Как решать комплексные уравнения: Как решать уравнения с комплексными числами. Как решить комплексное уравнение по математике

Корни кубического комплексного уравнения

  • Полином Чебышева с свободным членом
  • Создать вектор(диофант) по матрице
  • Египетские дроби. Часть вторая
  • Египетские (аликвотные) дроби
  • По сегменту определить радиус окружности
  • Круг и площадь, отсекаемая перпендикулярами
  • Деление треугольника на равные площади параллельными
  • Определение основных параметров целого числа
  • Свойства обратных тригонометрических функций
  • Разделить шар на равные объемы параллельными плоскостями
  • Взаимосвязь между организмами с различными типами обмена веществ
  • Аутотрофные и миксотрофные организмы
  • Рассечение круга прямыми на равные площади
  • Период нечетной дроби онлайн. Первые полторы тысяч разложений.
  • Представить дробь, как сумму её множителей
  • Решение системы из двух однородных диофантовых уравнений
  • Расчет основных параметров четырехполюсника
  • Цепочка остатков от деления в кольце целого числа
  • Система счисления на базе ряда Фибоначчи онлайн
  • Уравнение пятой степени. Частное решение.
  • Рассчитать площадь треугольника по трем сторонам онлайн
  • Общее решение линейного диофантового неоднородного уравнения
  • Частное решение диофантового уравнения с несколькими неизвестными
  • Онлайн разложение дробно рациональной функции
  • Корни характеристического уравнения
Коэффиценты комплексного кубического уравнения
Исходное кубическое уравнение
Первый корень
Второй корень
Третий корень

Мы добрались до возможности решать  кубические  уравнения общего вида, имеющего комплексные коэффиценты.  

Использовать будем методику которая называется подстановкой Виета.

Итак,  когда мы из общего уравнения третьей степени 

подстановкой 

мы создали приведенное кубическое уравнение 

Подстановкой вида

мы можем получить уравнение

Фактически, это квадратное уравнение. Решив которое мы получим   корни w.

Удивительно, но нам совершенно не важно какой корень мы возьмем от этого квадратного уравнения. Окончательный вариант все равно будет правильный.

А через них мы узнаем корни приведенного уравнения.

Чем удобен такой подход, от например решения уравнения по методу Кардано?

Он алгоритмически понятен и нагляден. И это главное.

Бот корректно вычисляет корни кубического комплексного уравнения, даже в том случае, если коэффициентами являются какие либо выражения ( с вещественными и/или мнимыми значениями)

Рассмотрим примеры?

Пишем коэффиценты слева направо (через пробел)

1 2-i sin(3-i) -7

Получаем

Исходное кубическое уравнение
Первый корень
Второй корень
Третий корень

Вот еще один

Корни его будут равны

Исходное кубическое уравнение
Первый корень
Второй корень
Третий корень

А вот корни  обычного уравнения с вещественными числами. 2n+B=0 >>

Поиск по сайту
  • Русский и английский алфавит в одну строку
  • Часовая и минутная стрелка онлайн.Угол между ними.
  • Массовая доля химического вещества онлайн
  • Декoдировать текст \u0xxx онлайн
  • Универсальный калькулятор комплексных чисел онлайн
  • Перемешать буквы в тексте онлайн
  • Частотный анализ текста онлайн
  • Поворот точек на произвольный угол онлайн
  • Обратный и дополнительный код числа онлайн
  • Площадь многоугольника по координатам онлайн
  • Остаток числа в степени по модулю
  • Расчет пропорций и соотношений
  • Как перевести градусы в минуты и секунды
  • Расчет процентов онлайн
  • Поиск объекта по географическим координатам
  • Растворимость металлов в различных жидкостях
  • DameWare Mini Control. Настройка.
  • Время восхода и захода Солнца и Луны для местности
  • Калькулятор географических координат
  • Расчет значения функции Эйлера
  • Перевод числа в код Грея и обратно
  • Теория графов. Матрица смежности онлайн
  • Произвольный треугольник по заданным параметрам
  • НОД двух многочленов. Greatest Common Factor (GCF)
  • Географические координаты любых городов мира
  • Площадь пересечения окружностей на плоскости
  • Онлайн определение эквивалентного сопротивления
  • Непрерывные, цепные дроби онлайн
  • Сообщество животных. Кто как называется?
  • Проекция точки на плоскость онлайн
  • Калькулятор онлайн расчета количества рабочих дней
  • Из показательной в алгебраическую. Подробно
  • Расчет заряда и разряда конденсатора через сопротивление
  • Система комплексных линейных уравнений
  • Расчет понижающего конденсатора
  • Построить ненаправленный граф по матрице
  • Месторождения золота и его спутники
  • Определение формулы касательной к окружности
  • Дата выхода на работу из отпуска, декрета онлайн
  • Каноническое уравнение гиперболы по двум точкам
Онлайн расчеты
Подписаться письмом

Математический портал.

3.$

Ответ: $i.$

 

 Найти действительные решения следующего уравнения:

1.431. $12((2x+i)(1+i)+(x+y)(3-2i))=17+6i.$

Ответ: $x=1/3; y=1/4.$

 

Решить следующие системы линейных уравнений:

1.432. $(3-i)z_1+(4+2i)z_2=1+3i;$

           $(4+2i)z_1-(2+3i)z_2=7.$

Ответ: $z_1=1; z_2=i.$

 

1.433. $(2+i)z_1+(2-i)z_2=6;$

           $(3+2i)z_1+(3-2i)z_2=8.$

Ответ: $z_1=2+i; z_2=2-i.$

Решение уравнений с комплексными решениями ies

Рабочая тетрадь по алгебре II для чайников

Узнать больше Купить книгу на Amazon

В алгебре вы часто сталкиваетесь с уравнениями, не имеющими реальных решений, или с уравнениями, у которых есть потенциал для гораздо большего количества реальных решений, чем есть на самом деле. Например, уравнение x 2 + 1 = 0 не имеет действительных решений. Если вы запишете это как x 2 = –1 и попытаетесь извлечь квадратный корень из каждой стороны, у вас возникнут проблемы.

Пока у вас нет мнимых чисел, вы не можете написать, что решение этого уравнения равно x = +/– i . Уравнение имеет два комплексных решения.

Пример уравнения без достаточного количества действительных решений: x 4 – 81 = 0. Факторы этого уравнения в ( x 2 – 9)( x 2 + 9) = 0. Двумя действительными решениями этого уравнения являются 3 и –3. Два комплексных решения: 3 i и –3 i .

Чтобы найти сложные решения уравнения, вы используете факторинг, свойство квадратного корня для решения квадратного уравнения и формулу квадратного уравнения.

Примеры вопросов

  1. Найдите все действительные и комплексные корни уравнения x 3 – 2 х 2 + 25 х – 50 = 0,

    x = 2, 5 i , -5 i . Сначала разложите уравнение на множители, чтобы получить x 2 ( x – 2) + 25 (

    x – 2) = ( x – 2)( x 2) + 25) = 0 Используя свойство умножения нуля, вы определяете, что x – 2 = 0 и x = 2. Вы также получаете x 2 + 25 = 0 и x . 2 = –25. Возьмите квадратный корень из каждой стороны и

    Упростите радикал, используя эквивалентность для i , и комплексные решения равны

    Действительный корень равен 2, а мнимые корни равны 5 i и –5 i .

  2. Найдите все корни, действительные и мнимые, уравнения

    х = 0,4 + 0,6 и , 0,4 – 0,6 и . Квадратное число не учитывается, поэтому вы используете квадратичную формулу:

    Комплексными являются только два решения: 0,4 + 0,6 i и 0,4 – 0,6 i .

Практические вопросы

  1. Найдите все корни, действительные и мнимые, x 2 + 9 = 0.

  2. Найдите все корни, действительные и мнимые, x 2 + 4 x + 7 = 0,

  3. Найдите все корни, действительные и мнимые, из 5 x 2 + 6 x + 3 = 0.

  4. Найдите все корни, действительные и мнимые, числа x 4 + 12 x 2 – 64 = 0,

Ниже приведены ответы на практические вопросы:
  1. Ответ: x = 3 i , -3 i .

    Добавьте -9 к каждой стороне, чтобы получить х 2 = –9. Извлеките квадратный корень из каждой стороны. Затем упростите выражение, используя i для отрицательного числа под радикалом:

  2. Ответ

    Используйте квадратичную формулу, чтобы найти x . Упростите выражение, используя i для отрицания под корнем:

  3. Ответ

    Используйте квадратичную формулу, чтобы найти x . Упростите выражение, используя i для минуса под корнем:

  4. Ответ: x = 2, –2, 4 i , –4 i .

    Фактор левой стороны: ( x 2 + 16)( x 2 – 4) = ( x 2 + 16)( x 90 019 – 2)( х + 2 ) = 0. Получите два действительных корня, установив x – 2 и x + 2 равными 0. Когда x 2 + 16 = 0, вы обнаружите, что х 2 = –16. Взяв квадратный корень из каждой стороны и используя i вместо -1 под корнем, вы получите два мнимых корня.

Об этой статье

Эта статья взята из книги:

  • Рабочая тетрадь по алгебре II для чайников,

Об авторе книги:

Мэри Джейн Стерлинг преподавала математику в средней и старшей школе, прежде чем начать свою карьеру в качестве преподаватель Университета Брэдли, где она преподавала более 35 лет.

Эту статью можно найти в категории:

  • Алгебра,

Решить уравнение с комплексными числами

Задавать вопрос

спросил

Изменено 7 лет, 8 месяцев назад

Просмотрено 3к раз

$\begingroup$

Вопрос состоит в том, чтобы решить следующее уравнение для комплексных чисел

$$z-i = iz +5$$

Я попытался добавить i к обеим частям, что дает $$z = iz +5 + i$$ Я также попытался объединить все термины в LHS, чтобы получить $$z — i — iz — 5 = 0$$

Можете ли вы помочь с решением этого уравнения?

  • комплексные числа

$\endgroup$

$\begingroup$

$$z- iz=5 +i$$ $$z=\frac{5+i}{1-i}$$ $$z=\frac{5+i}{1-i}\frac{1+i}{1+i}$$ $$z=2+3i$$

$\endgroup$

$\begingroup$

Тот факт, что это уравнение в комплексных числах, не должен вызывать у вас проблем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *