Как умножить синус на косинус: Произведение синусов и косинусов: формулы, примеры

Произведение синусов и косинусов: формулы, примеры

В данной статье рассмотрены формулы произведения синусов, косинусов, а также формулы произведения синуса на косинус. Допустим, есть необходимость вычислить произведение синусов или косинусов углов α и β. Формулы произведения позволяют перейти от произведения к сумме или разности синусов и косинусов углов α+β и α-β.

Приведем формулы произведения синуса на синус, косинуса на косинус и синуса на косинус.

Формулы произведения. Список

Приведем формулировки, а затем и сами формулы.

  1. Произведение синусов углов α и β равно полуразности косинуса угла α-β и косинуса угла α+β.
  2. Произведение косинусов углов α и β равно полусумме косинуса угла α-β и косинуса угла α+β.
  3. Произведение синуса угла α на косинус угла β равно полусумме синуса угла α-β и синуса угла α+β.
Формулы произведения

Для любых α и β справедливы формулы

  • sin α·sin β=12cosα-β-cosα+β;
  • cos α·cos β=12cosα-β+cosα+β;
  • sin α·cos β=12sinα-β+sinα+β.

Вывод формул

Вывод описанных выше формул проводится с помощью формул сложения и на основе свойства равенства. Согласно этому свойству, если левую и правую части верного равенства сложить соответственно с левой и правой частями другого верного равенста, то в результате получится еще одно верное равенство. Покажем вывод формул произведения.

Сначала запишем формулы косинуса суммы и косинуса разности:

cosα+β=cos α·cos β-sin α·sin βcosα-β=cos α·cos β+sin α·sin β

Сложим эти равенства и получим:

cosα+β+cosα-β=cos α·cos β-sin α·sin β+cos α·cos β+sin α·sin βcosα+β+cosα-β=2·cos α·cos β

Отсюда

cos α·cos β=12cosα+β+cosα-β

Формула произведения косинусов доказана.

Перепишем формулу косинуса суммы следующим образом:

-cos(α+β)=-cos α·cosβ+sin α·sinβ

Добавим к равенству формулу cosα-β=cos α·cos β+sin α·sinβ.

Получим:

-cos(α+β)+cosα-β=-cos α·cosβ+sin α·sinβ+cos α·cos β+sin α·sinβ-cos(α+β)+cosα-β=2·sin α·sinβsin α·sinβ=12(cosα-β-cos(α+β))

Таким образом, выведена формула произведения синусов.

Теперь возьмем формулу синуса суммы, формулу синуса разности, и сложим их левые и правые части

sinα+β=sin α·cos β+cos α·sin βsinα-β=sin α·cos β-cos α·sin βsinα+β+sinα-β=sin α·cos β+cos α·sin β+sin α·cos β-cos α·sin βsinα+β+sinα-β=2sin α·cos βsin α·cos β=12(sinα+β+sinα-β)

Формула произведения синуса на косинус выведена.

Примеры использования

Приведем примеры использования формул произведения синусов, косинусов и синусов на косинус при решении задач. 

Пусть α=60°, β=30°. Возьмем формулу произведения синусов и подставим в нее конкретные значения.

sin α·sin β=12(cosα-β-cosα+β)sin 60°·sin 30° =12(cos60°-30°-cos60°+30°)sin 60°·sin 30°=12(cos30°-cos90°)sin 60°·sin 30°=12(32-0)=34

Теперь вычислим значение выражения, обратившись к таблице основных значений тригонометрических функций.

sin60°·sin30°=32·12=34.

 Таким образом, мы проверили формулу на практике и убедились, что формула справедлива.

Пример. Формулы произведения

Нужно sin 75° умножить на cos 15° и вычислить точное  значение произведения.

Мы не располагаем точными значениями синуса и косинуса данных углов, однако можем вычислить точное значение произведения sin 75°·cos 15° c помощью формулы произведения синуса на косинус.

sin 75°·cos 15°=12sin(75°-15°+sin(75°+15°))sin 75°·cos 15°=12sin60°+sin90°=1232+1=3+24

Также формулы произведения используются преобразования тригонометрических выражений.

Автор: Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Mathway | Популярные задачи

1Trovare la Derivata — d/dxнатуральный логарифм x
2Вычислим интегралинтеграл натурального логарифма x по x
3Trovare la Derivata — d/dxe^x
4Вычислим интегралинтеграл e^(2x) по x
5Trovare la Derivata — d/dx1/x
6Trovare la Derivata — d/dxx^2
7Trovare la Derivata — d/dx1/(x^2)
8Trovare la Derivata — d/dxsin(x)^2
9Trovare la Derivata — d/dxsec(x)
10Вычислим интегралинтеграл e^x по x
11Вычислим интегралинтеграл x^2 по x
12Вычислим интегралинтеграл квадратного корня из x по x
13Trovare la Derivata — d/dxcos(x)^2
14Вычислим интегралинтеграл 1/x по x
15Вычислим интегралинтеграл sin(x)^2 по x
16Trovare la Derivata — d/dxx^3
17Trovare la Derivata — d/dxsec(x)^2
18Вычислим интегралинтеграл cos(x)^2 по x
19Вычислим интегралинтеграл sec(x)^2 по x
20Trovare la Derivata — d/dxe^(x^2)
21Вычислим интегралинтеграл в пределах от 0 до 1 кубический корень из 1+7x по x
22Trovare la Derivata — d/dxsin(2x)
23Trovare la Derivata — d/dxtan(x)^2
24Вычислим интегралинтеграл 1/(x^2) по x
25Trovare la Derivata — d/dx2^x
26Графикнатуральный логарифм a
27Trovare la Derivata — d/dxcos(2x)
28Trovare la Derivata — d/dxxe^x
29Вычислим интегралинтеграл 2x по x
30Trovare la Derivata — d/dx( натуральный логарифм от x)^2
31Trovare la Derivata — d/dxнатуральный логарифм (x)^2
32Trovare la Derivata — d/dx3x^2
33Вычислим интегралинтеграл xe^(2x) по x
34Trovare la Derivata — d/dx2e^x
35Trovare la Derivata — d/dxнатуральный логарифм 2x
36Trovare la Derivata — d/dx-sin(x)
37Trovare la Derivata — d/dx4x^2-x+5
38Trovare la Derivata — d/dxy=16 корень четвертой степени из 4x^4+4
39Trovare la Derivata — d/dx2x^2
40Вычислим интегралинтеграл e^(3x) по x
41Вычислим интегралинтеграл cos(2x) по x
42Trovare la Derivata — d/dx1/( квадратный корень из x)
43Вычислим интегралинтеграл e^(x^2) по x
44Вычислитьe^infinity
45Trovare la Derivata — d/dxx/2
46Trovare la Derivata — d/dx-cos(x)
47Trovare la Derivata — d/dxsin(3x)
48Trovare la Derivata — d/dx1/(x^3)
49Вычислим интегралинтеграл tan(x)^2 по x
50Вычислим интегралинтеграл 1 по x
51Trovare la Derivata — d/dxx^x
52Trovare la Derivata — d/dxx натуральный логарифм от x
53Trovare la Derivata — d/dxx^4
54Оценить пределпредел (3x-5)/(x-3), если x стремится к 3
55Вычислим интегралинтеграл x^2 натуральный логарифм x по x
56Trovare la Derivata — d/dxf(x) = square root of x
57Trovare la Derivata — d/dxx^2sin(x)
58Вычислим интегралинтеграл sin(2x) по x
59Trovare la Derivata — d/dx3e^x
60Вычислим интегралинтеграл xe^x по x
61Trovare la Derivata — d/dxy=x^2
62Trovare la Derivata — d/dxквадратный корень из x^2+1
63Trovare la Derivata — d/dxsin(x^2)
64Вычислим интегралинтеграл e^(-2x) по x
65Вычислим интегралинтеграл натурального логарифма квадратного корня из x по x
66Trovare la Derivata — d/dxe^2
67Trovare la Derivata — d/dxx^2+1
68Вычислим интегралинтеграл sin(x) по x
69Trovare la Derivata — d/dxarcsin(x)
70Оценить пределпредел (sin(x))/x, если x стремится к 0
71Вычислим интегралинтеграл e^(-x) по x
72Trovare la Derivata — d/dxx^5
73Trovare la Derivata — d/dx2/x
74Trovare la Derivata — d/dxнатуральный логарифм 3x
75Trovare la Derivata — d/dxx^(1/2)
76Trovare la Derivata — d/d@VARf(x) = square root of x
77Trovare la Derivata — d/dxcos(x^2)
78Trovare la Derivata — d/dx1/(x^5)
79Trovare la Derivata — d/dxкубический корень из x^2
80Вычислим интегралинтеграл cos(x) по x
81Вычислим интегралинтеграл e^(-x^2) по x
82Trovare la Derivata — d/d@VARf(x)=x^3
83Вычислим интегралинтеграл 4x^2+7 в пределах от 0 до 10 по x
84Вычислим интегралинтеграл ( натуральный логарифм x)^2 по x
85Trovare la Derivata — d/dxлогарифм x
86Trovare la Derivata — d/dxarctan(x)
87Trovare la Derivata — d/dxнатуральный логарифм 5x
88Trovare la Derivata — d/dx5e^x
89Trovare la Derivata — d/dxcos(3x)
90Вычислим интегралинтеграл x^3 по x
91Вычислим интегралинтеграл x^2e^x по x
92Trovare la Derivata — d/dx16 корень четвертой степени из 4x^4+4
93Trovare la Derivata — d/dxx/(e^x)
94Оценить пределпредел arctan(e^x), если x стремится к 3
95Вычислим интегралинтеграл (e^x-e^(-x))/(e^x+e^(-x)) по x
96Trovare la Derivata — d/dx3^x
97Вычислим интегралинтеграл xe^(x^2) по x
98Trovare la Derivata — d/dx2sin(x)
99Вычислитьsec(0)^2
100Trovare la Derivata — d/dxнатуральный логарифм x^2

Мэтуэй | Популярные задачи

92) 9(3x) по отношению к x 92+1
1 Найти производную — d/dx бревно натуральное х
2 Оценить интеграл интеграл натурального логарифма x относительно x
3 Найти производную — d/dx
21 Оценить интеграл интеграл от 0 до 1 кубического корня из 1+7x относительно x
22 Найти производную — d/dx грех(2x)
23 Найти производную — d/dx
41 Оценить интеграл интеграл от cos(2x) относительно x
42 Найти производную — d/dx 1/(корень квадратный из х)
43 Оценка интеграла 9бесконечность
45 Найти производную — d/dx х/2
46 Найти производную — d/dx -cos(x)
47 Найти производную — d/dx грех(3x)
68 Оценить интеграл интеграл от sin(x) по x
69 Найти производную — d/dx угловой синус(х)
70 Оценить предел ограничение, когда x приближается к 0 из (sin(x))/x 92 по отношению к х
85 Найти производную — d/dx лог х
86 Найти производную — d/dx арктан(х)
87 Найти производную — d/dx бревно натуральное 5х92

Тригонометрические функции.

Доктора математики
(Архивный вопрос недели)

В прошлый раз мы рассмотрели некоторые детали, которые редко упоминаются при формулировании правил интерпретации алгебраических выражений. Я не уместился в обсуждении самого сложного случая: тригонометрических функций, которые при записи без круглых скобок, как это было традиционно, могут вызвать несколько вопросов. (Многое из того же верно и для логарифмов.)

Тригонометрические функции без скобок

Вот вопрос, из 2010 года:

 Порядок произведений, мощностей и параметров тригонометрических функций 

Пытаюсь уточнить порядок операций применительно к тригонометрическим функциям. Я хочу знать, каков правильный порядок операций для такого выражения, как sin2x. Когда мы знаем, что умножение подразумевается? Когда в моем учебнике написано sin2x, я знаю, что это означает sin(2x). Но часто скобки отсутствуют. Правильно ли тогда предположить, что умножение всегда подразумевается в круглых скобках? Если это так, не означает ли это, что sinxcosy следует читать как sin(xcosy)? (Я тоже видел это в своем учебнике, но я знаю, что должен интерпретировать это как (sinx) (уютно). ) Я знаю, что всегда следует включать символы группировки, чтобы избежать двусмысленности; но когда их нет, как правильно интерпретировать эти выражения?

Если триггерные функции были написаны с использованием обычных обозначений для функций, т.е. \(\sin(2x)\), проблем не будет. Но тригонометрические функции возникли раньше современной записи функций (или даже понятия функции), и старая запись была «унаследована», так что, хотя сегодня многие авторы рекомендуют всегда использовать круглые скобки, старая форма по-прежнему распространена. Как указал Джим, если, как в \(\sin 2x\), умножение имеет приоритет над функцией (как если бы оно было в круглых скобках), то \(\sin x \cos y\), по-видимому, подразумевает, что умножение произошло до применения функции синуса, что сделало его \(\sin(x \cos y)\). И я никогда не видел «официального» объяснения этому.

Никаких правил, только люди

Я ответил:

 Я обдумывал это несколько раз, и мой собственный вывод таков, что  правил не существует  . 
Здесь мы рассматриваем язык, который развился не по преднамеренному замыслу, а органично — с согласия его пользователей — точно так же, как развивается любой естественный язык. Лингвисты могут изучать язык, чтобы выяснить его правила, но по сути они реконструируют то, что существует без явных правил. Вы можете увидеть некоторые из этих разработок в порядке операций здесь:
  История порядка операций
  http://mathforum.org/library/drmath/view/52582.html 

Все, что лингвист может сделать, чтобы понять язык, — это изучить, как его используют его носители. Языки (за исключением нескольких «искусственных языков») не изобретаются с готовым сводом правил, а органически развиваются по мере того, как люди говорят на них, постоянно меняясь. Большая часть изучаемой нами английской грамматики, которая предположительно состоит из определенного набора правил, на самом деле была навязана английскому языку учеными, которые считали, что любой допустимый язык должен соответствовать категориям, известным из латыни, в результате чего она часто не соответствует как мы говорим на самом деле.

То же самое относится и к PEMDAS: это набор правил, наложенных на наш «язык», предназначенных для представления того, как выполняется математика, но немного более жестких, чем реальность. А тригонометрия — это отдельный диалект! 92 x, где log x * log x и 90 937 log(log x) часто встречаются в анализе». Он говорит, что это сокращенное обозначение используется потому, что его достаточно, чтобы отличить часто используемые формы друг от друга: опыт говорит нам , что кто-то не имел бы в виду грех(грех(х)).

Это, конечно, не главный вопрос, который мы обсуждаем, но он иллюстрирует тот факт, что нотация тригонометрии идиосинкразична и приемлема в основном потому, что «мы знаем ее, когда видим», не нуждаясь в правилах.

Правило здравого смысла

 Я думаю, что 
основное правило здравого смысла
лежит в основе расхлябанности в использовании других форм, таких как второй и третий примеры, которые вы упомянули: грех 2x означает грех (2x) sin x cos y означает sin(x)cos(y) Они означают то, что они делают, просто потому, что мы знаем достаточно, чтобы НЕ ожидать, что sin 2x будет означать sin(2)*x sin x cos y будет означать sin(x*cos(y)) Возможно, есть также немного типографского рассмотрения : расстояние обычно предполагает, что 2x принадлежит как единое целое, как и sinx и cosy во втором примере.

В современных учебниках (особенно по математическому анализу) могут быть сложные выражения, составленные только для того, чтобы проверить свои навыки, без ссылки на то, будут ли они когда-либо действительно использованы; в таком контексте здравый смысл может оказаться бесполезным! Тогда применяется другая часть здравого смысла: когда есть возможность неправильного толкования, используйте круглые скобки. И наоборот, если выражение не имеет круглых скобок, предполагается, что автор хотел, чтобы оно читалось наиболее естественным образом (что бы это ни было).

 Таким образом, можно проанализировать все употребления с лингвистической точки зрения и установить некоторые правила, например, «умножение предшествует тригонометрическим функциям, за исключением случаев, когда другая триггерная функция является множителем». Но что мы действительно делаем, читая эти выражения, так это руководствуемся здравым смыслом, основанным на математическом опыте.
Это вообще помогает? 

Другими словами, я не думал, что стоит пытаться придумать полный набор правил. 2-2)(8x)] Я понимаю, что лучше всего использовать скобки и квадратные скобки, чтобы развеять любые сомнения, но было бы неправильно писать cos(a) (b), когда вы имеете в виду (b)cos(a)? Когда круглые скобки не используются, например, с sin 2x, я знаю, что мы обычно принимаем это за sin(2x). Так что есть над чем подумать! Бев

Это очень похоже на вопрос, на который я ответил, но с большим примером. Если бы мы когда-нибудь написали \(\cos(a)(b)\), то восприняли бы это как функцию произведения, как мы сделали бы с \(\cos ab\)? Если нет, то почему?

На самом деле есть быстрый ответ на этот конкретный вопрос: когда круглые скобки используются с функцией, они всегда заключают в себе весь аргумент. Тот факт, что круглые скобки необязательны для триггерных функций, не имеет значения; как только вы вообще используете круглые скобки, вы теряете право думать о них как о содержащих только один фактор аргумента.

Доктор Том вместо этого ответил на более важный вопрос:

 Привет, Бев!
      
Хороший вопрос! Вы застали нас, математиков, со спущенными штанами.
Я думаю, что в основном от лени мы даже пишем такие вещи "грех х" Почти любая другая функция, кроме тригонометрической (и, возможно, логарифмической), требует, чтобы параметры были заключены в круглые скобки. Как только вы признаете законность такой формы, как «sin 2x», вы открываете банку с червями. Даже что-то вроде этого... f (х) = грех х + соз х
... тогда это могло означать, да? f(x) = sin(x + cos(x))

Я думаю, все более или менее согласны с тем, что сложение обязательно выполняется после функции, так что \(\sin\alpha + \beta \ne \sin(\alpha + \бета)\). (С другой стороны, если известно, что \(\alpha\) и \(\beta\) являются углами, мы могли бы считать очевидным, что первая форма должна означать вторую, поскольку мы никогда не добавляем углы к отношениям.) Но такое правило обычно не указывается явно, и без таких правил возможно все.

 Это прозвучит ужасно, но я так часто видел это небрежное использование, что просто «знаю», что имелось в виду. Мы, математики, просто делаем много «предполагаемой группировки». Например, ни один профессиональный математик никогда не напишет произведение таким образом: 
 х2
Она всегда писала так: 
 2x 
Точно так же я бы никогда не написал... 
 грех х 2 
... или даже 
 (грех х)2 
Я бы переместил 2 вперед, чтобы сделать это ... 
 2 грех х 
... или это: 
 2 грех(х) 
Точно так же интерпретировать это... 
 грех 2x 
... поскольку «синус 2, умноженный на x» был бы очень необычным, поскольку во-первых, мы почти наверняка поместили бы «x» перед «sin 2»; и, во-вторых, если после «2» нет символа «градус», было бы невероятно маловероятно, что вы возьмете синус 2 радиана. 92\), потому что это просто не то, как мы пишем. Это способ устранить двусмысленность и добавить избыточность, чтобы мы могли распознавать ошибки. Аналогичное соглашение заключается в том, чтобы всегда писать радиальное в конце, чтобы убедиться, что винкулум не будет истолкован слишком далеко: \(2i\sqrt{3}\), а не \(2\sqrt{3}i\), что слишком похоже на \(2\sqrt{3i}\).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *