Лн логарифм: Натуральные логарифмы. Функция у = lп х, её свойства, график, дифференцирование — урок. Алгебра, 11 класс.

Основные формулы логарифмов. Десятичные (lg) и натуральные логарифмы (ln).

Раздел недели: Обезжиривающие водные растворы и органические растворители. Составы для очистки и обезжиривания поверхности.


Поиск на сайте DPVA

Поставщики оборудования

Полезные ссылки

О проекте

Обратная связь

Ответы на вопросы.

Оглавление

Таблицы DPVA.ru — Инженерный Справочник



Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница / / Техническая информация/ / Математический справочник / / Таблицы логарифмов и основные формулы. Десятичные и натуральные логарифмы. Степени, корни. / / Основные формулы логарифмов. Десятичные (lg) и натуральные логарифмы (ln).

Поделиться:   

Свойства логарифмов. Основные формулы логарифмов. Десятичные (lg) и натуральные логарифмы (ln).

Основное логарифмическое тождество
Покажем как можно любую функцию вида ab сделать экспоненциальной. Поскольку функция вида ех называется экспоненциальной, то
Любая функция вида a b может быть представлена в виде степени десяти

Натуральный логарифм ln (логарифм по основанию е = 2,718281828459045… )

ln(e)=1;  ln(1)=0

При логарифм числа (1+х) разлагается в ряд:
Например,

Ряд сходится, но медленно и значение x ограничено весьма узким диапазоном.

Но ряд:

сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа z .

Производная натурального логарифма:

Десятичный логарифм lg (логарифм по основанию «10»).

lg(10)=1;  lg(1)=0

Если: а = b · 10 n

То: lg a = lg b + n

Кроме того: 10 x = 10 { x } · 10 [ x ] , где { x } — дробная часть x , а [ x ] — целая часть x .

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Дополнительная информация от Инженерного cправочника DPVA, а именно — другие подразделы данного раздела:

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.
Free xml sitemap generator

Дифференциальное и интегральное исчисления для втузов, т.2

Дифференциальное и интегральное исчисления для втузов, т.2
  

Пискунов Н. С. Дифференциальное и интегральное исчисления для втузов, т. 2: Учебное пособие для втузов.—13-е изд.— М.: Наука, Главная редакция физико-математической литературы, 1985. — 560 с.

Хорошо известное учебное пособие по математике для втузов с достаточно широкой математической подготовкой.

Второй том включает разделы: дифференциальные уравнения, кратные и криволинейные интегралы, интегралы по поверхности, ряды, уравнения математической физики, операционное исчисление, элементы теории вероятностей и математической статистики, матрицы.

Для студентов высших технических учебных заведений.



Оглавление

ПРЕДИСЛОВИЕ К ДЕВЯТОМУ ИЗДАНИЮ
ПРЕДИСЛОВИЕ К ПЯТОМУ ИЗДАНИЮ
ГЛАВА XIII. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
§ 1. Постановка задачи. Уравнение движения тела при сопротивлении среды, пропорциональном скорости. Уравнение цепной линии
§ 2. Определения
§ 3. Дифференциальные уравнения первого порядка (общие понятия)
§ 4. Уравнения с разделенными и разделяющимися переменными. Задача о распаде радия
§ 5. Однородные уравнения первого порядка
§ 6. Уравнения, приводящиеся к однородным
§ 7. Линейные уравнения первого порядка
§ 8. Уравнение Бернулли
§ 9. Уравнение в полных дифференциалах
§ 10. Интегрирующий множитель
§ 11. Огибающая семейства кривых
§ 12. Особые решения дифференциального уравнения первого порядка
§ 13. Уравнение Клеро
§ 14. Уравнение Лагранжа
§ 15. Ортогональные и изогональные траектории
§ 16. Дифференциальные уравнения высших порядков (общие понятия)
§ 17. (n) = f(x)
§ 18. Некоторые типы дифференциальных уравнений второго порядка, приводимых к уравнениям первого порядка. Задача о второй космической скорости
§ 19. Графический метод интегрирования дифференциального уравнения второго порядка
§ 20. Линейные однородные уравнения. Определения и общие свойства
§ 21. Линейные однородные уравнения второго порядка с постоянными коэффициентами
§ 22. Линейные однородные уравнения n-го порядка с постоянными коэффициентами
§ 23. Неоднородные линейные уравнения второго порядка
§ 24. Неоднородные линейные уравнения второго порядка с постоянными коэффициентами
§ 25. Неоднородные линейные уравнения высших порядков
§ 26. Дифференциальное уравнение механических колебаний
§ 27. Свободные колебания. Векторное и комплексное изображение гармонических колебаний
§ 28. Вынужденные колебания
§ 29. Системы обыкновенных дифференциальных уравнений
§ 30. Системы линейных дифференциальных уравнений с постоянными коэффициентами
§ 31. Понятие о теории устойчивости Ляпунова. Поведение траектории дифференциального уравнения в окрестности особой точки
§ 32. Приближенное решение дифференциальных уравнений первого порядка методом Эйлера
§ 33. Разностный метод приближенного решения дифференциальных уравнений, основанный на применении формулы Тейлора.. Метод Адамса
§ 34. Приближенный метод интегрирования систем дифференциальных уравнений первого порядка
Упражнения к главе XIII
ГЛАВА XIV. КРАТНЫЕ ИНТЕГРАЛЫ
§ 2. Вычисление двойного интеграла
§ 3. Вычисление двойного интеграла (продолжение)
§ 4. Вычисление площадей и объемов с помощью двойных интегралов
§ 5. Двойной интеграл в полярных координатах
§ 6. Замена переменных в двойном интеграле (общий случай)
§ 7. Вычисление площади поверхности
§ 9. Момент инерции площади плоской фигуры
§ 10. Координаты центра масс площади плоской фигуры
§ 11. Тройной интеграл
§ 12. Вычисление тройного интеграла
§ 13. Замена переменных в тройном интеграле
§ 14.
Момент инерции и координаты центра масс тела
§ 15. Вычисление интегралов, зависящих от параметра
Упражнения к главе XIV
ГЛАВА XV. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ И ИНТЕГРАЛЫ ПО ПОВЕРХНОСТИ
§ 2. Вычисление криволинейного интеграла
§ 3. Формула Грина
§ 4. Условия независимости криволинейного интеграла от пути интегрирования
§ 5. Поверхностный интеграл
§ 6. Вычисление поверхностного интеграла
§ 7. Формула Стокса
§ 9. Оператор Гамильтона. Некоторые его применения
Упражнения к главе XV
ГЛАВА XVI. РЯДЫ
§ 1. Ряд. Сумма ряда
§ 2. Необходимый признак сходимости ряда
§ 3. Сравнение рядов с положительными членами
§ 4. Признак Даламбера
§ 5. Признак Коши
§ 6. Интегральный признак сходимости ряда
§ 7. Знакочередующиеся ряды. Теорема Лейбница
§ 8. Знакопеременные ряды. Абсолютная и условная сходимость
§ 9. Функциональные ряды
§ 10. Мажорируемые ряды
§ 11. Непрерывность суммы ряда
§ 12. Интегрирование и дифференцирование рядов
§ 13. Степенные ряды. Интервал сходимости
§ 14. Дифференцирование степенных рядов
§ 15. Ряды по степеням x-a
§ 16. Ряды Тейлора и Маклорена
§ 17. Примеры разложения функций в ряды
§ 18. Формула Эйлера
§ 19. Биномиальный ряд
§ 20. Разложение функции ln(1+x) в степенной ряд. Вычисление логарифмов
§ 21. Вычисление определенных интегралов с помощью рядов
§ 22. Интегрирование дифференциальных уравнений с помощью рядов
§ 23. Уравнение Бесселя
§ 24. Ряды с комплексными членами
§ 25. Степенные ряды с комплексной переменной
§ 26. Решение дифференциального уравнения первого порядка методом последовательных приближений (метод итераций)
§ 27. Доказательство существования решения дифференциального уравнения. Оценка погрешности при приближенном решении
§ 28. Теорема единственности решения дифференциального уравнения
Упражнения к главе XVI
ГЛАВА XVII. РЯДЫ ФУРЬЕ
§ 2. Примеры разложения функций в ряды Фурье
§ 3. Одно, замечание о разложении периодической функции в ряд Фурье
§ 4. Ряды Фурье для четных и нечетных функций
§ 5. Ряд Фурье для функции с периодом 2l
§ 6. О разложении непериодической функции в ряд Фурье
§ 7. Приближение в среднем заданной функции с помощью тригонометрического многочлена
§ 8. Интеграл Дирихле
§ 9. Сходимость ряда Фурье в данной точке
§ 10. Некоторые достаточные условия сходимости ряда Фурье
§ 11. Практический гармонический анализ
§ 12. Ряд Фурье в комплексной форме
§ 13. Интеграл Фурье
§ 14. Интеграл Фурье в комплексной форме
§ 15. Ряд Фурье по ортогональной системе функций
§ 16. Понятие о линейном функциональном пространстве. Аналогия между разложением функций в ряд Фурье и разложением векторов
Упражнения к главе XVII
ГЛАВА XVIII. УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ
§ 1. Основные типы уравнений математической физики
§ 2. Вывод уравнения колебаний струны. Формулировка краевой задачи. Вывод уравнений электрических колебаний в проводах
§ 3. Решение уравнения колебаний струны методом разделения переменных (методом Фурье)
§ 4. Уравнение распространения тепла в стержне. Формулировка краевой задачи
§ 5. Распространение тепла в пространстве
§ 6. Решение первой краевой задачи для уравнения теплопроводности методом конечных разностей
§ 7. Распространение тепла в неограниченном стержне
§ 8. Задачи, приводящие к исследованию решений уравнения Лапласа. Формулировка краевых задач
§ 9. Уравнение Лапласа в цилиндрических координатах. Решение задачи Дирихле для кольца с постоянными значениями искомой функции на внутренней и внешней окружностях
§ 10. Решение задачи Дирихле для круга
§ 11. Решение задачи Дирихле методом конечных разностей
Упражнения к главе XVIII
ГЛАВА XIX. ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ И НЕКОТОРЫЕ ЕГО ПРИЛОЖЕНИЯ
§ 1. Начальная функция и ее изображение
§ 2. Изображение функций …
§ 3. Изображение функции с измененным масштабом независимой переменной. Изображение функций sin at, cos at
§ 4. Свойство линейности изображения
§ 5. Теорема смещения
§ 6. Изображение функций …
§ 7. Дифференцирование изображения
§ 8. Изображение производных
§ 9. Таблица некоторых изображений
§ 10. Вспомогательное уравнение для данного дифференциального уравнения
§ 11. Теорема разложения
§ 12. Примеры решения дифференциальных уравнений и систем дифференциальных уравнений операционным методом
§ 13. Теорема свертывания
§ 14. Дифференциальные уравнения механических колебаний. Дифференциальные уравнения теории электрических цепей
§ 15. Решение дифференциального уравнения колебаний
§ 16. Исследование свободных колебаний
§ 17. Исследование механических и электрических колебаний в случае периодической внешней силы
§ 18. Решение уравнения колебаний в случае резонанса
§ 19. Теорема запаздывания
§ 20. Дельта-функция и ее изображение
Упражнения к главе XIX
ГЛАВА XX. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ
§ 1. Случайное событие. Относительная частота случайного события. Вероятность события. Предмет теории вероятностей
§ 2. Классическое определение вероятности и непосредственный подсчет вероятностей
§ 3. Сложение вероятностей. Противоположные случайные события
§ 4. Умножение вероятностей независимых событий
§ 5. Зависимые события. Условная вероятность. Полная вероятность
§ 6. Вероятность гипотез. Формула Байеса
§ 7. Дискретная случайная величина. Закон распределения дискретной случайной величины
§ 8. Относительная частота и вероятность относительной частоты при повторных испытаниях
§ 9. Математическое ожидание дискретной случайной величины
§ 10. Дисперсия. Среднеквадратичное отклонение. Понятие о моментах
§ 11. Функции от случайных величин
§ 12. Непрерывная случайная величина. Плотность распределения непрерывной случайной величины. Вероятность попадания случайной величины в заданный интервал
§ 13. Функция распределения, или интегральный закон распределения. Закон равномерного распределения вероятностей
§ 14. Числовые характеристики непрерывной случайной величины
§ 15. Нормальный закон распределения. Математическое ожидание нормального распределения
§ 16. Дисперсия и среднеквадратичное отклонение случайной величины, подчиненной нормальному закону распределения
§ 17. Вероятность попадания значения случайной величины в заданный интервал. Функция Лапласа. Интегральная функция распределения для нормального закона
§ 18. Вероятное (срединное) отклонение или срединная ошибка
§ 19. Выражение нормального закона распределения через срединное отклонение. Приведенная функция Лапласа
§ 20. Правило трех сигм. Шкала вероятностей распределения ошибок
§ 21. Среднеарифметическая ошибка
§ 22. Мера точности. Соотношение между характеристиками распределения ошибок
§ 23. Двумерная случайная величина
§ 24. Нормальный закон распределения на плоскости
§ 25. Вероятность попадания двумерной случайной величины в прямоугольник со сторонами, параллельными главным осям рассеивания, при нормальном законе распределения
§ 26. Вероятность попадания двумерной случайной величины в эллипс рассеивания
§ 27. Задачи математической статистики. Статистический материал
§ 28. Статистический ряд. Гистограмма
§ 29. Определение подходящего значения измеряемой величины
§ 30. Определение параметров закона распределения. Теорема Ляпунова. Теорема Лапласа
Упражнения к главе XX
ГЛАВА XXI. МАТРИЦЫ. МАТРИЧНАЯ ЗАПИСЬ СИСТЕМ И РЕШЕНИЙ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
§ 1. Линейные преобразования. Матрица
§ 2. Общие определения, связанные с понятием матрицы
§ 3. Обратное преобразование
§ 4. Действия над матрицами. Сложение матриц
§ 5. Преобразование вектора в другой вектор с помощью матрицы
§ 6. Обратная матрица
§ 7. Нахождение матрицы, обратной данной
§ 8. Матричная запись системы линейных уравнений
§ 9. Решение системы линейных уравнений матричным методом
§ 10. Ортогональные отображения. Ортогональные матрицы
§ 11. Собственный вектор линейного преобразования
§ 12. Матрица линейного преобразования, при котором базисные векторы являются собственными векторами
§ 13. Преобразование матрицы линейного преобразования при переходе от одного базиса к другому
§ 14. Квадратичные формы и их преобразования
§ 15. Ранг матрицы. Существование решений системы линейных уравнений
§ 16. Дифференцирование и интегрирование матриц
§ 17. Матричная запись системы дифференциальных уравнений и решений системы дифференциальных уравнений с постоянными коэффициентами
§ 18. Матричная запись линейного уравнения n-го порядка
§ 19. Решение систем линейных дифференциальных уравнений с переменными коэффициентами методом последовательных приближений с использованием матричной записи
Упражнения к главе XXI
ПРИЛОЖЕНИЯ

Натуральный логарифм Определение и значение

  • Лучшие определения
  • Викторина
  • Примеры
  • Британский
  • Научный

Показывает уровень оценки в зависимости от сложности слова.

Сохрани это слово!

Показывает уровень оценки в зависимости от сложности слова.


сущ. Математика.

логарифм, основанный на e. Обозначение: ln

ВИКТОРИНА

ВЫ ПРОЙДЕТЕ ИЛИ НАТЯНУТСЯ НА ЭТИ ВОПРОСЫ ПО ГРАММАТИКЕ?

Плавно переходите к этим распространенным грамматическим ошибкам, которые ставят многих людей в тупик. Удачи!

Вопрос 1 из 7

Заполните пропуск: Я не могу понять, что _____ подарил мне этот подарок.

Также называется логарифмом Напьера.

Сравните десятичный логарифм.

Происхождение натурального логарифма

Впервые записано в 1810–20 гг. физическое лицо, натурфилософия

Dictionary.com Полный текст На основе Random House Unabridged Dictionary, © Random House, Inc. 2023

Как использовать натуральный логарифм в предложении

  • натуральный логарифм среднего числа людей, живущих в радиусе пяти миль от другого жителя.

    Чему демократы могут научиться из сдвига Небраски вправо|Росс Бенеш ([email protected])|30 декабря 2020 г.|FiveThirtyEight

  • Чтобы вычислить биологический возраст собаки, говорят, умножьте натуральный логарифм возраста собаки в годах на 16.

    Чтобы вычислить «настоящий» возраст вашей собаки, вам понадобится калькулятор|Бетани Брукшир| 12 августа 2020 г.|Новости науки для студентов

  • В 2007 году он сказал, что открыл лекарство от СПИДа с использованием натуральных трав.

    Темный ветеран США, который пытался свергнуть страну|Джейкоб Сигел|6 января 2015 г.|DAILY BEAST

  • Общие показатели добычи нефти включают сырую нефть, сжиженный природный газ и другие жидкие энергетические продукты.

    Проверка фактов воскресных передач: 4 января|PunditFact.com|5 января 2015|DAILY BEAST

  • Помимо нефти, Соединенные Штаты производят значительно больше природного газа, чем Саудовская Аравия.

    Проверка фактов воскресных шоу: 4 января|PunditFact. com|5 января 2015|DAILY BEAST

  • Более того, Хакаби имеет естественную привлекательность для партии, которая представляет большую часть рабочих класс белых избирателей.

    Сможет ли Хакаби переубедить финансистов Республиканской партии?|Ллойд Грин|4 января 2015 г.|DAILY BEAST

  • Он заявил, что западные женщины ведут беспорядочные половые связи в манере, не встречающейся даже в естественном мире.

    50 Shades of Iran: Извращенные фантазии мулл о сексе на Западе|IranWire, Шима Шараби|1 января 2015|DAILY BEAST

  • Он полон поэтического чувства, а телесные оттенки необычайно естественны.

    Женщины в изобразительном искусстве, седьмой век до н.э. в двадцатый век нашей эры | Клара Эрскин Клемент

  • Место было хорошо защищено земляными валами и естественными брустверами, и в течение нескольких часов исход конкурса был под вопросом.

    Филиппинские острова|Джон Форман

  • В старом мире бедность казалась и была естественной и неизбежной участью большей части человечества.

    Неразгаданная загадка социальной справедливости|Стивен Ликок

  • Каким бы ни был вид, хорошо имитировать естественные условия в плане почвы.

    Как узнать папоротники|S. Леонард Бастин

  • Один только Пьемонт соперничает с ней и развивается гораздо быстрее, но Ломбардия обладает большими природными способностями, особенно ее собственными.

    Взгляд на Европу|Гораций Грили

Британский словарь определений натурального логарифма

натуральный логарифм


существительное

логарифм по основанию e. Обычно пишется log e или ln. Также называется: логарифм Непера. Сравните e (определ. 1), десятичный логарифм 9.0015

Английский словарь Коллинза — полное и полное цифровое издание 2012 г. © William Collins Sons & Co. Ltd., 1979, 1986 © HarperCollins Publishers 1998, 2000, 2003, 2005, 2006, 2007, 2009, 2012

Научные определения натурального логарифма

натуральный логарифм


Логарифм по основанию e. Натуральные логарифмы распространены в математике, особенно в случаях, связанных с комплексными числами. Их также называют логарифмами Напьера по имени их изобретателя, английского математика Джона Нэпьера (1550-1617). Подробнее см. на эл. Сравните десятичный логарифм.

Научный словарь American Heritage® Авторские права © 2011. Опубликовано издательством Houghton Mifflin Harcourt Publishing Company. Все права защищены.

Натуральный логарифм — APL Wiki

Из APL Wiki

(перенаправлено с Натуральный логарифм)

Перейти к навигацииПерейти к поиску

Натуральный логарифм

На этой странице описывается монадическая арифметическая функция. Чтобы узнать о функции диадического логарифма, см. Логарифм.

Натуральный логарифм ( ) или Натуральный логарифм — это одноместная скалярная функция, которая вычисляет натуральный логарифм аргумента. Логарифм разделяет глиф с бинарной арифметической функцией Логарифм. Глиф, представляющий собой комбинацию глифов для Кругового () и Экспоненциального ( * ) для обозначения его тесных математических связей с этими двумя функциями, представляет собой стилизованное древовидное бревно. [1]

Содержимое

  • 1 Пример
  • 2 Свойства
  • 3 Внешние ссылки
    • 3.1 Документация
  • 4 Каталожные номера

Примеры

 ⍟1 2 (*1) (*10)
0 0,6931471806 1 10
 

Свойства

Натуральный логарифм является частным случаем логарифма с левым аргументом по умолчанию e ( *1 ).

 ((*1)∘⍟ ≡ ⍟) 1 ¯1 0J1
1
 

Работает в: Дялог АПЛ

Натуральный логарифм и экспонента * обратны друг другу, за исключением случаев, когда натуральный логарифм не определен.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *