β§ 196. Π€ΡΠ½ΠΊΡΠΈΡ Β§ 197. Π‘ΠΏΠΎΡΠΎΠ±Ρ Π·Π°Π΄Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 198. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 199. ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Β§ 200. ΠΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Β§ 201. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 202. ΠΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 203. ΠΡΠ΅Π΄Π΅Π» ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Β§ 204. ΠΡΠ΅Π΄Π΅Π» ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 205. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄Π΅Π»Π° ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 206. ΠΡΠ΅Π΄Π΅Π» ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Β§ 207. ΠΠ΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ°Π»Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Β§ 208. ΠΠ΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Β§ 209. Π‘Π²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΈΠΌΠΈ ΠΈ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ°Π»ΡΠΌΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ Β§ 210. ΠΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Β§ 211. Π Π°ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ ΠΏΡΠ΅Π΄Π΅ΠΏΠ° Β§ 212. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ°Π»ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½ Β§ 213. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΎ ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ Β§ 214. Π§ΠΈΡΠ»ΠΎ Π΅ Β§ 215. ΠΡΠ΅Π΄Π΅Π» sinx/x ΠΏΡΠΈ x ΡΡΡΠ΅ΠΌΡΡΠ΅ΠΌΡΡ ΠΊ 0 Β§ 216. ΠΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠ΅ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ°Π»ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Β§ 217. Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ°Π»ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½ Β§ 217Π°. ΠΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Β§ 218. ΠΠ΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ Β§ 219. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΉ, Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΡΡ Π² ΡΠΎΡΠΊΠ΅ Β§ 219Π°. ΠΠ΄Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠΉ ΠΏΡΠ΅Π΄Π΅Π»; ΡΠΊΠ°ΡΠΎΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 220. ΠΠ΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π·Π°ΠΌΠΊΠ½ΡΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ Β§ 221. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΉ, Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΡΡ Π½Π° Π·Π°ΠΌΠΊΠ½ΡΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ ΠΠΠ€Π€ΠΠ ΠΠΠ¦ΠΠΠΠ¬ΠΠΠ ΠΠ‘Π§ΠΠ‘ΠΠΠΠΠ Β§ 223. Π‘ΠΊΠΎΡΠΎΡΡΡ Β§ 224. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 225. ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ Β§ 226. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Β§ 227. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Β§ 228. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» Β§ 229. ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π° Β§ 230. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π° Β§ 231. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 232. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Β§ 233. Π‘Π²ΠΎΠΉΡΡΠ²Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π° Β§ 234. ΠΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ f'(x)dx Β§ 235. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Ρ Β§ 236. Π€ΡΠ½ΠΊΡΠΈΡ ΠΎΡ ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠ»ΠΎΠΆΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ) Β§ 237. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 238. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 239. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Β§ 240. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ (Π΄ΡΠΎΠ±ΠΈ) Β§ 241. ΠΠ±ΡΠ°ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Β§ 242. ΠΠ°ΡΡΡΠ°Π»ΡΠ½ΡΠ΅ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΡ Β§ 243. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 244. ΠΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Β§ 245. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 246. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Β§ 247. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±ΡΠ°ΡΠ½ΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Β§ 247Π°. ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΡΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ Β§ 248. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» Π² ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡΡ Β§ 249. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π° ΠΊ ΠΎΡΠ΅Π½ΠΊΠ΅ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΠΈ ΡΠΎΡΠΌΡΠ» Β§ 250. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ΡΠ²Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ Β§ 251. ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ Π»ΠΈΠ½ΠΈΠΈ Β§ 252. ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 253. Π¦ΠΈΠΊΠ»ΠΎΠΈΠ΄Π° Β§ 254. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ ΠΏΠ»ΠΎΡΠΊΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Β§ 254Π°. ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΊ ΠΊΡΠΈΠ²ΡΠΌ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 255. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½ΠΎΡΠΌΠ°Π»ΠΈ Β§ 256. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π²ΡΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ² Β§ 257. ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» Π²ΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Β§ 258. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Ρ Π²ΡΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ² Β§ 259. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π²ΡΡΡΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Ρ Β§ 260. ΠΡΡΡΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΉ, Π·Π°Π΄Π°Π½Π½ΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈ Β§ 261. ΠΡΡΡΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π½Π΅ΡΠ²Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ Β§ 262. ΠΡΠ°Π²ΠΈΠ»ΠΎ ΠΠ΅ΠΉΠ±Π½ΠΈΡΠ° Β§ 263. Π’Π΅ΠΎΡΠ΅ΠΌΠ° Π ΠΎΠ»Π»Ρ Β§ 264. Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠ°Π³ΡΠ°Π½ΠΆΠ° ΠΎ ΡΡΠ΅Π΄Π½Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ Β§ 265. Π€ΠΎΡΠΌΡΠ»Π° ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠΉ Β§ 266. ΠΠ±ΠΎΠ±ΡΠ΅Π½Π½Π°Ρ ΡΠ΅ΠΎΡΠ΅ΠΌΠ° ΠΎ ΡΡΠ΅Π΄Π½Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ (ΠΠΎΡΠΈ) Β§ 267. Π Π°ΡΠΊΡΡΡΠΈΠ΅ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΠΈ Π²ΠΈΠ΄Π° 0/0 Β§ 268. Π Π°ΡΠΊΡΡΡΠΈΠ΅ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΠΈ Π²ΠΈΠ΄Π° Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΡ Π½Π° Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΡ Β§ 269. ΠΠ΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π΄ΡΡΠ³ΠΈΡ Π²ΠΈΠ΄ΠΎΠ² Β§ 270. ΠΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎ ΡΠΎΡΠΌΡΠ»Π΅ Π’Π΅ΠΉΠ»ΠΎΡΠ° Β§ 271. Π€ΠΎΡΠΌΡΠ»Π° Π’Π΅ΠΉΠ»ΠΎΡΠ° Β§ 272. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Π’Π΅ΠΉΠ»ΠΎΡΠ° ΠΊ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 273. ΠΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 274. ΠΡΠΈΠ·Π½Π°ΠΊΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ Β§ 274Π°. ΠΡΠΈΠ·Π½Π°ΠΊΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ Β§ 275. ΠΠ°ΠΊΡΠΈΠΌΡΠΌ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ Β§ 276. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° Β§ 277. ΠΠ΅ΡΠ²ΠΎΠ΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° Β§ 278. ΠΡΠ°Π²ΠΈΠ»ΠΎ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠ² ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ² Β§ 279. ΠΡΠΎΡΠΎΠ΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° Β§ 280. ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π³ΠΎ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 281. ΠΡΠΏΡΠΊΠ»ΠΎΡΡΡ ΠΏΠ»ΠΎΡΠΊΠΈΡ ΠΊΡΠΈΠ²ΡΡ ; ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅Π³ΠΈΠ±Π° Β§ 282. Π‘ΡΠΎΡΠΎΠ½Π° Π²ΠΎΠ³Π½ΡΡΠΎΡΡΠΈ Β§ 283. ΠΡΠ°Π²ΠΈΠ»ΠΎ Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅Π³ΠΈΠ±Π° Β§ 284. ΠΡΠΈΠΌΠΏΡΠΎΡΡ Β§ 285. ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π°ΡΠΈΠΌΠΏΡΠΎΡ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΠΌ ΠΎΡΡΠΌ Β§ 286. ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π°ΡΠΈΠΌΠΏΡΠΎΡ, Π½Π΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ Β§ 287. ΠΡΠΈΠ΅ΠΌΡ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² Β§ 288. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. ΠΠ±ΡΠΈΠ΅ Π·Π°ΠΌΠ΅ΡΠ°Π½ΠΈΡ Β§ 289. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. Π‘ΠΏΠΎΡΠΎΠ± Ρ ΠΎΡΠ΄ Β§ 290. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. Π‘ΠΏΠΎΡΠΎΠ± ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ Β§ 291. ΠΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ Ρ ΠΎΡΠ΄ ΠΈ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΠΠΠ’ΠΠΠ ΠΠΠ¬ΠΠΠ ΠΠ‘Π§ΠΠ‘ΠΠΠΠΠ Β§ 293. ΠΠ΅ΡΠ²ΠΎΠΎΠ±ΡΠ°Π·Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Β§ 294. ΠΠ΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» Β§ 295. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Β§ 296. ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΌ Π΄Π°Π½Π½ΡΠΌ Β§ 297. Π‘Π²ΠΎΠΉΡΡΠ²Π° Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Β§ 298. Π’Π°Π±Π»ΠΈΡΠ° ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΠΎΠ² Β§ 299. ΠΠ΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Β§ 300. Π‘ΠΏΠΎΡΠΎΠ± ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ (ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠ΅Π· Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ) Β§ 301. ΠΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎ ΡΠ°ΡΡΡΠΌ Β§ 302. ΠΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Β§ 303. Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ Β§ 304. Π Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 304Π°. ΠΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠΉ ΡΠ°ΡΡΠΈ Β§ 305. Π ΠΏΡΠΈΠ΅ΠΌΠ°Ρ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Β§ 306. ΠΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΡ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Β§ 307. ΠΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ (ΠΎΠ±ΡΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄) Β§ 308. Π ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π° Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ Β§ 309. ΠΠ± ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΡΠ΅ΠΌΠΎΡΡΠΈ Π² ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡΡ Β§ 310. ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Ρ, Π·Π°Π²ΠΈΡΡΡΠΈΠ΅ ΠΎΡ ΡΠ°Π΄ΠΈΠΊΠ°Π»ΠΎΠ² Β§ 311. ΠΠ½ΡΠ΅Π³ΡΠ°Π» ΠΎΡ Π±ΠΈΠ½ΠΎΠΌΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π° Β§ 312. ΠΠ½ΡΠ΅Π³ΡΠ°Π»Ρ Π²ΠΈΠ΄Π° β¦ Β§ 313. ΠΠ½ΡΠ΅Π³ΡΠ°Π»Ρ Π²ΠΈΠ΄Π° S R(sinx, cosx)dx Β§ 314. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» Β§ 315. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Β§ 316. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Β§ 317. ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Β§ 318. ΠΡΠ΅Π½ΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Β§ 318Π°. ΠΠ΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΠΡΠ½ΡΠΊΠΎΠ²ΡΠΊΠΎΠ³ΠΎ Β§ 319. Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΎ ΡΡΠ΅Π΄Π½Π΅ΠΌ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Β§ 320. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ Π²Π΅ΡΡ Π½Π΅Π³ΠΎ ΠΏΡΠ΅Π΄Π΅Π»Π° Β§ 321. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Β§ 322. ΠΠ½ΡΠ΅Π³ΡΠ°Π» Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π°. Π€ΠΎΡΠΌΡΠ»Π° ΠΡΡΡΠΎΠ½Π° β ΠΠ΅ΠΉΠ±Π½ΠΈΡΠ° Β§ 323. ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ Β§ 324. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ΅ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎ ΡΠ°ΡΡΡΠΌ Β§ 325. Π‘ΠΏΠΎΡΠΎΠ± ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π΅ Β§ 326. Π Π½Π΅ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π°Ρ Β§ 327. ΠΠ½ΡΠ΅Π³ΡΠ°Π»Ρ Ρ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ ΠΏΡΠ΅Π΄Π΅Π»Π°ΠΌΠΈ Β§ 328. ΠΠ½ΡΠ΅Π³ΡΠ°Π» ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΈΠΌΠ΅ΡΡΠ΅ΠΉ ΡΠ°Π·ΡΡΠ² Β§ 329. Π ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠΌ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Β§ 330. Π€ΠΎΡΠΌΡΠ»Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² Β§ 331. Π€ΠΎΡΠΌΡΠ»Π° ΡΡΠ°ΠΏΠ΅ΡΠΈΠΉ Β§ 332. Π€ΠΎΡΠΌΡΠ»Π° Π‘ΠΈΠΌΠΏΡΠΎΠ½Π° (ΠΏΠ°ΡΠ°Π±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΉ) Β§ 333. ΠΠ»ΠΎΡΠ°Π΄ΠΈ ΡΠΈΠ³ΡΡ, ΠΎΡΠ½Π΅ΡΠ΅Π½Π½ΡΡ ΠΊ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌ Β§ 334. Π‘Ρ Π΅ΠΌΠ° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Β§ 335. ΠΠ»ΠΎΡΠ°Π΄ΠΈ ΡΠΈΠ³ΡΡ, ΠΎΡΠ½Π΅ΡΠ΅Π½Π½ΡΡ ΠΊ ΠΏΠΎΠ»ΡΡΠ½ΡΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌ Β§ 336. ΠΠ±ΡΠ΅ΠΌ ΡΠ΅Π»Π° ΠΏΠΎ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡΠΌ Β§ 337. ΠΠ±ΡΠ΅ΠΌ ΡΠ΅Π»Π° Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Β§ 338. ΠΠ»ΠΈΠ½Π° Π΄ΡΠ³ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Β§ 339. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» Π΄ΡΠ³ΠΈ Β§ 340. ΠΠ»ΠΈΠ½Π° Π΄ΡΠ³ΠΈ ΠΈ Π΅Π΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» Π² ΠΏΠΎΠ»ΡΡΠ½ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°Ρ Β§ 341. ΠΠ»ΠΎΡΠ°Π΄Ρ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΠ‘ΠΠΠΠΠ«Π Π‘ΠΠΠΠΠΠΠ― Π ΠΠΠΠ‘ΠΠΠ₯ Π ΠΠ ΠΠ‘Π’Π ΠΠΠ‘Π’ΠΠΠΠΠ«Π₯ ΠΠΠΠΠ―Π₯ Β§ 342. ΠΡΠΈΠ²ΠΈΠ·Π½Π° Β§ 343. Π¦Π΅Π½ΡΡ, ΡΠ°Π΄ΠΈΡΡ ΠΈ ΠΊΡΡΠ³ ΠΊΡΠΈΠ²ΠΈΠ·Π½Ρ ΠΏΠ»ΠΎΡΠΊΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Β§ 344. Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΊΡΠΈΠ²ΠΈΠ·Π½Ρ, ΡΠ°Π΄ΠΈΡΡΠ° ΠΈ ΡΠ΅Π½ΡΡΠ° ΠΊΡΠΈΠ²ΠΈΠ·Π½Ρ ΠΏΠ»ΠΎΡΠΊΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Β§ 345. ΠΠ²ΠΎΠ»ΡΡΠ° ΠΏΠ»ΠΎΡΠΊΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Β§ 346. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΠ²ΠΎΠ»ΡΡΡ ΠΏΠ»ΠΎΡΠΊΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Β§ 347. Π Π°Π·Π²Π΅ΡΡΠΊΠ° (ΡΠ²ΠΎΠ»ΡΠ²Π΅Π½ΡΠ°) ΠΏΠ»ΠΎΡΠΊΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Β§ 348. ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Β§ 349. ΠΠΈΠ½ΡΠΎΠ²Π°Ρ Π»ΠΈΠ½ΠΈΡ Β§ 350. ΠΠ»ΠΈΠ½Π° Π΄ΡΠ³ΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Β§ 351. ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Β§ 352. ΠΠΎΡΠΌΠ°Π»ΡΠ½Π°Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ Β§ 353. ΠΠ΅ΠΊΡΠΎΡ-ΡΡΠ½ΠΊΡΠΈΡ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Β§ 354. ΠΡΠ΅Π΄Π΅Π» Π²Π΅ΠΊΡΠΎΡ-ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 355. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π²Π΅ΠΊΡΠΎΡ-ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 356. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» Π²Π΅ΠΊΡΠΎΡ-ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 357. Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π° Π²Π΅ΠΊΡΠΎΡ-ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 358. Π‘ΠΎΠΏΡΠΈΠΊΠ°ΡΠ°ΡΡΠ°ΡΡΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ Β§ 359. ΠΠ»Π°Π²Π½Π°Ρ Π½ΠΎΡΠΌΠ°Π»Ρ. Π‘ΠΎΠΏΡΡΡΡΠ²ΡΡΡΠΈΠΉ ΡΡΠ΅Ρ Π³ΡΠ°Π½Π½ΠΈΠΊ Β§ 360. ΠΠ·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π»ΠΈΠ½ΠΈΠΈ ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Β§ 361. ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ Π²Π΅ΠΊΡΠΎΡΡ ΡΠΎΠΏΡΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ ΡΡΠ΅Ρ Π³ΡΠ°Π½Π½ΠΈΠΊΠ° Β§ 362. Π¦Π΅Π½ΡΡ, ΠΎΡΡ ΠΈ ΡΠ°Π΄ΠΈΡΡ ΠΊΡΠΈΠ²ΠΈΠ·Π½Ρ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Β§ 363. Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΊΡΠΈΠ²ΠΈΠ·Π½Ρ, ΡΠ°Π΄ΠΈΡΡΠ° ΠΈ ΡΠ΅Π½ΡΡΠ° ΠΊΡΠΈΠ²ΠΈΠ·Π½Ρ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Β§ 364. Π Π·Π½Π°ΠΊΠ΅ ΠΊΡΠΈΠ²ΠΈΠ·Π½Ρ Β§ 365. ΠΡΡΡΠ΅Π½ΠΈΠ΅ Π Π―ΠΠ« Β§ 367. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΡΠ΄Π° Β§ 368. Π‘Ρ ΠΎΠ΄ΡΡΠΈΠ΅ΡΡ ΠΈ ΡΠ°ΡΡ ΠΎΠ΄ΡΡΠΈΠ΅ΡΡ ΡΡΠ΄Ρ Β§ 369. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΡΠ΄Π° Β§ 370. ΠΡΡΠ°ΡΠΎΠΊ ΡΡΠ΄Π° Β§ 371. ΠΡΠΎΡΡΠ΅ΠΉΡΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π°Π΄ ΡΡΠ΄Π°ΠΌΠΈ Β§ 372. ΠΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΡΠ΄Ρ Β§ 373. Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΡΠ΄ΠΎΠ² Β§ 374. ΠΡΠΈΠ·Π½Π°ΠΊ ΠΠ°Π»Π°ΠΌΠ±Π΅ΡΠ° Π΄Π»Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΄Π° Β§ 375. ΠΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΡΠΉ ΠΏΡΠΈΠ·Π½Π°ΠΊ ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Β§ 376. ΠΠ½Π°ΠΊΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΡΡΠ΄. ΠΡΠΈΠ·Π½Π°ΠΊ ΠΠ΅ΠΉΠ±Π½ΠΈΡΠ° Β§ 377. ΠΠ±ΡΠΎΠ»ΡΡΠ½Π°Ρ ΠΈ ΡΡΠ»ΠΎΠ²Π½Π°Ρ ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Β§ 378. ΠΡΠΈΠ·Π½Π°ΠΊ ΠΠ°Π»Π°ΠΌΠ±Π΅ΡΠ° Π΄Π»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΄Π° Β§ 379. ΠΠ΅ΡΠ΅ΡΡΠ°Π½ΠΎΠ²ΠΊΠ° ΡΠ»Π΅Π½ΠΎΠ² ΡΡΠ΄Π° Β§ 380. ΠΡΡΠΏΠΏΠΈΡΠΎΠ²ΠΊΠ° ΡΠ»Π΅Π½ΠΎΠ² ΡΡΠ΄Π° Β§ 381. Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠ΄ΠΎΠ² Β§ 382. ΠΠ΅Π»Π΅Π½ΠΈΠ΅ ΡΡΠ΄ΠΎΠ² Β§ 383. Π€ΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΉ ΡΡΠ΄ Β§ 384. ΠΠ±Π»Π°ΡΡΡ ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΄Π° Β§ 385. Π ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΉ ΠΈ Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Β§ 386. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΉ ΠΈ Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Β§ 387. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΉ ΠΈ Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Β§ 388. ΠΡΠΈΠ·Π½Π°ΠΊ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ; ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠ΅ ΡΡΠ΄Ρ Β§ 389. ΠΠ΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΡΡΡ ΡΡΠΌΠΌΡ ΡΡΠ΄Π° Β§ 390. ΠΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ΄ΠΎΠ² Β§ 391. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ΄ΠΎΠ² Β§ 392. Π‘ΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠΉ ΡΡΠ΄ Β§ 393. ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ ΠΈ ΡΠ°Π΄ΠΈΡΡ ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΄Π° Β§ 394. ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠ°Π΄ΠΈΡΡΠ° ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Β§ 395. ΠΠ±Π»Π°ΡΡΡ ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΡΠ΄Π°, ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΡΠΌ Ρ β Ρ 0 Β§ 396. Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠ±Π΅Π»Ρ Β§ 397. ΠΠ΅ΠΉΡΡΠ²ΠΈΡ ΡΠΎ ΡΡΠ΅ΠΏΠ΅Π½Π½ΡΠΌΠΈ ΡΡΠ΄Π°ΠΌΠΈ Β§ 398. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΄Π° Β§ 399. Π ΡΠ΄ Π’Π΅ΠΉΠ»ΠΎΡΠ° Β§ 400. Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠΉ ΡΡΠ΄ Β§ 401. Π Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π² ΡΡΠ΅ΠΏΠ΅Π½Π½ΡΠ΅ ΡΡΠ΄Ρ Β§ 402. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΠ΄ΠΎΠ² ΠΊ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΠΎΠ² Β§ 403. ΠΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 404. ΠΠ±ΡΠ°ΡΠ½ΡΠ΅ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 405. ΠΡΠΎΠΈΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΠΎΠ²Π°Π½ΠΈΠΉ Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Β§ 406. Π ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΡΠΈΡΠ»Π°Ρ Β§ 407. ΠΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Β§ 408. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 409. ΠΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π² ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ Β§ 410. Π€ΠΎΡΠΌΡΠ»Π° ΠΠΉΠ»Π΅ΡΠ° Β§ 411. Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΠ΄ Β§ 412. ΠΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ΄Π°Ρ Β§ 413. ΠΡΡΠΎΠ³ΠΎΠ½Π°Π»ΡΠ½ΠΎΡΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΉ cos nx, sin nx Β§ 414. Π€ΠΎΡΠΌΡΠ»Ρ ΠΠΉΠ»Π΅ΡΠ°-Π€ΡΡΡΠ΅ Β§ 415. Π ΡΠ΄ Π€ΡΡΡΠ΅ Β§ 416. Π ΡΠ΄ Π€ΡΡΡΠ΅ Π΄Π»Ρ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 417. Π ΡΠ΄ Π€ΡΡΡΠ΅ Π΄Π»Ρ ΡΠ΅ΡΠ½ΠΎΠΉ ΠΈ Π½Π΅ΡΠ΅ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 418. Π ΡΠ΄ Π€ΡΡΡΠ΅ Π΄Π»Ρ ΡΠ°Π·ΡΡΠ²Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΠΠ€Π€ΠΠ ΠΠΠ¦ΠΠ ΠΠΠΠΠΠ Π ΠΠΠ’ΠΠΠ ΠΠ ΠΠΠΠΠΠ Π€Π£ΠΠΠ¦ΠΠ ΠΠΠ‘ΠΠΠΠ¬ΠΠΠ₯ ΠΠ ΠΠ£ΠΠΠΠ’ΠΠ Β§ 420. Π€ΡΠ½ΠΊΡΠΈΡ ΡΡΠ΅Ρ ΠΈ Π±ΠΎΠ»ΡΡΠ΅Π³ΠΎ ΡΠΈΡΠ»Π° Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ² Β§ 421. Π‘ΠΏΠΎΡΠΎΠ±Ρ Π·Π°Π΄Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ² Β§ 422. ΠΡΠ΅Π΄Π΅Π» ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ² Β§ 424. ΠΠ΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ² Β§ 425. Π§Π°ΡΡΠ½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Β§ 426. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΡΠ°ΡΡΠ½ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π΄Π»Ρ ΡΠ»ΡΡΠ°Ρ Π΄Π²ΡΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ² Β§ 427. ΠΠΎΠ»Π½ΠΎΠ΅ ΠΈ ΡΠ°ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ Β§ 428. Π§Π°ΡΡΠ½ΡΠΉ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» Β§ 429. Π Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΡΠ°ΡΡΠ½ΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» Β§ 430. ΠΠΎΠ»Π½ΡΠΉ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π» Β§ 431. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π° (ΡΠ»ΡΡΠ°ΠΉ Π΄Π²ΡΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ²) Β§ 432. ΠΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ β¦ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π° Β§ 433. Π’Π΅Ρ Π½ΠΈΠΊΠ° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Β§ 434. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 435. ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ ΠΈ Π½ΠΎΡΠΌΠ°Π»Ρ ΠΊ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ Β§ 436. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Β§ 437. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½ΠΎΡΠΌΠ°Π»ΠΈ Β§ 438. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 439. ΠΠ°ΠΌΠ΅Π½Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΏΠΎΠ»ΡΡΠ½ΡΠΌΠΈ Β§ 440. Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Β§ 441. ΠΠΎΠ»Π½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Β§ 442. ΠΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ΡΠ²Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ Β§ 443. Π§Π°ΡΡΠ½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π²ΡΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ² Β§ 444. ΠΠΎΠ»Π½ΡΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Ρ Π²ΡΡΡΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠΎΠ² Β§ 445. Π’Π΅Ρ Π½ΠΈΠΊΠ° ΠΏΠΎΠ²ΡΠΎΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Β§ 446. Π£ΡΠ»ΠΎΠ²Π½ΠΎΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠ² Β§ 447. Π€ΠΎΡΠΌΡΠ»Π° Π’Π΅ΠΉΠ»ΠΎΡΠ° Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ² Β§ 448. ΠΠΊΡΡΡΠ΅ΠΌΡΠΌ (ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ) ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ² Β§ 449. ΠΡΠ°Π²ΠΈΠ»ΠΎ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° Β§ 450. ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° (ΡΠ»ΡΡΠ°ΠΉ Π΄Π²ΡΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ²) Β§ 451. ΠΠ²ΠΎΠΉΠ½ΠΎΠΉ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» Β§ 452. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Β§ 453. Π‘Π²ΠΎΠΉΡΡΠ²Π° Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Β§ 454. ΠΡΠ΅Π½ΠΊΠ° Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Β§ 455. ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° (ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉ) Β§ 456. ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° (ΠΎΠ±ΡΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉ) Β§ 457. Π€ΡΠ½ΠΊΡΠΈΡ ΡΠΎΡΠΊΠΈ Β§ 458. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° ΡΠ΅ΡΠ΅Π· ΠΏΠΎΠ»ΡΡΠ½ΡΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Β§ 459. ΠΠ»ΠΎΡΠ°Π΄Ρ ΠΊΡΡΠΊΠ° ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ Β§ 460. Π’ΡΠΎΠΉΠ½ΠΎΠΉ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» Β§ 461. ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΡΡΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° (ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉ) Β§ 462. ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΡΡΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° (ΠΎΠ±ΡΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉ) Β§ 463. Π¦ΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Β§ 464. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° ΡΠ΅ΡΠ΅Π· ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Β§ 465. Π‘ΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Β§ 466. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° ΡΠ΅ΡΠ΅Π· ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Β§ 467. Π‘Ρ Π΅ΠΌΠ° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈ ΡΡΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΠΎΠ² Β§ 468. ΠΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ Β§ 471. ΠΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠΉ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» Β§ 472. ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Β§ 473. ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° Β§ 474. Π€ΠΎΡΠΌΡΠ»Π° ΠΡΠΈΠ½Π° Β§ 475. Π£ΡΠ»ΠΎΠ²ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠΉ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π» Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΠΏΡΡΠΈ Β§ 476. ΠΡΡΠ³Π°Ρ ΡΠΎΡΠΌΠ° ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅Π³ΠΎ ΠΏΠ°ΡΠ°Π³ΡΠ°ΡΠ° ΠΠΠ€Π€ΠΠ ΠΠΠ¦ΠΠΠΠ¬ΠΠ«Π Π£Π ΠΠΠΠΠΠΠ― Β§ 478. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 479. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 480. ΠΠ·ΠΎΠΊΠ»ΠΈΠ½Ρ Β§ 481. Π§Π°ΡΡΠ½ΠΎΠ΅ ΠΈ ΠΎΠ±ΡΠ΅Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 482. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΡΠ°Π·Π΄Π΅Π»Π΅Π½Π½ΡΠΌΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ Β§ 483. Π Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ . ΠΡΠΎΠ±ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Β§ 484. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π² ΠΏΠΎΠ»Π½ΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»Π°Ρ Β§ 484Π°. ΠΠ½ΡΠ΅Π³ΡΠΈΡΡΡΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Β§ 485. ΠΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Β§ 486. ΠΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 487. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΠ»Π΅ΡΠΎ Β§ 488. ΠΠ³ΠΈΠ±Π°ΡΡΠ°Ρ Β§ 489. ΠΠ± ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΡΠ΅ΠΌΠΎΡΡΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Β§ 490. ΠΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° ΠΏΠΎ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΠΉΠ»Π΅ΡΠ° Β§ 491. ΠΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ΄ΠΎΠ² Β§ 492. Π ΡΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Β§ 493. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 494. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ n-Π³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 495. Π‘Π»ΡΡΠ°ΠΈ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 496. ΠΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 497. ΠΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ Β§ 498. ΠΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ Π±Π΅Π· ΠΏΡΠ°Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ Β§ 498Π°. Π‘Π²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ»ΡΡΠ°ΡΠΌΠΈ 1 ΠΈ 3 Β§ 498 Β§ 499. ΠΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΠ°ΡΡΡΡ Β§ 500. ΠΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π»ΡΠ±ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° Β§ 501. ΠΠ΅ΡΠΎΠ΄ Π²Π°ΡΠΈΠ°ΡΠΈΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΡ Β§ 502. Π‘ΠΈΡΡΠ΅ΠΌΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. ΠΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΠΠΠΠ’ΠΠ Π«Π ΠΠΠΠΠ§ΠΠ’ΠΠΠ¬ΠΠ«Π ΠΠ ΠΠΠ«Π Β§ 503. Π‘ΡΡΠΎΡΠΎΠΈΠ΄Π° Β§ 504. Π¦ΠΈΡΡΠΎΠΈΠ΄Π° ΠΠΈΠΎΠΊΠ»Π° Β§ 505. ΠΠ΅ΠΊΠ°ΡΡΠΎΠ² Π»ΠΈΡΡ Β§ 506. ΠΠ΅ΡΠ·ΡΠ΅ΡΠ° ΠΠ½ΡΠ΅Π·ΠΈ Β§ 507. ΠΠΎΠ½Ρ ΠΎΠΈΠ΄Π° ΠΠΈΠΊΠΎΠΌΠ΅Π΄Π° Β§ 508. Π£Π»ΠΈΡΠΊΠ° ΠΠ°ΡΠΊΠ°Π»Ρ; ΠΊΠ°ΡΠ΄ΠΈΠΎΠΈΠ΄Π° Β§ 509. ΠΠΈΠ½ΠΈΡ ΠΠ°ΡΡΠΈΠ½ΠΈ Β§ 510. ΠΠ΅ΠΌΠ½ΠΈΡΠΊΠ°ΡΠ° ΠΠ΅ΡΠ½ΡΠ»Π»ΠΈ Β§ 511. ΠΡΡ ΠΈΠΌΠ΅Π΄ΠΎΠ²Π° ΡΠΏΠΈΡΠ°Π»Ρ Β§ 512. ΠΠ²ΠΎΠ»ΡΠ²Π΅Π½ΡΠ° (ΡΠ°Π·Π²Π΅ΡΡΠΊΠ°) ΠΊΡΡΠ³Π° Β§ 513. ΠΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΏΠΈΡΠ°Π»Ρ Β§ 514. Π¦ΠΈΠΊΠ»ΠΎΠΈΠ΄Ρ Β§ 515. ΠΠΏΠΈΡΠΈΠΊΠ»ΠΎΠΈΠ΄Ρ ΠΈ Π³ΠΈΠΏΠΎΡΠΈΠΊΠ»ΠΎΠΈΠ΄Ρ Β§ 516. Π’ΡΠ°ΠΊΡΡΠΈΡΠ° Β§ 517. Π¦Π΅ΠΏΠ½Π°Ρ Π»ΠΈΠ½ΠΈΡ |
python — ΠΠ°ΠΊ ΡΠ·Π½Π°ΡΡ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ?
Π ΠΎΠ±ΡΠ΅ΠΌ, ΡΠ³ΠΎΠ» Π²Π΅ΠΊΡΠΎΡΠ° (x, y) ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ math.atan2(y, x)
. ΠΠ΅ΠΊΡΠΎΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π·Π°Π΄Π°Π½ Π΄Π²ΡΠΌΡ ΡΠΎΡΠΊΠ°ΠΌΠΈ (x1, y1) ΠΈ (x2, y2) Π½Π° Π»ΠΈΠ½ΠΈΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ³ΠΎΠ» Π»ΠΈΠ½ΠΈΠΈ ΡΠ°Π²Π΅Π½ math. atan2(y2-y1, x2-x1)
.
ΠΠΌΠ΅ΠΉΡΠ΅ Π² Π²ΠΈΠ΄Ρ, ΡΡΠΎ ΠΎΡΡ Y Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΠ½ΡΡΡ ( -y
ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ y1-y2
), ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΠΎΡΡ Y ΠΎΠ±ΡΡΠ½ΠΎ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π²Π²Π΅ΡΡ
, Π½ΠΎ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ PyGame ΠΎΡΡ Y ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π²Π½ΠΈΠ·. ΠΠ΄ΠΈΠ½ΠΈΡΠ° ΡΠ³Π»Π° Π² Python 9ΠΠΎΠ΄ΡΠ»Ρ 0005 math β ΡΡΠΎ ΡΠ°Π΄ΠΈΠ°Π½Ρ, Π½ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ΠΉ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ³Π»Π° Π² ΡΡΠ½ΠΊΡΠΈΡΡ
PyGame, ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ pygame.transform.rotate()
, ΡΠ²Π»ΡΠ΅ΡΡΡ Π³ΡΠ°Π΄ΡΡ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ³ΠΎΠ» Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ ΠΈΠ· ΡΠ°Π΄ΠΈΠ°Π½ΠΎΠ² Π² Π³ΡΠ°Π΄ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ math.degrees
:
import math ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»Π°_Π²Π΅ΠΊΡΠΎΡΠ° (Ρ , Ρ): Π²Π΅ΡΠ½ΡΡΡ math.ΡΡΠ΅ΠΏΠ΅Π½ΠΈ(math.atan2(-y, x)) ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»Π°_Π»ΠΈΠ½ΠΈΠΈ (x1, y1, x2, y2): Π²Π΅ΡΠ½ΡΡΡ math.ΡΡΠ΅ΠΏΠ΅Π½ΠΈ(math.atan2(-(y2-y1), x2-x1))
ΠΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΏΡΠΎΡΡΠΈΡΡ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΌΠ΅ΡΠΎΠ΄ angle_to
ΠΈΠ· pygame.math.Vector2
ΠΎΠ±ΡΠ΅ΠΊΡ. ΠΡΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ Π²ΡΡΠΈΡΠ»ΡΠ΅Ρ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ PyGame Π² Π³ΡΠ°Π΄ΡΡΠ°Ρ
. ΠΠΎΡΡΠΎΠΌΡ Π½Π΅Ρ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅Π²ΠΎΡΠ°ΡΠΈΠ²Π°ΡΡ ΠΎΡΡ Y ΠΈ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²ΡΠ²Π°ΡΡ ΡΠ°Π΄ΠΈΠ°Π½Ρ Π² Π³ΡΠ°Π΄ΡΡΡ. ΠΡΠΎΡΡΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ ΠΈ (1, 0) :
def angle_of_vector(x, y): Π²Π΅ΡΠ½ΡΡΡ pygame. math.Vector2 (x, y).angle_to ((1, 0)) ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»Π°_Π»ΠΈΠ½ΠΈΠΈ (x1, y1, x2, y2): Π²Π΅ΡΠ½ΡΡΡ angle_of_vector (x2-x1, y2-y1)
ΠΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΠΏΡΠΈΠΌΠ΅Ρ:
import pygame ΠΈΠΌΠΏΠΎΡΡΠΈΡΠΎΠ²Π°ΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»Π°_Π²Π΅ΠΊΡΠΎΡΠ° (Ρ , Ρ): #return math.ΡΡΠ΅ΠΏΠ΅Π½ΠΈ(math.atan2(-y, x)) # 1: Ρ math.atan return pygame.math.Vector2(x, y).angle_to((1, 0)) # 2: Ρ pygame.math.Vector2.angle_to ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»Π°_Π»ΠΈΠ½ΠΈΠΈ (x1, y1, x2, y2): #return math.ΡΡΠ΅ΠΏΠ΅Π½ΠΈ(math.atan2(-y1-y2, x2-x1)) # 1: math.atan Π²Π΅ΡΠ½ΡΡΡ angle_of_vector(x2-x1, y2-y1) # 2: pygame.math.Vector2.angle_to pygame.init() ΠΎΠΊΠ½ΠΎ = pygame.display.set_mode((400, 400)) ΡΠ°ΡΡ = pygame.time.Clock() ΡΡΠΈΡΡ = pygame.font.SysFont (Π½Π΅Ρ, 50) ΡΠ³ΠΎΠ» = 0 ΡΠ°Π΄ΠΈΡΡ = 150 vec = (ΡΠ°Π΄ΠΈΡΡ, 0) Π·Π°ΠΏΡΡΡΠΈΡΡ = ΠΡΡΠΈΠ½Π° Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΡΠ°Π±ΠΎΡΡ: ΡΠ°ΡΡ.ΡΠΈΠΊ(60) Π΄Π»Ρ ΡΠΎΠ±ΡΡΠΈΡ Π² pygame.event.get(): Π΅ΡΠ»ΠΈ event.type == pygame.ΠΠ«ΠΠ’Π: Π·Π°ΠΏΡΡΡΠΈΡΡ = ΠΠΎΠΆΡ cpt = ΠΎΠΊΠ½ΠΎ.get_rect().ΡΠ΅Π½ΡΡ pt = cpt[0] + vec[0], cpt[1] + vec[1] ΡΠ³ΠΎΠ» = ΡΠ³ΠΎΠ»_Π²Π΅ΠΊΡΠΎΡΠ°(*vec) ΠΎΠΊΠ½ΠΎ. Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΡ((255, 255, 255)) pygame.draw.circle (ΠΎΠΊΠ½ΠΎ, (0, 0, 0), cpt, ΡΠ°Π΄ΠΈΡΡ, 1) pygame.draw.line (ΠΎΠΊΠ½ΠΎ, (0, 255, 0), cpt, (cpt [0] + ΡΠ°Π΄ΠΈΡΡ, cpt [1]), 3) pygame.draw.line (ΠΎΠΊΠ½ΠΎ, (255, 0, 0), cpt, pt, 3) text_surf = font.render(str(round(angle/5)*5) + "Β°", True, (255, 0, 0)) text_surf.set_alpha(127) window.blit(text_surf, text_surf.get_rect(Π½ΠΈΠΆΠ½ΠΈΠΉ Π»Π΅Π²ΡΠΉ = (cpt[0]+20, cpt[1]-20))) pygame.display.flip() ΡΠ³ΠΎΠ» = (ΡΠ³ΠΎΠ» + 1)% 360 vec = ΡΠ°Π΄ΠΈΡΡ * math.cos(ΡΠ³ΠΎΠ»*math.pi/180), ΡΠ°Π΄ΠΈΡΡ * -math.sin(ΡΠ³ΠΎΠ»*math.pi/180) pygame.Π²ΡΠΉΡΠΈ() ΠΡΡ ΠΎΠ΄()
angle_to
ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ ΠΈΠ»ΠΈ Π»ΠΈΠ½ΠΈΡΠΌΠΈ:
def angle_between_vectors(x1, y1, x2, y2): Π²Π΅ΡΠ½ΡΡΡ pygame.math.Vector2 (x1, y1).angle_to ((x2, y2))
ΠΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΠΏΡΠΈΠΌΠ΅Ρ:
ΠΈΠΌΠΏΠΎΡΡ pygame ΠΈΠΌΠΏΠΎΡΡΠΈΡΠΎΠ²Π°ΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΡ def angle_between_vectors (x1, y1, x2, y2): Π²Π΅ΡΠ½ΡΡΡ pygame.math.Vector2 (x1, y1).angle_to ((x2, y2)) ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»Π°_Π²Π΅ΠΊΡΠΎΡΠ° (Ρ , Ρ): Π²Π΅ΡΠ½ΡΡΡ pygame. math.Vector2 (x, y).angle_to ((1, 0)) pygame.init() ΠΎΠΊΠ½ΠΎ = pygame.display.set_mode((400, 400)) ΡΠ°ΡΡ = pygame.time.Clock() ΡΡΠΈΡΡ = pygame.font.SysFont (Π½Π΅Ρ, 50) ΡΠ³ΠΎΠ» = 0 ΡΠ°Π΄ΠΈΡΡ = 150 vec1 = (ΡΠ°Π΄ΠΈΡΡ, 0) vec2 = (ΡΠ°Π΄ΠΈΡΡ, 0) Π·Π°ΠΏΡΡΡΠΈΡΡ = ΠΡΡΠΈΠ½Π° Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΡΠ°Π±ΠΎΡΡ: ΡΠ°ΡΡ.ΡΠΈΠΊ(60) Π΄Π»Ρ ΡΠΎΠ±ΡΡΠΈΡ Π² pygame.event.get(): Π΅ΡΠ»ΠΈ event.type == pygame.ΠΠ«ΠΠ’Π: Π·Π°ΠΏΡΡΡΠΈΡΡ = ΠΠΎΠΆΡ cpt = ΠΎΠΊΠ½ΠΎ.get_rect().ΡΠ΅Π½ΡΡ pt1 = cpt[0] + vec1[0], cpt[1] + vec1[1] pt2 = cpt[0] + vec2[0], cpt[1] + vec2[1] ΡΠ³ΠΎΠ» = ΡΠ³ΠΎΠ»_ΠΌΠ΅ΠΆΠ΄Ρ_Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ(*vec2, *vec1) ΠΎΠΊΠ½ΠΎ.Π·Π°ΠΏΠΎΠ»Π½ΠΈΡΡ((255, 255, 255)) pygame.draw.circle (ΠΎΠΊΠ½ΠΎ, (0, 0, 0), cpt, ΡΠ°Π΄ΠΈΡΡ, 1) pygame.draw.line (ΠΎΠΊΠ½ΠΎ, (0, 255, 0), cpt, pt1, 3) pygame.draw.line(ΠΎΠΊΠ½ΠΎ, (255, 0, 0), cpt, pt2, 3) text_surf = font.render(str(round(angle/5)*5) + "Β°", True, (255, 0, 0)) text_surf.set_alpha(127) window.blit(text_surf, text_surf.get_rect(Π½ΠΈΠΆΠ½ΠΈΠΉ Π»Π΅Π²ΡΠΉ = (cpt[0]+20, cpt[1]-20))) pygame.display.flip() ΡΠ³ΠΎΠ»1 = (ΡΠ³ΠΎΠ»_Π²Π΅ΠΊΡΠΎΡΠ°(*vec1) + 1/3)% 360 vec1 = ΡΠ°Π΄ΠΈΡΡ * math. cos(ΡΠ³ΠΎΠ»1*math.pi/180), ΡΠ°Π΄ΠΈΡΡ * -math.sin(ΡΠ³ΠΎΠ»1*math.pi/180) ΡΠ³ΠΎΠ»2 = (ΡΠ³ΠΎΠ»_Π²Π΅ΠΊΡΠΎΡΠ°(*vec2) + 1)% 360 vec2 = ΡΠ°Π΄ΠΈΡΡ * math.cos(ΡΠ³ΠΎΠ»2*math.pi/180), ΡΠ°Π΄ΠΈΡΡ * -math.sin(ΡΠ³ΠΎΠ»2*math.pi/180) pygame.Π²ΡΠΉΡΠΈ() ΠΡΡ ΠΎΠ΄()
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ β ΡΡΠΎ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΡΠΉ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½Ρ, ΠΏΡΠΎΡΡΠΎΠΉ Π² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ, ΠΎΠ½ ΠΎΡΠ΅Π½Ρ Π±ΡΡΡΡΠΎ Π²ΡΡΠΈΡΠ»ΡΠ΅Ρ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ, Π΅ΡΠ»ΠΈ Π²Π°Ρ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΠ΅Ρ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ, Π½ΠΎ ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π·Π½Π°Π½ΠΈΠΉ, ΡΡΠ²ΡΡΠ²ΡΠΉΡΠ΅ ΡΠ΅Π±Ρ ΠΊΠ°ΠΊ Π΄ΠΎΠΌΠ° ΠΈ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΡΡΠ΅ΡΡ Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ Π½Π° ΡΡΠΎΠΉ ΡΡΡΠ°Π½ΠΈΡΠ΅, Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π° Π½Π°ΡΠ΅ΠΌ ΡΠ°ΠΉΡΠ΅.
ΠΠ°ΡΠΈ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΈ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ° Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π°Π»Π³Π΅Π±ΡΠ΅: ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ, ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ°, ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΈ, ΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΆΠ΅, ΡΡΠ° ΡΡΠ°ΡΡΡ. Π’Π°ΠΊΠΆΠ΅ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΡΡΠ΅ΡΡ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ Π½Π°ΡΠΈΠΌΠΈ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ°ΠΌΠΈ ΠΈ ΠΎΡΡΠ°Π²ΡΡΠ΅ ΠΎΡΠ·ΡΠ². ΠΠ°ΠΌ Π²ΡΠ΅Π³Π΄Π° ΠΏΡΠΈΡΡΠ½ΠΎ ΡΠ·Π½Π°ΡΡ ΠΎ Π²Π°ΡΠΈΡ Π²ΠΏΠ΅ΡΠ°ΡΠ»Π΅Π½ΠΈΡΡ ΠΎ Π½Π°ΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅.
ΠΠ½ΠΎΠ³ΠΈΠ΅ ΡΡΡΠ΄Π΅Π½ΡΡ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡ ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π°Π»Π³Π΅Π±ΡΠ΅ ΡΠΎ ΡΡΡΠ°Ρ ΠΎΠΌ ΠΈ ΡΠ°Π·ΠΎΡΠ°ΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ. ΠΡΠ»ΠΈ Π²Ρ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π½ΠΈΡ , Π²ΠΎΡ ΠΏΠΎΡΠ΅ΠΌΡ ΡΡΠΎ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Ρ Π²Π°ΠΌΠΈ. ΠΠ΅ Π½ΠΎΠ²ΠΎΡΡΡ, ΡΡΠΎ ΠΏΠ΅ΡΠ²ΡΠΉ Π²Π·Π³Π»ΡΠ΄ Π½Π° Π·Π°ΠΊΠΎΠ½Ρ ΠΈ ΡΠ΅ΠΎΡΠ΅ΠΌΡ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠΈ, ΠΎΡΠ½ΠΎΡΡΡΠΈΠ΅ΡΡ ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π°Π»Π³Π΅Π±ΡΠ΅, ΡΠ±ΠΈΠ²Π°Π΅Ρ Ρ ΡΠΎΠ»ΠΊΡ. Π’ΠΎΡΠ½Π΅Π΅, ΠΎΡ Π²ΡΠ΅Ρ ΡΡΠΈΡ ΡΠΈΠΌΠ²ΠΎΠ»ΠΎΠ², Π½ΠΎΠ²ΡΡ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ² ΠΈ Π·Π°ΠΏΡΡΠ°Π½Π½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Ρ Π²Π°Ρ Π·Π°ΡΡΠΌΠ°Π½ΠΈΠ²Π°Π΅ΡΡΡ Π³ΠΎΠ»ΠΎΠ²Π°, ΠΈ Π²Ρ ΡΠ΅ΡΡΠ΅ΡΠ΅ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ Π΄Π°ΠΆΠ΅ ΠΊ ΠΏΠΎΠΏΡΡΠΊΠ°ΠΌ Π΅Π΅ Π²ΡΡΡΠΈΡΡ.
Π§ΡΠΎ, Π΅ΡΠ»ΠΈ ΠΌΡ ΠΏΠΎΠΎΠ±Π΅ΡΠ°Π΅ΠΌ, ΡΡΠΎ ΡΡΠ° ΡΡΠ°ΡΡΡ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²ΠΈΡ Π²Π°ΠΌ Π²ΡΠ΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠ΅ Π΄Π΅ΡΠ°Π»ΠΈ, ΠΎΡΡΠ°Π²Π°ΡΡΡ ΠΏΡΠΈ ΡΡΠΎΠΌ Π»Π΅Π³ΠΊΠΎ ΡΠΈΡΠ°Π΅ΠΌΠΎΠΉ? ΠΡ Π΄ΡΠΌΠ°Π΅ΠΌ, ΡΡΠΎ Π²Π°ΠΌ Π±Ρ ΡΡΠΎ ΠΏΠΎΠ½ΡΠ°Π²ΠΈΠ»ΠΎΡΡ. ΠΠΌΠ΅Π½Π½ΠΎ ΠΏΠΎΡΡΠΎΠΌΡ ΠΊΠΎΠΌΠ°Π½Π΄Π° ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠΎΠ² CalCon ΡΠ΅ΡΠΈΠ»Π° Π²Π°ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ. Π Π΅ΡΠ΅Π½ΠΈΠ΅, ΠΎ ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΌΡ Π³ΠΎΠ²ΠΎΡΠΈΠΌ, β ΡΡΠΎ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ, Π·Π° ΠΊΠΎΡΠΎΡΡΠΌ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΡΠ°ΡΡΡ.
ΠΠ΅ΠΊΡΠΎΡ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅
Π§ΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π½Π°ΡΠ΅ ΠΎΠ±Π΅ΡΠ°Π½ΠΈΠ΅, Π²ΠΎ-ΠΏΠ΅ΡΠ²ΡΡ , ΠΌΡ ΠΎΠ±ΡΡΡΠ½ΠΈΠΌ, ΡΡΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π²Π΅ΠΊΡΠΎΡ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅. Π’Π΅ΡΠΌΠΈΠ½ Β«Π²Π΅ΠΊΡΠΎΡ Β» ΡΠ²ΠΈΠ΄Π΅Π» ΡΠ²Π΅Ρ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅, ΡΡΠΎΠ±Ρ ΡΠ°Π·Π»ΠΈΡΠ°ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π² ΠΏΡΠΈΡΠΎΠ΄Π΅, ΠΈΠΌΠ΅ΡΡΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅. ΠΠ°ΠΏΡΠΎΡΠΈΠ², ΡΠ΅, Ρ ΠΊΠΎΡΠΎΡΡΡ Π΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΡΠΊΠ°Π»ΡΡΠΎΠ² . Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π²Π΅ΠΊΡΠΎΡΠ½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ Π΄Π²ΡΠΌΡ ΠΈΠ»ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ.
ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠ²ΡΠ·Π°Π½Ρ Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠ΅ΠΉ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°, Π³Π΄Π΅ Π²Π΅ΠΊΡΠΎΡ, Π»Π΅ΠΆΠ°ΡΠΈΠΉ Π½Π° ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ. Π£ΠΊΠ°Π·ΡΠ²Π°ΡΡΠ°Ρ ΡΡΡΠ΅Π»ΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΡΠ²ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΄ΠΎΠ»Ρ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, Π° Π΅Π΅ Π΄Π»ΠΈΠ½Π° ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½Π° Π΅Π΅ Π²Π΅Π»ΠΈΡΠΈΠ½Π΅.
Π Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅, Π²Π΅ΠΊΡΠΎΡ Π² n-ΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ n ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ (Π³Π΄Π΅ n — Π»ΡΠ±ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ). ΠΠΎ Π΄Π°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ² Π²Π΅ΠΊΡΠΎΡ, Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅, ΠΈ, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΌΡ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΡ, ΡΡΠΎ Π΄Π²ΡΠΌΠ΅ΡΠ½ΡΠΉ Π²Π΅ΠΊΡΠΎΡ. ΠΡΠΎΡ Π²Π΅ΠΊΡΠΎΡ ΠΎΠ±ΡΡΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΎΡΡΠ΅Π·ΠΎΠΊ Π»ΠΈΠ½ΠΈΠΈ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ»ΠΈ, Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ, ΡΡΡΠ΅Π»ΠΊΡ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΡ ΡΠΎΡΠΊΡ (Π) Ρ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ (Π). ΠΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ ΠΊΠ°ΠΊ \vec{AB}.
ΠΡΠ»ΠΈ Π² Π»ΡΠ±ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΡΠΎ Π±ΡΠ»ΠΎ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΡΠ½ΠΎ, ΠΌΡ ΡΡΠΈΡΠ°Π΅ΠΌ, ΡΡΠΎ ΠΡΠΈΠΌΠ΅Ρ ΠΈΠ· ΡΠ΅Π°Π»ΡΠ½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ ΠΏΠΎΠ΄ΡΡΠ΅Π³Π½Π΅Ρ Π²Π°ΡΠ΅ Π²ΠΎΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠ½ΡΡΡ ΡΠ΅ΡΠΌΠΈΠ½Ρ, ΡΠΏΠΎΠΌΡΠ½ΡΡΡΠ΅ ΡΠ°Π½Π΅Π΅. ΠΠ»Ρ ΠΈΠ»Π»ΡΡΡΡΠ°ΡΠΈΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ ΡΠ΅Π±Π΅ Π±Π΅Π³ΡΠ½Π°, ΡΡΠΎΡΡΠ΅Π³ΠΎ Π½Π° ΡΡΠ°ΡΡΠΎΠ²ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΈ Π³ΠΎΡΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΠ±Π΅ΠΆΠ°ΡΡ ΠΌΠ°ΡΠ°ΡΠΎΠ½ Π½Π° ΠΏΡΡΡΠ΄Π΅ΡΡΡ ΠΌΠ΅ΡΡΠΎΠ² ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ ΡΡΠ°ΡΡΠ΅.
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΎΡ ΠΌΠ°ΡΡΡΡΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΡΠΎΠ΄Π»Π΅Π½ Π² ΠΎΠ±ΠΎΠΈΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡΡ , ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΎΠ±ΡΠ°Π·ΡΡ ΠΏΡΡΠΌΡΡ Π»ΠΈΠ½ΠΈΡ , ΡΠ°ΡΡΡ, Π²ΡΠ±ΡΠ°Π½Π½Π°Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π΄Π»ΠΈΠ½Ρ ΠΌΠ°ΡΠ°ΡΠΎΠ½Π°, Π»Π΅ΠΆΠΈΡ Π½Π° ΡΡΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π»ΠΈΠ½ΠΈΡΠΌΠΈ ΡΡΠ°ΡΡΠ° ΠΈ ΡΠΈΠ½ΠΈΡΠ° ΡΠ²Π»ΡΡΡΡΡ ΡΡΠ°ΡΡΠΎΠ²ΡΡ (Π) ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ (Π) ΡΠΎΡΠ΅ΠΊ Π²Π΅ΠΊΡΠΎΡΠ°. ΠΡΠ°ΠΊ, Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° β ΡΡΠΎ Π΄Π»ΠΈΠ½Π° ΠΌΠ°ΡΡΡΡΡΠ°, Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π±Π΅Π³ΡΠ½Π°, Π±Π΅Π³ΡΡΠ΅Π³ΠΎ ΠΊ ΡΠΈΠ½ΠΈΡΡ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ?
Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ β ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡΠ½ΡΠΉ ΡΠ³ΠΎΠ», ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ΠΌ Ρ Π²ΠΎΡΡΠΎΠ² Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ². ΠΠ°ΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΠ΅ΡΠΊΠ½ΡΡΡ, ΡΡΠΎ ΡΠ³ΠΎΠ» ΠΎΠ±ΡΠ°Π·ΡΠ΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΡΠ΅ΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠ΅ΡΠΊΠ°ΠΌΠΈ, Π° Π½Π΅ ΡΠ΅ΡΠΊΠ°ΠΌΠΈ ΠΈΠ»ΠΈ ΡΠ΅ΡΠΊΠ°-Π³ΠΎΠ»ΠΎΠ²Π°. Π§ΡΠΎ ΠΊΠ°ΡΠ°Π΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΡΠΎ ΠΌΠΎΠΆΠ΅Ρ ΡΠ±ΠΈΠ²Π°ΡΡ Ρ ΡΠΎΠ»ΠΊΡ, ΠΌΡ ΠΏΠΎΠΊΠ°ΠΆΠ΅ΠΌ ΡΡΠΎ Π½Π° ΠΊΠ°ΡΡΠΈΠ½ΠΊΠ΅.
Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈΠ’Π°ΠΊΠΆΠ΅ Π²Π°ΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π΄Π»Ρ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ Ρ Π²ΠΎΡΡΠΎΠ² Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΉ ΡΠ΄Π²ΠΈΠ³.
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ
ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ Π±ΡΠ΄Π΅Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΎ Π² ΡΠ»Π΅Π΄ΡΡΡΠΈΡ ΡΠ°Π³Π°Ρ :
- ΠΡ Π½Π°ΡΠ½Π΅ΠΌ Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π½Π°ΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ²:
\vec{a } \cdot \vec{b} = |\vec{a}| \cdot|\vec{b}| \cdot \cos(\alpha)
Π‘ΠΊΠ°Π»ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΊΠ°Π»ΡΡΠ½ΡΠΌ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ ΡΠΎΠ»ΡΠΊΠΎ ΠΊ Π½Π°Π±ΠΎΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ. Π‘ΠΈΠΌΠ²ΠΎΠ» ΡΠΊΠ°Π»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ β ΡΠΎΠ»ΡΡΠ°Ρ ΡΠΎΡΠΊΠ°. 9{2}}}
ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Π΅ΡΠ»ΠΈ Π²Ρ Π·Π½Π°Π΅ΡΠ΅ Π½Π°ΡΠ°Π»ΡΠ½ΡΡ ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ ΡΠΎΡΠΊΠΈ Π²Π΅ΠΊΡΠΎΡΠΎΠ², Π²Π°ΠΌ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ ΠΈΡ Π² ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΡ Π½ΠΎΡΠ°ΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ². ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ Π²Π΅ΠΊΡΠΎΡ ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ A=[x_1, y_1] ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ B=[x_2, y_2] , ΡΠΎ Π²Π΅ΠΊΡΠΎΡ \vec {a} ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ ΠΊΠ°ΠΊ: \vec {a} = [ x_2 — x_1, y_2 — y_1]
Π€ΠΎΡΠΌΡΠ»Ρ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ
ΠΠ»Ρ Π»ΡΡΡΠ΅Π³ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΠΈ ΡΠ°Π±ΠΎΡΡ Ρ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ Π² ΡΡΠΎΠΌ ΠΏΠ°ΡΠ°Π³ΡΠ°ΡΠ΅ ΠΌΡ ΡΠ°Π·Π΄Π΅Π»ΠΈΠΌ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ Π² 2D ΠΈ 3D ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅. 9{2}}}
ΠΡΠ»ΠΈ Π²Π΅ΠΊΡΠΎΡ ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ , ΡΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ:
ΠΠ΅ΠΊΡΠΎΡ Π² Π΄Π²ΡΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ΠΠ»Ρ Π²Π΅ΠΊΡΠΎΡΠ° \vec {a} : A = [x_ {1}, y_{1}], B = [x_{2}, y_{2}], ΠΏΠΎΡΡΠΎΠΌΡ Π²Π΅ΠΊΡΠΎΡ \vec {a} = [x_{2} — x_{1}, y_{2} — y_{ 1}]
ΠΠ»Ρ Π²Π΅ΠΊΡΠΎΡΠ° \vec {b}: C = [x_{3}, y_{3}] , D = [x_{4}, y_{4}] , ΠΏΠΎΡΡΠΎΠΌΡ Π²Π΅ΠΊΡΠΎΡ \vec {b} = [ x_{4} — x_{3}, y_{4} — y_{3}]
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ ΡΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ: 9{2}}}
ΠΡΠ»ΠΈ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ , ΡΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ:
ΠΠ΅ΠΊΡΠΎΡ Π² ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ΠΠ»Ρ Π²Π΅ΠΊΡΠΎΡΠ° \vec {a}: A = [ x_1, y_1, z_1], B = [x_2, y_2, z_2] , ΠΏΠΎΡΡΠΎΠΌΡ \vec {a} = [x_2 — x_1, y_2 — y_1, z_2 — z_1]
ΠΠ»Ρ Π²Π΅ΠΊΡΠΎΡΠ° \vec {b}: C = [ x_3, y_3, z_3], D = [x_4, y_4, z_4] , ΠΏΠΎΡΡΠΎΠΌΡ \vec {b} = [x_4 — x_3, y_4 — y_3, z_4 — z_3]
ΠΠ°ΠΊ ΡΠΎΠ»ΡΠΊΠΎ ΠΌΡ ΠΏΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΠΌΡΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ Π½Π°ΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ², ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΈΡ Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ: 9{2}}}
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ β ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ?
Π£ΡΠΈΡΡΠ²Π°Ρ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΡ Π·Π°Π΄Π°ΡΠΈ, ΠΌΡ ΠΏΡΠ΅ΡΡΠΏΠ΅Π»ΠΈ Π² ΡΠΎΠΌ, ΡΡΠΎΠ±Ρ ΡΠ΄Π΅Π»Π°ΡΡ ΡΡΠΎΡ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΠΏΡΠΎΡΡΡΠΌ Π² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΈΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΡΠ°ΠΊΠΆΠ΅ Π½Π΅ΡΡΠ΅Π±ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½Ρ ΠΈ ΡΠ΄ΠΎΠ±ΠΎΠ²Π°ΡΠΈΠΌΡ Π΄Π»Ρ Π½ΠΎΠ²ΠΈΡΠΊΠ°:
- Π ΡΠ°ΠΌΠΎΠΌ Π½Π°ΡΠ°Π»Π΅ Π²ΡΠ±Π΅ΡΠΈΡΠ΅, Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π»ΠΈ Π²Π΅ΠΊΡΠΎΡ Π² 2D ΠΈΠ»ΠΈ 3D ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅,
- Π’Π΅ΠΏΠ΅ΡΡ Π²ΡΠ±Π΅ΡΠΈΡΠ΅ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ°: Π²Π΅ΠΊΡΠΎΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ ΠΈΠ»ΠΈ ΠΏΠΎ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠ°ΠΌ.
- ΠΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ Π²Π²Π΅Π΄ΠΈΡΠ΅ Π² ΡΠΊΠ°Π·Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ»Ρ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ².
- ΠΠΎΡΠ»Π΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π³ΠΎ ΡΠ°Π³Π° ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΈΠ·ΠΌΠ΅ΡΠΈΡ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ, ΠΈ ΠΏΠΎΡΠ²ΠΈΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ.
Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ β ΠΏΡΠΈΠΌΠ΅Ρ
Π ΡΡΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ \vec{a}=[7,1] ΠΈ \vec{b}=[5,5] . Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ, Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΎΠΉΡΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠ°Π³ΠΈ:
9{2}}=5\ΠΊΠ²{2}Π, Π½Π°ΠΊΠΎΠ½Π΅Ρ, ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ:
ΡΠ³ΠΎΠ» = \ arccos \ frac {\ vec {a} \ cdot \ vec {b}} }{|\ vec {a} | \cdot |\vec{b}|}=arccos\frac{40}{5\sqrt{2} \cdot 5\sqrt{2}}=36,87 \Π³ΡΠ°Π΄ΡΡ
ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ° ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ ΠΈΠ·Π±Π°Π²Π»ΡΠ΅Ρ Π²Π°Ρ ΠΎΡ ΡΡΡΠ½ΡΡ ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΠΈ Π² ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΡΡΡΠΌ Π² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ.