Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΠ°Π²ΠΈΠ³Π°ΡΠΈΡ ΠΏΠΎ ΡΡΡΠ°Π½ΠΈΡΠ΅:
- Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ
- Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ
- Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ
- Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΌΠ΅ΡΠ°Π½ΡΡ ΡΠΈΡΠ΅Π»
- ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ
- ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ
- ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ
- ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅ ΡΠΌΠ΅ΡΠ°Π½ΡΡ ΡΠΈΡΠ΅Π»
Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ
Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅.
Π§ΡΠΎΠ±Ρ ΡΠ»ΠΎΠΆΠΈΡΡ Π΄Π²Π΅ Π΄ΡΠΎΠ±ΠΈ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ, Π½ΡΠΆΠ½ΠΎ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΈΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈ, Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΎΡΡΠ°Π²ΠΈΡΡ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ:
a | Β +Β | b | Β =Β | a + b |
c | c | c |
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ
ΠΡΠΈΠΌΠ΅Ρ 1.
ΠΠ°ΠΉΡΠΈ ΡΡΠΌΠΌΡ Π΄Π²ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ:
1 | Β +Β | 2 | Β =Β | 1 + 2 | Β =Β | 3 |
5 | 5 | 5 | 5 |
ΠΡΠΈΠΌΠ΅Ρ 2.
ΠΠ°ΠΉΡΠΈ ΡΡΠΌΠΌΡ Π΄Π²ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ:
3 | Β +Β | 2 | Β =Β | 3 + 2 | Β =Β | 5 |
7 | 7 | 7 | 7 |
ΠΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π΄ΡΠΎΠ±Π΅ΠΉ
Π£ΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΡ Π½Π° ΡΠ΅ΠΌΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΡΠ°Π²Π½ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ
Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ.
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΡΠΈΠΌΠ΅Ρ 3.
ΠΠ°ΠΉΡΠΈ ΡΡΠΌΠΌΡ Π΄Π²ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ:
1 | Β +Β | 1 | Β =Β | 1Β·2 | Β +Β | 1 | Β =Β | 2 | Β +Β | 1 | Β =Β | 2 + 1 | Β =Β | 3 | Β =Β | 3 | Β =Β | 1 |
3 | 6 | 3Β·2 | 6 | 6 | 6 | 6 | 6 | 3Β·2 | 2 |
ΠΡΠΈΠΌΠ΅Ρ 4.
ΠΠ°ΠΉΡΠΈ ΡΡΠΌΠΌΡ Π΄Π²ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ:
29 | Β +Β | 44 | Β =Β | 29Β·3 | Β +Β | 44Β·2 | Β =Β | 87 | Β +Β | 88 | Β =Β | 87 + 88 | Β =Β |
30 | 45 | 30Β·3 | 45Β·2 | 90 | 90 | 90 |
Β =Β | 175 | Β =Β | 35Β·5 | Β =Β | 35 | Β =Β | 18 + 17 | Β =Β 1 | 17 |
90 | 18Β·5 | 18 | 18 |
ΠΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π΄ΡΠΎΠ±Π΅ΠΉ
Π£ΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΡ Π½Π° ΡΠ΅ΠΌΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄Π²ΡΡ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ
Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΈΡΠ΅Π»
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΈΡΠ΅Π»
ΠΡΠΈΠΌΠ΅Ρ 5.
ΠΠ°ΠΉΡΠΈ ΡΡΠΌΠΌΡ Π΄Π²ΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΈΡΠ΅Π»:
2 | Β +Β | 1 | 1 | Β =Β | 2Β·2 | Β +Β | 1 | 1Β·3 | Β =Β | 4 | Β +Β | 1 | 3 | Β =Β | 1Β +Β | 4 + 3 | Β =Β |
3 | 2 | 3Β·2 | 2Β·3 | 6 | 6 | 6 |
Β =Β | 1Β +Β | 7 | Β =Β | 1Β +Β | 6 + 1 | Β =Β | 1Β +Β 1 | 1 | Β =Β 2 | 1 |
6 | 6 | 6 | 6 |
ΠΡΠΈΠΌΠ΅Ρ 6.
ΠΠ°ΠΉΡΠΈ ΡΡΠΌΠΌΡ Π΄Π²ΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΈΡΠ΅Π»:
1 | 5 | Β +Β | 2 | 3 | Β =Β | 1 | 5Β·4 | Β +Β | 2 | 3Β·3 | Β =Β | 1 | 20 | Β +Β | 2 | 9 | Β =Β | 3Β +Β | 20 + 9 | Β =Β |
6 | 8 | 6Β·4 | 8Β·3 | 24 | 24 | 24 |
Β =Β | 3Β +Β | 29 | Β =Β | 3Β +Β | 24 + 5 | Β =Β | 3Β +Β 1 | Β =Β 4 | 5 | |
24 | 24 | 24 | 24 |
ΠΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π΄ΡΠΎΠ±Π΅ΠΉ
Π£ΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΡ Π½Π° ΡΠ΅ΠΌΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄Π²ΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΈΡΠ΅Π»
ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠ°Π·Π½ΠΈΡΡ Π΄Π²ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ, Π½ΡΠΆΠ½ΠΎ Π²ΡΡΠ΅ΡΡΡ ΠΈΠ· ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ Π²ΡΠΎΡΠΎΠΉ, Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΎΡΡΠ°Π²ΠΈΡΡ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ:
a | Β —Β | b | Β =Β | a — b |
c | c | c |
ΠΡΠΈΠΌΠ΅ΡΡ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ
ΠΡΠΈΠΌΠ΅Ρ 7.
ΠΠ°ΠΉΡΠΈ ΡΠ°Π·Π½ΠΎΡΡΡ Π΄Π²ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ:
3 | Β —Β | 1 | Β =Β | 3 — 1 | Β =Β | 2 |
5 | 5 | 5 | 5 |
ΠΡΠΈΠΌΠ΅Ρ 8.
ΠΠ°ΠΉΡΠΈ ΡΠ°Π·Π½ΠΎΡΡΡ Π΄Π²ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ:8 | Β —Β | 5 | Β =Β | 8 — 5 | Β =Β | 3 |
41 | 41 | 41 | 41 |
ΠΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π΄ΡΠΎΠ±Π΅ΠΉ
Π£ΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΡ Π½Π° ΡΠ΅ΠΌΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ Ρ ΡΠ°Π²Π½ΡΠΌΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΡΠΌΠΈ
ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ.
ΠΡΠΈΠΌΠ΅ΡΡ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΡΠΈΠΌΠ΅Ρ 9.
ΠΠ°ΠΉΡΠΈ ΡΠ°Π·Π½ΠΎΡΡΡ Π΄Π²ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ:
5 | Β —Β | 1 | Β =Β | 5 | Β —Β | 1Β·3 | Β =Β | 5 | Β —Β | 3 | Β =Β | 5 — 3 | Β =Β | 2 | Β =Β | 2 | Β =Β | 1 |
6 | 2 | 6 | 2Β·3 | 6 | 6 | 6 | 6 | 2Β·3 | 3 |
ΠΡΠΈΠΌΠ΅Ρ 10.
3 | Β —Β | 1 | Β =Β | 3Β·3 | Β —Β | 1Β·5 | Β =Β | 9 | Β —Β | 5 | Β =Β | 9 — 5 | Β =Β | 4 | Β =Β | 2Β·2 | Β =Β | 2 |
10 | 6 | 10Β·3 | 6Β·5 | 30 | 30 | 30 | 30 | 15Β·2 | 15 |
ΠΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π΄ΡΠΎΠ±Π΅ΠΉ
Π£ΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΡ Π½Π° ΡΠ΅ΠΌΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄Π²ΡΡ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΡΡΠΈΡΠ°Π½ΠΈΠ΅ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΈΡΠ΅Π».
ΠΡΠΈΠΌΠ΅ΡΡ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΈΡΠ΅Π»
ΠΡΠΈΠΌΠ΅Ρ 11.
ΠΠ°ΠΉΡΠΈ ΡΠ°Π·Π½ΠΎΡΡΡ Π΄Π²ΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΈΡΠ΅Π»:
2 | 1 | Β —Β | 1 | 1 | Β =Β | 2 | 1Β·3 | Β —Β | 1 | 1Β·2 | Β =Β | (2 — 1) | Β +Β | 3 | Β —Β | 2 | Β =Β |
2 | 3 | 2Β·3 | 3Β·2 | 6 | 6 |
Β =Β | 1 | Β +Β | 3 -2 | Β =Β | 1 | Β +Β | 1 | Β =Β | 1 | 1 |
6 | 6 | 6 |
ΠΡΠΈΠΌΠ΅Ρ 12.
ΠΠ°ΠΉΡΠΈ ΡΠ°Π·Π½ΠΎΡΡΡ Π΄Π²ΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΈΡΠ΅Π»:
3 | 1 | Β —Β | 1 | 3 | Β =Β | 3 | 1Β·4 | Β —Β | 1 | 3Β·3 | Β =Β | 3 | 4 | Β —Β | 1 | 9 | Β =Β |
8 | 6Β·4 | 8Β·3 | 24 | 24 |
Β =Β | 2 | 24 + 4 | Β —Β | 1 | 9 | Β =Β | 1Β +Β | 28 — 9 | Β =Β | 1Β +Β | 19 | Β =Β 1 | 19 |
24 | 24 | 24 | 24 | 24 |
ΠΡΠΈΠΌΠ΅Ρ 13.
ΠΠ°ΠΉΡΠΈ ΡΠ°Π·Π½ΠΎΡΡΡ Π΄Π²ΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΈΡΠ΅Π»:
1 | 1 | Β —Β | 3 | 2 | Β =Β | 1 | 1 | Β —Β | 3 | 2Β·2 | Β =Β | 1 | 1 | Β —Β | 3 | 4 | Β =Β | (1-3) | Β +Β | 1 — 4 | Β =Β |
6 | 3 | 6 | 3Β·2 | 6 | 6 | 6 |
Β =Β -2 | Β —Β | 3 | Β =Β | -2 | Β —Β | 3 | Β =Β | -2 | Β —Β | 1 | Β =Β | -2 | 1 |
6 | 2Β·3 | 2 | 2 |
ΠΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π΄ΡΠΎΠ±Π΅ΠΉ
Π£ΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΡ Π½Π° ΡΠ΅ΠΌΡ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄Π²ΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΈΡΠ΅Π»
ΠΡΠΎΠ±ΠΈ ΠΠΈΠ΄Ρ Π΄ΡΠΎΠ±Π΅ΠΉ (ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½Π°Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½Π°Ρ, Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½Π°Ρ, ΡΠΌΠ΅ΡΠ°Π½Π½Π°Ρ, Π΄Π΅ΡΡΡΠΈΡΠ½Π°Ρ) ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π΄ΡΠΎΠ±ΠΈ Π‘ΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±ΠΈ ΠΡΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π² ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π² Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΡ Π΄ΡΠΎΠ±Ρ Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ ΠΠ΅Π»Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π΅ΡΡΡΠΈΡΠ½ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π² ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Ρ
ΠΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΠ½Π»Π°ΠΉΠ½ ΡΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΡ Ρ Π΄ΡΠΎΠ±ΡΠΌΠΈ
ΠΡΠΎΠ±Ρ 2 9/2 Π² Π²ΠΈΠ΄Π΅ Π΄Π΅ΡΡΡΠΈΡΠ½ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ «ΠΠΎΠ½Π²Π΅ΡΡΠ΅Ρ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Π² Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠ΅»
ΠΠ°ΠΊ Π·Π°ΠΏΠΈΡΠ°ΡΡ 2 ΡΠ΅Π»ΡΡ 9/2 Π² Π²ΠΈΠ΄Π΅ Π΄Π΅ΡΡΡΠΈΡΠ½ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ?
ΠΡΠ²Π΅Ρ: ΠΡΠΎΠ±Ρ 2 9/2 Π² Π΄Π΅ΡΡΡΠΈΡΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅ ΡΡΠΎ 6,5
ΠΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Π²Π΅ΡΡΠ°ΡΠΈΠΈ Π΄ΡΠΎΠ±ΠΈ 2 9/2 Π² Π΄Π΅ΡΡΡΠΈΡΠ½ΡΡ
ΠΠ»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ Π΄ΡΠΎΠ±Ρ 2 9/2 Π² Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠΉ ΡΠΎΡΠΌΠ°Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ 9 Π½Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ 2. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ Π΄Π΅Π»Π΅Π½ΠΈΡ:
9 Γ· 2 = 6,5
ΠΈ ΠΏΡΠΈΠ±Π°Π²ΠΈΡΡ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ (2):
4.5 + 2 = 6,5
ΠΡΡΠ³ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ± ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ Π΄ΡΠΎΠ±ΠΈ 2 ΡΠ΅Π»ΡΡ 9/2 Π² Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠΉ ΡΠΎΡΠΌΠ°Ρ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΎΠΌ, ΡΡΠΎΠ±Ρ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ ΡΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ Π΄ΡΠΎΠ±Ρ Π² Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΡ Π΄ΡΠΎΠ±Ρ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠΏΠ΅ΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ (2) Π½Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ (2):
2 Γ 2 = 4
ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΈΠ±Π°Π²ΠΈΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΊ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ (9):
4 + 9 = 13
ΠΈ Π² ΠΊΠΎΠ½ΡΠ΅ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π½Π° ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ (2):
= 13 Γ· 2 =6,5
ΠΠΎΠ΄Π΅Π»ΠΈΡΠ΅ΡΡ ΡΠ΅ΠΊΡΡΠΈΠΌ ΡΠ°ΡΡΠ΅ΡΠΎΠΌ
ΠΠ΅ΡΠ°ΡΡ
https://calculat.io/ru/number/fraction-as-a-decimal/2—9—2
<a href=»https://calculat.io/ru/number/fraction-as-a-decimal/2—9—2″>ΠΡΠΎΠ±Ρ 2 9/2 Π² Π²ΠΈΠ΄Π΅ Π΄Π΅ΡΡΡΠΈΡΠ½ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ — Calculatio</a>
Π ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΠ΅ «ΠΠΎΠ½Π²Π΅ΡΡΠ΅Ρ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Π² Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠ΅»
ΠΠ°Π½Π½ΡΠΉ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠΎΠ½Π²Π΅ΡΡΠ΅Ρ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Π² Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΠ»Π΅Π·Π½ΡΠΌ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠΌ, ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Π½ΡΠΌ Π΄Π»Ρ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²ΡΠ²Π°Π½ΠΈΡ Π»ΡΠ±ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π² Π΅Π΅ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΡ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΡ ΡΠΎΡΠΌΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠΌΠΎΡΡ ΡΠ·Π½Π°ΡΡ ΠΊΠ°ΠΊ Π·Π°ΠΏΠΈΡΠ°ΡΡ 2 ΡΠ΅Π»ΡΡ 9/2 Π² Π²ΠΈΠ΄Π΅ Π΄Π΅ΡΡΡΠΈΡΠ½ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ? ΠΠ΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΠΎΠ³ΠΎ, ΡΠ²Π»ΡΠ΅ΡΠ΅ΡΡ Π»ΠΈ Π²Ρ ΡΡΠ΅Π½ΠΈΠΊΠΎΠΌ, ΡΡΡΠ΄Π΅Π½ΡΠΎΠΌ ΠΈΠ»ΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΠΎΠΌ, ΡΡΠΎΡ ΠΊΠΎΠ½Π²Π΅ΡΡΠ΅Ρ ΠΌΠΎΠΆΠ΅Ρ ΡΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΡ Π²Π°ΡΠ΅ Π²ΡΠ΅ΠΌΡ ΠΈ ΡΡΠΈΠ»ΠΈΡ ΠΏΡΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ ΡΡΡΠ½ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ.
Π§ΡΠΎΠ±Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΡΠΎΡ ΠΊΠΎΠ½Π²Π΅ΡΡΠ΅Ρ, ΠΏΡΠΎΡΡΠΎ Π²Π²Π΅Π΄ΠΈΡΠ΅ Π΄ΡΠΎΠ±Ρ, ΠΊΠΎΡΠΎΡΡΡ Π²Ρ Ρ ΠΎΡΠΈΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ, Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΏΠΎΠ»Ρ. ΠΠ°ΠΌ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²Π²Π΅ΡΡΠΈ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ (Π΅ΡΠ»ΠΈ Π΅ΡΡΡ), ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Π΄ΡΠΎΠ±ΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ Π²Ρ Ρ ΠΎΡΠΈΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ 2 9/2 Π² Π΅Π³ΠΎ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠΉ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ, Π²Ρ Π²Π²Π΅Π΄Π΅ΡΠ΅ ‘2’ ΠΊΠ°ΠΊ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ, ‘9’ ΠΊΠ°ΠΊ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ ‘2’ ΠΊΠ°ΠΊ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.
ΠΠΎΡΠ»Π΅ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ Π²Ρ Π²Π²Π΅Π»ΠΈ Π΄ΡΠΎΠ±Ρ, Π½Π°ΠΆΠΌΠΈΡΠ΅ ΠΊΠ½ΠΎΠΏΠΊΡ ‘ΠΠΎΠ½Π²Π΅ΡΡΠΈΡΠΎΠ²Π°ΡΡ’, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΎΠ½Π²Π΅ΡΡΠ΅Ρ ΠΎΡΠΎΠ±ΡΠ°Π·ΠΈΡ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠΉ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ Π΄ΡΠΎΠ±ΠΈ, ΠΊΠΎΡΠΎΡΡΠΉ Π² Π½Π°ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π²Π΅Π½ 6,5. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΎΠ½ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²ΠΈΡ ΠΏΠΎΡΠ°Π³ΠΎΠ²ΠΎΠ΅ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΡΡΠΎΠ±Ρ Π²Ρ ΠΌΠΎΠ³Π»ΠΈ ΠΏΠΎΠ½ΡΡΡ, ΠΊΠ°ΠΊ Π±ΡΠ» ΠΏΠΎΠ»ΡΡΠ΅Π½ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠΉ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ Π΄ΡΠΎΠ±ΠΈ. ΠΡΠ»ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΡΡΠΈΡΠ½ΠΎΠΉ Π΄ΡΠΎΠ±ΡΡ, ΠΊΠΎΠ½Π²Π΅ΡΡΠ΅Ρ ΠΎΡΠΎΠ±ΡΠ°Π·ΠΈΡ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΠΉΡΡ ΡΠ°Π±Π»ΠΎΠ½, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ Π΄Π»Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΡ ΡΡ ΡΠΈΡΡ.
ΠΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΊΠ»ΡΡΠ΅Π²ΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΡΠΎΠ³ΠΎ ΠΊΠΎΠ½Π²Π΅ΡΡΠ΅ΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ Π΅Π³ΠΎ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ Π²ΡΠ²ΠΎΠ΄ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ. Π ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ Π΄Π΅ΡΡΡΠΈΡΠ½Π°Ρ Π΄ΡΠΎΠ±Ρ — ΡΡΠΎ Π΄Π΅ΡΡΡΠΈΡΠ½Π°Ρ Π΄ΡΠΎΠ±Ρ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π΅ΡΡΡ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΠΉΡΡ ΡΠ°Π±Π»ΠΎΠ½ ΡΠΈΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, 0,33333… ΠΈΠ»ΠΈ 0,142857142857… ΠΡΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅Ρ ΡΠ°ΠΊΠΈΠ΅ Π΄ΡΠΎΠ±ΠΈ ΠΎΡ Π½Π΅ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ Π·Π°ΠΊΠ°Π½ΡΠΈΠ²Π°ΡΡΡΡ ΠΏΠΎΡΠ»Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΡΠΈΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, 0,5 ΠΈΠ»ΠΈ 0,75.
ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠΎΠ½Π²Π΅ΡΡΠ΅ΡΠ° Π΄ΡΠΎΠ±Π΅ΠΉ Π² Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π±ΡΡΡΡΡΠΌ ΠΈ ΠΏΡΠΎΡΡΡΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π»ΡΠ±ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π² Π΅Π΅ Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠΉ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ. ΠΠ½ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ ΠΏΠΎΠ»Π΅Π·Π΅Π½ ΡΠ΅ΠΌ, ΠΊΡΠΎ ΠΈΡΠΏΡΡΡΠ²Π°Π΅Ρ ΡΡΡΠ΄Π½ΠΎΡΡΠΈ Ρ ΡΡΡΠ½ΡΠΌΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡΠΌΠΈ ΠΈΠ»ΠΈ ΠΊΡΠΎ ΡΠ°ΡΡΠΎ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ.
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ «ΠΠΎΠ½Π²Π΅ΡΡΠ΅Ρ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Π² Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠ΅»
Π’Π°Π±Π»ΠΈΡΠ° ΠΊΠΎΠ½Π²Π΅ΡΡΠ°ΡΠΈΠΈ ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ Π² Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠ΅
ΠΡΠΎΠ±Ρ | ΠΠ΅ΡΡΡΠΈΡΠ½Π°Ρ |
---|---|
2 9/1 | 11 |
2 9/2 | 6,5 |
2 9/3 | 5 |
2 9/4 | 4,25 |
2 9/5 | 3,8 |
2 9/6 | 3,5 |
2 9/7 | 3,(285714) |
2 9/8 | 3,125 |
2 9/9 | 3 |
2 9/10 | 2,9 |
2 9/11 | 2,(81) |
2 9/12 | 2,75 |
2 9/13 | 2,(692307) |
2 9/14 | 2,6(428571) |
2 9/15 | 2,6 |
2 9/16 | 2,5625 |
2 9/17 | 2,(5294117647058823) |
2 9/18 | 2,5 |
2 9/19 | 2,(473684210526315789) |
2 9/20 | 2,45 |
2 9/21 | 2,(428571) |
2 9/22 | 2,4(09) |
2 9/23 | 2,(3913043478260869565217) |
2 9/24 | 2,375 |
2 9/25 | 2,36 |
2 9/26 | 2,3(461538) |
2 9/27 | 2,(3) |
2 9/28 | 2,32(142857) |
2 9/29 | 2,(3103448275862068965517241379) |
2 9/30 | 2,3 |
Π Π°ΡΡΠ΅Ρ ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅, ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅, ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅, ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅
ΠΠ°Π²Π΅ΡΡΠΈΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ΅Π΅ Π²Π°ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ.
ΠΠ²Π΅Π΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ Π½Π°ΠΆΠΌΠΈΡΠ΅ ΠΡΡΠΈΡΠ»ΠΈΡΡ .
- Express 6027
Express ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π° 8 ΠΏΡΠΎΡΠ΅Π½ΡΠΎΠ² Π½Π° ΠΌΠΈΠ»Π»ΠΈΠΎΠ½. - ΠΠΏΡΡΡΠΊΠΈΠ²Π°Π½ΠΈΠ΅ ΠΎΡ Π½Π°ΡΠ΅ΠΊΠΎΠΌΡΡ
Π 600 ΠΌΠ» ΠΎΠΏΡΡΡΠΊΠΈΠ²Π°Π½ΠΈΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ 5 ΠΌΠ» Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅Π³ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π°. Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ Π·Π° ΠΌΠΈΠ»Ρ? - Π Π°ΡΡΡΠΈΡΠ°ΠΉΡΠ΅ 72994
Π Π°ΡΡΡΠΈΡΠ°ΠΉΡΠ΅ 50 ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅ ΠΎΡ 340. - Π‘ΠΈΠ½Π΄ΡΠΎΠΌ ΠΠ°ΡΠ½Π°
Π‘ΠΈΠ½Π΄ΡΠΎΠΌ ΠΠ°ΡΠ½Π° β ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΡΠ΅ΡΡΠ΅Π·Π½ΡΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Π²ΡΠ·Π²Π°Π½Π½ΡΡ Π³Π΅Π½Π½ΠΎΠΉ ΠΌΡΡΠ°ΡΠΈΠ΅ΠΉ. Π‘ΠΈΠ½Π΄ΡΠΎΠΌ ΠΠ°ΡΠ½Π° Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ 550 ΡΠΎΠ΄ΠΈΠ²ΡΠ΅Π³ΠΎΡΡ ΡΠ΅Π±Π΅Π½ΠΊΠ°. ΠΡΡΠ°Π·ΠΈΡΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π΅ΠΌΠΎΡΡΡ ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ ΠΠ°ΡΠ½Π° Ρ Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ Π² ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅. - ΠΠΎΠ»ΠΎΡΠ°Ρ ΠΌΠΎΠ½Π΅ΡΠ°
ΠΠΎΠ»ΠΎΡΠ°Ρ ΠΌΠΎΠ½Π΅ΡΠ° ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ 900 ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅ ΡΠΈΡΡΠΎΠ³ΠΎ Π·ΠΎΠ»ΠΎΡΠ°. ΠΠ΅Ρ ΠΌΠΎΠ½Π΅ΡΡ 950 Π³ΡΠ°ΠΌΠΌ. Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅ Π·ΠΎΠ»ΠΎΡΠ°? Π‘ΠΊΠΎΠ»ΡΠΊΠΎ Π³ΡΠ°ΠΌΠΌ Π·ΠΎΠ»ΠΎΡΠ°? - ΠΠ΅ΡΡΡΠΈΡΠ½ΡΠΉ 26301
ΠΠ°ΠΏΠΈΡΠΈΡΠ΅ ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅ Π² Π²ΠΈΠ΄Π΅ Π΄Π΅ΡΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° 2 β° 50 β° 2,5 β° 0,6 β° - Promile
Π Π°ΡΡΡΠΈΡΠ°ΠΉΡΠ΅ 4,6 β° ΠΎΡ 199. - Π¨ΡΡΠ°Ρ Π΅ΠΆΠ΅Π΄Π½Π΅Π²Π½ΠΎ
ΠΠΆΠΎΠ½ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΠ» Π·Π°ΠΏΠ»Π°ΡΠΈΡΡ 1500 ΡΠ΅ΡΡΠΊΠΈΡ ΠΊΡΠΎΠ½. ΠΡΠ»ΠΈ ΠΎΠ½ Π½Π΅ Π·Π°ΠΏΠ»Π°ΡΠΈΡ Π²ΠΎΠ²ΡΠ΅ΠΌΡ, Ρ Π½Π΅Π³ΠΎ Π±ΡΠ΄Π΅Ρ Π½Π°ΡΠΈΡΠ»Π΅Π½ ΡΡΡΠ°Ρ Π² ΡΠ°Π·ΠΌΠ΅ΡΠ΅ 0,5 ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅ ΠΏΡΠΈΡΠΈΡΠ°ΡΡΠ΅ΠΉΡΡ ΡΡΠΌΠΌΡ Π·Π° ΠΊΠ°ΠΆΠ΄ΡΠΉ Π΄Π΅Π½Ρ ΠΏΡΠΎΡΡΠΎΡΠΊΠΈ. ΠΠ½ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡ ΡΠ΅ΡΠ΅Π· 30 Π΄Π½Π΅ΠΉ. Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΡΡΠΎΠΈΡ ΡΡΡΠ°Ρ? - ΠΠΌΡΠΈΡΠ΅Π°ΡΡ
ΠΠΌΡΠΈΡΠ΅Π°ΡΡ ΠΈΠΌΠ΅Π΅Ρ ΡΠΎΡΠΌΡ ΠΏΠΎΠ»ΡΠΊΡΡΠ³Π°, Π·ΡΠΈΡΠ΅Π»ΠΈ ΡΠΈΠ΄ΡΡ ΠΏΠΎ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΡ ΠΏΠΎΠ»ΡΠΊΡΡΠ³Π°, Π° ΡΡΠ΅Π½Π° ΠΎΠ±ΡΠ°Π·ΡΠ΅Ρ Π΄ΠΈΠ°ΠΌΠ΅ΡΡ ΠΏΠΎΠ»ΡΠΊΡΡΠ³Π°. ΠΡΠΎ ΠΈΠ· Π·ΡΠΈΡΠ΅Π»Π΅ΠΉ, P, Q, R, S, T, Π²ΠΈΠ΄ΠΈΡ ΡΡΠ΅Π½Ρ ΠΏΠΎΠ΄ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΌ ΡΠ³Π»ΠΎΠΌ ΠΎΠ±Π·ΠΎΡΠ°? - ΠΠ΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ 73244
75 ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΡΠ°Π²Π½ΠΎ 60. Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ? - ΠΠΈΠ²ΠΈΠ΄Π΅Π½Π΄Ρ
Π’ΡΠΎΠ΅ Π΄ΡΡΠ·Π΅ΠΉ ΡΠ°Π·Π΄Π΅Π»ΠΈΠ»ΠΈ Π²ΡΠΈΠ³ΡΡΡ Π½Π° Π²Π»ΠΎΠΆΠ΅Π½Π½ΡΠ΅ Π΄Π΅Π½ΡΠ³ΠΈ. ΠΠ°ΡΠ»ΠΎΡ ΠΏΠΎΠ»ΡΡΠΈΠ» ΡΡΠΈ Π²ΠΎΡΡΠΌΡΡ , ΠΠΆΠΎΠ½ 320 ΠΏΠ΅ΡΠΌΠΈΠ»Ρ, Π° ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ Π΄ΠΎΡΡΠ°Π»ΠΈΡΡ ΠΠ°ΡΡΠΈΠ½Ρ. ΠΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠ» Π±ΠΎΠ»ΡΡΠ΅, Π° ΠΊΡΠΎ ΠΌΠ΅Π½ΡΡΠ΅? - ΠΠΎΠ»ΠΎΡΠ°Ρ ΠΌΠΎΠ½Π΅ΡΠ°
ΠΠΎΠ»ΠΎΡΠ°Ρ ΠΌΠΎΠ½Π΅ΡΠ° ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΡΠΈΡΡΠΎΠ΅ Π·ΠΎΠ»ΠΎΡΠΎ 962 ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅, ΡΡΠΎ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 7,5 Π³. ΠΠ°ΠΊΠΎΠ² Π²Π΅Ρ ΠΌΠΎΠ½Π΅ΡΡ Π² Π³ΡΠ°ΠΌΠΌΠ°Ρ ? - ΠΠ΅ΡΠΌΠΈΠ»Π»
Π‘ΠΊΠΎΠ»ΡΠΊΠΎ Π½Π° ΠΌΠ΅Π»ΡΠ½ΠΈΡΡ Π±ΡΠ΄Π΅Ρ 978 ΠΈΠ· 84370? - ΠΠ²ΡΠΎΠΌΠΎΠ±ΠΈΠ»ΡΠ½Π°Ρ Π°Π²Π°ΡΠΈΡ
ΠΠΎΡΠ»Π΅ Π΄ΠΎΡΠΎΠΆΠ½ΠΎ-ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΡΡΠ΅ΡΡΠ²ΠΈΡ ΠΏΠΎΠ»ΠΈΡΠΈΡ ΠΈΠ·ΠΌΠ΅ΡΠΈΠ»Π° 1,16 ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅ Π°Π»ΠΊΠΎΠ³ΠΎΠ»Ρ Π² ΠΊΡΠΎΠ²ΠΈ Π²ΠΎΠ΄ΠΈΡΠ΅Π»Ρ. Π ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ΅ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° ΡΠΈΡΠΊΡΠ»ΠΈΡΡΠ΅Ρ ΠΎΠΊΠΎΠ»ΠΎ 5 ΠΊΠ³ ΠΊΡΠΎΠ²ΠΈ. ΠΠ°ΠΊΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π°Π»ΠΊΠΎΠ³ΠΎΠ»Ρ Π±ΡΠ»ΠΎ Ρ Π²ΠΎΠ΄ΠΈΡΠ΅Π»Ρ Π² ΠΊΡΠΎΠ²ΠΈ? - ΠΠ΅Π»Π΅Π·Π½Π°Ρ Π΄ΠΎΡΠΎΠ³Π°
ΠΠ΅Π»Π΅Π·Π½ΠΎΠ΄ΠΎΡΠΎΠΆΠ½Π°Ρ Π»ΠΈΠ½ΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΡΠΊΠ»ΠΎΠ½ 12 ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅. ΠΠ° ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΌΠ΅ΡΡΠΎΠ² ΠΎΠ½ ΠΏΠΎΠ΄Π½ΠΈΠΌΠ΅ΡΡΡ Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ 4 ΠΊΠΌ ΠΏΠΎ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΠΈ? - AMSL ΠΈ ΠΊΠ°ΡΠ°Π½ΠΈΠ΅ Π½Π° Π»ΡΠΆΠ°Ρ
Π’ΠΎΠΌΠ°Ρ ΠΈΠ΄Π΅Ρ Π½Π° Π»ΡΠΆΠ°Ρ ΠΈΠ· ΡΠΎΡΠΊΠΈ A (3200 ΠΌ Π½Π°Π΄ ΡΡΠΎΠ²Π½Π΅ΠΌ ΠΌΠΎΡΡ Π² ΡΠΎΡΠΊΡ B. ΠΠΎΡΠ° ΠΈΠΌΠ΅Π΅Ρ ΡΠΊΠ»ΠΎΠ½ 20%. ΠΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠ°ΡΡΠΎΠΌ ΠΈ ΡΠΈΠ½ΠΈΡΠ΅ΠΌ 2,5 ΠΊΠΌ. ΠΠ° ΠΊΠ°ΠΊΠΎΠΉ Π²ΡΡΠΎΡΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΠΎΡΠΊΠ° B? - ΠΠΈΠ»ΠΎΠΌΠ΅ΡΡΡ 81387
Π Π°ΡΡΡΠΈΡΠ°ΠΉΡΠ΅ ΡΠΊΠ»ΠΎΠ½ ΠΆΠ΅Π»Π΅Π·Π½ΠΎΠ΄ΠΎΡΠΎΠΆΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, Π²ΡΡΠΎΡΠ° ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 22,5 ΠΌΠ΅ΡΡΠ° Π½Π° ΡΡΠ°ΡΡΠΊΠ΅ Π΄Π»ΠΈΠ½ΠΎΠΉ 1,5 ΠΊΠΈΠ»ΠΎΠΌΠ΅ΡΡΠ°. ΠΠ»Ρ ΠΆΠ΅Π»Π΅Π·Π½ΡΡ Π΄ΠΎΡΠΎΠ³ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π΄Π°Π΅ΡΡΡ Π² Ρ (ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅).
Π΄ΡΡΠ³ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ Β»
Π§Π°ΡΡΠΎ ΠΈΡΠΊΠΎΠΌΡΠ΅ ΡΠ°ΡΡΠ΅ΡΡ ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅
- Π΄Π΅ΡΡΡΠΈΡΠ½ΡΠ΅ Π΄ΡΠΎΠ±ΠΈ
- Π΄ΡΠΎΠ±ΠΈ
- ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΞABC
- ΠΏΡΠΎΡΠ΅Π½ΡΡ %
- ΠΏΡΠΎΠΌΠΈΠ»Π»Π΅ β°
- ΠΏΡΠΎΡΡΡΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ
- ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°
- LCM
- ΠΠΠ
- LCD
- ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΎΡΠΈΠΊΠ°
- ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
- ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠ°
- … Π²ΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡΡ
ΠΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π΄ΡΠΎΠ±Π΅ΠΉ: ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΠ°ΠΊ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Π΄ΡΠΎΠ±Π΅ΠΉ: ΠΠ²Π΅Π΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ, Π²ΡΠ±Π΅ΡΠΈΡΠ΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡ, Π° ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ ΡΠ΄Π΅Π»Π°Π΅Ρ Π²ΡΠ΅ ΠΎΡΡΠ°Π»ΡΠ½ΠΎΠ΅.
ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±ΠΈ
ΠΡΠΎΠ±Ρ β ΡΡΠΎ ΡΠΈΡΠ»ΠΎΠ²Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΠ°Ρ ΡΠ°ΡΡΡ ΡΠ΅Π»ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°. Π ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ΅ΡΠΌΠΈΠ½Π°Ρ Π΄ΡΠΎΠ±Ρ Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ΅Π»ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° (ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ) Π½Π° Π΄ΡΡΠ³ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ (Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ), Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ 1/3, 1/5, 2/7 ΠΈ Ρ. Π΄.
ΠΠ° ΠΏΠΎΠ²ΡΠ΅Π΄Π½Π΅Π²Π½ΠΎΠΌ ΡΠ·ΡΠΊΠ΅ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡΠΎΡΡΠΎ ΡΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ Π΄ΡΠΎΠ±Ρ β ΡΡΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ°ΡΡΠ΅ΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π·ΠΌΠ΅ΡΠ°, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ ΠΎΠ΄Π½Π° Π²ΠΎΡΠ΅ΠΌΡ ΠΏΡΡΡΡ .
ΠΡΠΎΡΡΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΡΠΎΡΡΠΎΠ΅ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΠ»ΡΡΠ΅Π²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π΄Π»Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ β Π²ΡΠ΅Π³Π΄Π° ΠΏΠΎΠΌΠ½ΠΈΡΡ ΠΎ ΡΠ°ΠΌΠΎΠΉ Π²Π°ΠΆΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ Π΄ΡΠΎΠ±ΠΈ, ΡΠΎ Π΅ΡΡΡ ΠΎ ΡΠΈΡΠ»Π΅ ΠΏΠΎΠ΄ ΡΠ΅ΡΡΠΎΠΉ, ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΌ ΠΊΠ°ΠΊ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. ΠΡΠ»ΠΈ Ρ Π½Π°Ρ Π΅ΡΡΡ ΡΠΈΡΡΠ°ΡΠΈΡ, ΠΊΠΎΠ³Π΄Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ Π² Π΄ΡΠΎΠ±ΡΡ , ΡΡΠ°ΡΡΠ²ΡΡΡΠΈΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ, ΡΠΎ ΠΌΡ ΠΏΡΠΎΡΡΠΎ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ ΡΠΈΡΠ»Π°, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π½Π°Π΄ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΡΡΠΎΠΉ, ΠΈΠ»ΠΈ, ΠΊΠ°ΠΊ ΡΠΊΠ°Π·Π°Π» Π±Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊ, Β«ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΈΡΠ»ΠΈΡΠ΅Π»ΠΈΒ». ΠΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ Π½Π° ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π΄Π²ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ, ΡΠ°ΠΊΠΈΡ ΠΊΠ°ΠΊ 3/7 ΠΈ 4/7. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ ΡΠ°ΠΊ: 3/7 + 4/7 = 7/7. Π ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΡΠ°Π²Π΅Π½ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ, ΠΊΠ°ΠΊ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅, Π΅Π³ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΡΠ°Π²Π½ΡΡΡ ΠΊ 1.
ΠΠ΄Π½Π°ΠΊΠΎ ΡΡΠΎ Π±ΡΠ» ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠ°ΠΌΡΡ ΠΏΡΠΎΡΡΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ. ΠΡΠΎΡΠ΅ΡΡ ΠΌΠΎΠΆΠ΅Ρ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΡΡΠ»ΠΎΠΆΠ½ΠΈΡΡΡΡ, Π΅ΡΠ»ΠΈ ΠΌΡ ΡΡΠΎΠ»ΠΊΠ½Π΅ΠΌΡΡ Ρ ΡΠΈΡΡΠ°ΡΠΈΠ΅ΠΉ, ΠΊΠΎΠ³Π΄Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ Π΄ΡΠΎΠ±Π΅ΠΉ, ΡΡΠ°ΡΡΠ²ΡΡΡΠΈΡ Π² ΡΠ°ΡΡΠ΅ΡΠ΅, ΡΠ°Π·Π»ΠΈΡΠ½Ρ. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π½Π°ΠΌ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ ΡΡΠΎΡ ΡΠΈΠΏ ΡΠ°ΡΡΠ΅ΡΠ°. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΡΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠ΅: ΠΏΡΠΈ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π΄ΡΠΎΠ±Π΅ΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ Π²ΡΠ΅Π³Π΄Π° Π΄ΠΎΠ»ΠΆΠ½Ρ Π±ΡΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ, ΠΈΠ»ΠΈ, Π²ΡΡΠ°ΠΆΠ°ΡΡΡ ΡΠ·ΡΠΊΠΎΠΌ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΎΠ², Ρ Π΄ΡΠΎΠ±Π΅ΠΉ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΠΎΠ±ΡΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ Π½Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ, ΠΊΠΎΡΠΎΡΡΠΉ Ρ Π½Π°Ρ Π΅ΡΡΡ. ΠΠΎΡ ΠΏΡΠΈΠΌΠ΅Ρ: 2β3 + 3β5. Π’Π°ΠΊ ΡΡΠΎ ΠΎΠ±ΡΠ΅Π³ΠΎ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ Ρ Π½Π°Ρ ΠΏΠΎΠΊΠ° Π½Π΅Ρ. ΠΠΎΡΡΠΎΠΌΡ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠ°Π±Π»ΠΈΡΠ΅ΠΉ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ 5 Π½Π° 3. ΠΡΠΎ 15. ΠΠ½Π°ΡΠΈΡ, ΠΎΠ±ΡΠΈΠΌ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ΠΌ Π΄Π»Ρ ΡΡΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π±ΡΠ΄Π΅Ρ 15. ΠΠ΄Π½Π°ΠΊΠΎ ΡΡΠΎ Π΅ΡΠ΅ Π½Π΅ ΠΊΠΎΠ½Π΅Ρ. ΠΡΠ»ΠΈ ΠΌΡ ΡΠ°Π·Π΄Π΅Π»ΠΈΠΌ 15 Π½Π° 3, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ 5. ΠΡΠ°ΠΊ, ΡΠ΅ΠΏΠ΅ΡΡ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π½Π° 5, ΡΡΠΎ Π΄Π°ΡΡ Π½Π°ΠΌ 10 (2 Ρ 5). ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΌΡ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ Π²ΡΠΎΡΠΎΠΉ Π΄ΡΠΎΠ±ΠΈ Π½Π° 3, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ 15/5 = 3. ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ 9(3 Ρ 3 = 9). Π’Π΅ΠΏΠ΅ΡΡ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π²Π²Π΅ΡΡΠΈ Π²ΡΠ΅ ΡΡΠΈ ΡΠΈΡΠ»Π° Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅: 10/15 + 9/15 = 19/15.
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅. ΠΡΠ»ΠΈ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Ρ Π±ΠΎΠ»ΡΡΠ΅ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ, ΠΌΡ Π΄Π΅Π»ΠΈΠΌ Π΅Π³ΠΎ Π½Π° ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠΉ.
ΠΡΠΎΡΡΠΎΠ΅ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π΄ΡΠΎΠ±Π΅ΠΉ
ΠΠ»Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ Π²Π°ΠΆΠ½ΠΎ Π²ΡΠ΅Π³Π΄Π° ΠΏΠΎΠΌΠ½ΠΈΡΡ, ΡΡΠΎ ΡΠ°ΠΌΠΎΠΉ Π²Π°ΠΆΠ½ΠΎΠΉ ΡΠ°ΡΡΡΡ Π΄ΡΠΎΠ±ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΈΡΠ»ΠΎ ΠΏΠΎΠ΄ ΡΠ΅ΡΡΠΎΠΉ, ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΠΊΠ°ΠΊ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ. ΠΡΠ»ΠΈ Ρ Π½Π°Ρ Π΅ΡΡΡ ΡΠΈΡΡΠ°ΡΠΈΡ, ΠΊΠΎΠ³Π΄Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ Π² Π΄ΡΠΎΠ±ΡΡ , ΡΡΠ°ΡΡΠ²ΡΡΡΠΈΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ, ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ, ΡΠΎ ΠΌΡ ΠΏΡΠΎΡΡΠΎ Π²ΡΡΠΈΡΠ°Π΅ΠΌ ΡΠΈΡΠ»Π°, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π½Π°Π΄ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ ΠΈΠ»ΠΈ, ΠΊΠ°ΠΊ ΡΠΊΠ°Π·Π°Π» Π±Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊ: Β«Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΈΡΠ»ΠΈΡΠ΅Π»Π΅ΠΉΒ». ΠΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ Π½Π° ΠΏΡΠΈΠΌΠ΅Ρ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ Π΄Π²ΡΡ Π΄ΡΠΎΠ±Π΅ΠΉ, ΡΠ°ΠΊΠΈΡ ΠΊΠ°ΠΊ 3/7 ΠΈ 4/7. ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ ΡΠ°ΠΊ: 4/7 — 3/7 = 1/7.
ΠΠ΄Π½Π°ΠΊΠΎ ΡΡΠΎ Π±ΡΠ» ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠ°ΠΌΡΡ ΠΏΡΠΎΡΡΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² Π²ΡΡΠΈΡΠ°Π½ΠΈΡ Π΄ΡΠΎΠ±Π΅ΠΉ. ΠΡΠΎΡΠ΅ΡΡ ΠΌΠΎΠΆΠ΅Ρ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΡΡΠ»ΠΎΠΆΠ½ΠΈΡΡΡΡ, Π΅ΡΠ»ΠΈ ΠΌΡ ΡΡΠΎΠ»ΠΊΠ½Π΅ΠΌΡΡ Ρ ΡΠΈΡΡΠ°ΡΠΈΠ΅ΠΉ, ΠΊΠΎΠ³Π΄Π° Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ Π΄ΡΠΎΠ±Π΅ΠΉ, ΡΡΠ°ΡΡΠ²ΡΡΡΠΈΡ Π² ΡΠ°ΡΡΠ΅ΡΠ΅, ΡΠ°Π·Π»ΠΈΡΠ½Ρ. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π½Π°ΠΌ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ ΡΡΠΎΡ ΡΠΈΠΏ ΡΠ°ΡΡΠ΅ΡΠ°. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΡΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠ΅: ΠΏΡΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠΈ Π΄ΡΠΎΠ±Π΅ΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»ΠΈ Π²ΡΠ΅Π³Π΄Π° Π΄ΠΎΠ»ΠΆΠ½Ρ Π±ΡΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΌΠΈ, ΠΈΠ»ΠΈ, Π²ΡΡΠ°ΠΆΠ°ΡΡΡ ΡΠ·ΡΠΊΠΎΠΌ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΎΠ², Ρ Π΄ΡΠΎΠ±Π΅ΠΉ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΠΎΠ±ΡΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ.