Решение неравенств с параметрами: Неравенства с параметром в задании 18 ЕГЭ

2-1}\) \begin{gather*} \mathrm{ (a+1)x\gt(a+1)(a-1) }\\ \mathrm{ (a+1)x-(a+1)(a-1)\gt 0 }\\ (a+1)\left(x-(a-1)\right)\gt 0\Rightarrow \left[ \begin{array}{ l l } \left\{\begin{array}{ l l} \mathrm{a+1\gt 0} & \\ \mathrm{x\gt a-1} \end{array}\right. & \\ \left\{\begin{array}{ l l } \mathrm{a+1\lt 0} & \\ \mathrm{x\lt a-1} & \end{array}\right. \end{array}\right.\Rightarrow \left[ \begin{array}{ l l } \left\{\begin{array}{ l l} \mathrm{a\gt -1} & \\ \mathrm{x\gt a-1} \end{array}\right. & \\ \left\{\begin{array}{ l l } \mathrm{a\lt -1} & \\ \mathrm{x\lt a-1} & \end{array}\right. \end{array}\right. \end{gather*} Ответ:
При a > –1, x > a – 1
При a < –1, x < a – 1
При a = –1 решений нет.

п.2. Дробно-рациональные неравенства с параметрами

Пример 5. При каких значениях a неравенство верно при всех |x| ≤ 1: $$ \mathrm{\frac{ax-a(1-a)}{x-1}\lt 0} $$ Решаем систему:
\begin{gather*} \left\{ \begin{array}{ l l } \mathrm{|x|\leq 1} & \\ \mathrm{\frac{ax-a(1-a)}{x-1}\lt 0} & \end{array}\right. \Rightarrow \left\{ \begin{array}{ l l } \mathrm{-1\leq x\leq 1} & \\ \left\{ \begin{array}{ l l } \mathrm{x-1\lt 0} & \\ \mathrm{ax-a(1-a)\gt 0} & \end{array}\right. \end{array}\right. \Rightarrow \left\{ \begin{array}{ l l } \mathrm{-1\leq x\leq 1} & \\ \mathrm{ax-a(1-a)\gt 0} & \end{array}\right. \Rightarrow\\ \Rightarrow \left\{ \begin{array}{ l l } \mathrm{-1\leq x\leq 1} & \\ \mathrm{a(x+a-1)\gt 0} & \end{array}\right. \Rightarrow \left\{ \begin{array}{ l l } \mathrm{-1\leq x\leq 1} & \\ \left[ \begin{array}{ l l } \left\{ \begin{array}{ l l } \mathrm{a\lt 0} & \\ \mathrm{x+a-1\lt 0} & \end{array}\right. & \\ \left\{ \begin{array}{ l l } \mathrm{a\gt 0} & \\ \mathrm{x+a-1\gt 0} & \end{array}\right. \end{array}\right. \end{array}\right. \Rightarrow \left\{ \begin{array}{ l l } \mathrm{0\leq 1-x\leq 2} & \\ \left[ \begin{array}{ l l } \left\{ \begin{array}{ l l } \mathrm{a\lt 0} & \\ \mathrm{a\lt 1-x} & \end{array}\right. & \\ \left\{ \begin{array}{ l l } \mathrm{a\gt 0} & \\ \mathrm{a\gt 1-x} & \end{array}\right. \end{array}\right. \end{array}\right. \Rightarrow\\ \Rightarrow \left\{ \begin{array}{ l l } \mathrm{0\leq 1-x\leq 2} & \\ \left[ \begin{array}{ l l } \mathrm{a\lt 0} & \\ \mathrm{a\gt 2} & \end{array}\right. \end{array}\right. \Rightarrow \mathrm{a\lt 0\cup a\gt 2} \end{gather*} Ответ: \(\mathrm{a\in(-\infty;0)\cup (2;+\infty)}\).

Пример 6. При каких значениях a неравенство верно при всех 1 ≤ x ≤ 2: $$ \mathrm{\frac{x-2a-1}{x-a}\lt 0} $$ Решаем систему:
\begin{gather*} \left\{ \begin{array}{ l l } \mathrm{1\leq x\leq 2} & \\ \mathrm{\frac{x-2a-1}{x-a}\lt 0} & \end{array}\right. \Rightarrow \left\{ \begin{array}{ l l } \mathrm{1\leq x\leq 2} & \\ \left[ \begin{array}{ l l } \left\{ \begin{array}{ l l } \mathrm{x-a\lt 0} & \\ \mathrm{x-2a-1\gt 0} & \end{array}\right. & \\ \left\{ \begin{array}{ l l } \mathrm{x-a\gt 0} & \\ \mathrm{x-2a-1\lt 0} & \end{array}\right. \end{array}\right. \end{array}\right. \Rightarrow \left\{ \begin{array}{ l l } \mathrm{1\leq x\leq 2,\ \ 0\leq\frac{x-1}{2}\leq\frac12} & \\ \left[ \begin{array}{ l l } \left\{ \begin{array}{ l l } \mathrm{a\gt x} & \\ \mathrm{a\lt \frac{x-1}{2}} & \end{array}\right. & \\ \left\{ \begin{array}{ l l } \mathrm{a\lt x} & \\ \mathrm{a\gt \frac{x-1}{2}} & \end{array}\right. \end{array}\right. \end{array}\right. \Rightarrow\\ \Rightarrow \left[ \begin{array}{ l l } \left\{ \begin{array}{ l l } \mathrm{a\gt 2} & \\ \mathrm{a\lt 0} & \end{array}\right. & \\ \left\{ \begin{array}{ l l } \mathrm{a\lt 1} & \\ \mathrm{a\gt \frac12} & \end{array}\right. \end{array}\right.\Rightarrow \mathrm{\frac12\lt a\lt 1} \end{gather*} Ответ: \(\mathrm{a\in\left(\frac12; 1\right)}\).

п.3. Иррациональные неравенства с параметрами

Пример 7. Решите неравенство:
а) \(\mathrm{\sqrt{x-a}\geq 2x+1}\)
Решаем совокупность: \begin{gather*} \left[ \begin{array}{ l l } \left\{ \begin{array}{ l l } \mathrm{2x+1\leq 0} & \\ \mathrm{x-a\geq 0} & \end{array}\right. 2-4\cdot 4\cdot(a+1)=-16a-7} $$ Если \(\mathrm{D=0:\ a=-\frac{7}{16},\ x_0=-\frac38\gt-\frac12}\) – решение подходит
Ось симметрии параболы \(\mathrm{x_0=-\frac38}\), в зависимости от значения a, вершина параболы будет перемещаться по оси.
Если \(\mathrm{D\gt 0:\ 16a+7\lt 0\Rightarrow a\lt -\frac{7}{16}}\). \begin{gather*} \mathrm{x_1=\frac{-3-\sqrt{D}}{8}\geq-\frac12\Rightarrow -3-\sqrt{-16a-7}\geq-4\Rightarrow}\\ \Rightarrow \mathrm{\sqrt{-16a-7}\leq 1}\Rightarrow \left\{ \begin{array}{ l l } \mathrm{-16a-7\geq 0} & \\ \mathrm{-16a-7\leq 1} & \end{array}\right.\Rightarrow \left\{ \begin{array}{ l l } \mathrm{a\leq -\frac{7}{16}} & \\ \mathrm{a\geq-\frac12} & \end{array}\right.\Rightarrow \mathrm{-\frac12\leq a\leq -\frac{7}{16}} \end{gather*} При \(\mathrm{a\gt-\frac{7}{16}}\) все точки параболы окажутся над осью OX, неравенство с ≤ 0 не будет иметь решений.
Получаем, что для \(\mathrm{a\lt-\frac12,\ a\leq x\leq-\frac12\cup x_1\leq x\leq x_2 \Leftrightarrow a\leq x\leq x_2}\)
Для \(\mathrm{a\gt-\frac{7}{16}}\) решений нет. 3\gt 0} & \end{array}\right. \end{array}\right. \end{array}\right. \end{array}\right.\Rightarrow \left[\begin{array}{l} \left\{\begin{array}{l} \mathrm{a\lt 0} & \\ \left[\begin{array}{l} \left\{\begin{array}{l} \mathrm{x\lt 0} &\\ \mathrm{x\gt-\sqrt[3]{a}} & \end{array}\right.\\ \left\{\begin{array}{l} \mathrm{x\gt 0} &\\ \mathrm{x\lt-\sqrt[3]{a}} & \end{array}\right. \end{array}\right. \end{array}\right.\\ \left\{\begin{array}{l} \mathrm{a\gt 0} & \\ \left[\begin{array}{l} \left\{\begin{array}{l} \mathrm{x\lt 0} & \\ \mathrm{x\lt -\sqrt[3]{a}} & \end{array}\right.\\ \left\{\begin{array}{l} \mathrm{x\gt 0} & \\ \mathrm{x\gt -\sqrt[3]{a}} & \end{array}\right. \end{array}\right. \end{array}\right. \end{array}\right.\Rightarrow \end{gather*} \begin{gather*} \Rightarrow \left[\begin{array}{l} \left\{\begin{array}{l} \mathrm{a\lt 0} & \\ \left[\begin{array}{l} \mathrm{\varnothing} &\\ \mathrm{0\lt x\lt -\sqrt[3]{a}} & \end{array}\right. \end{array}\right.\\ \left\{\begin{array}{l} \mathrm{a\gt 0} & \\ \left[\begin{array}{l} \mathrm{x\lt -\sqrt[3]{a}} & \\ \mathrm{x\gt a} & \end{array}\right. \end{array}\right. \end{array}\right.\Rightarrow \left[ \begin{array}{ l l } \left\{ \begin{array}{ l l } \mathrm{a\lt 0} & \\ \mathrm{0\lt x\lt-\sqrt[3]{a}} \end{array}\right. & \\ \left\{ \begin{array}{ l l } \mathrm{a\gt 0} & \\ \mathrm{x\lt-\sqrt[3]{a}\cup x\gt 0} \end{array}\right. \end{array}\right. \end{gather*} Ответ:
При \(\mathrm{a\lt 0,\ \ 0\lt x\lt -\sqrt[3]{a}}\)
При \(\mathrm{a=0,\ \ x\in\varnothing}\) – решений нет
При \(\mathrm{a\gt 0,\ \ x\lt-\sqrt[3]{a}\cup x\gt 0}\).

Решение уравнений и неравенств с параметрами

1. Основные определения

Неравенство

f(a, b, c, …, k, x)>j(a, b, c, …, k, x),                  (1)

где a, b, c, …, k – параметры, а  x – действительная переменная величина, называется неравенством с одним неизвестным, содержащим параметры.

Любая система значений параметров а = а0, b = b0, c = c0, …,  k = k0, при некоторой функции

f(a, b, c, …, k, x)  и

j(a, b, c, …, k, x

имеют смысл в области действительных чисел, называется системой допустимых значений параметров.

называется допустимым значением х, если

f(a, b, c, …, k, x)  и

j(a, b, c, …, k, x

принимают действительные значения при любой допустимой системе значений параметров.

Множество всех допустимых значений х называется областью определения неравенства (1).

Действительное число х0 называется частным решением неравенства (1), если неравенство 

f(a, b, c, …, k, x

0)>j(a, b, c, …, k, x0)

верно при любой системе допустимых значений параметров.

Совокупность всех частных решений неравенства (1) называется общим решением этого неравенства.

Решить неравенство (1) – значит указать, при каких значениях параметров существует общее решение и каково оно.

Два неравенства

f(a, b, c, …, k, x)>j(a, b, c, …, k, x)  и        (1)

z(a, b, c, …, k, x)>y(a, b, c, …, k, x)           (2)

называются равносильными, если они имеют одинаковые общие решения при одном и том же множестве систем допустимых значений параметров.

 

2. Алгоритм решения.

1.    Находим область определения данного неравенства.

2.    Сводим неравенство к уравнению.

3.    Выражаем а как функцию от х.

4.    В системе координат хОа строим графики функций а =f (х) для тех значений х, которые входят в область определения данного неравенства.

5.    Находим множества точек, удовлетворяющих данному неравенству.

6.    Исследуем влияние параметра на результат.

·      найдём абсциссы точек пересечения графиков.

·      зададим прямую а=соnst  и будем сдвигать её от -∞ до +∞

7.    Записываем ответ.

Это всего лишь один из алгоритмов решения неравенств с параметрами, с использованием системы координат хОа. Возможны и другие методы решения, с использованием стандартной системы координат хОy.

 

3. Примеры

I. Для всех допустимых значений параметра  а  решить неравенство

 

Решение.

В области определения параметра а, определённого системой неравенств

данное неравенство равносильно системе неравенств

Если , то решения исходного неравенства заполняют отрезок  .

Ответ: ,

.

 

II. При каких значениях параметра а имеет решение система

 

Решение.

Найдем корни трехчлена левой части неравенства  –

                             (*)

Прямые, заданные равенствами (*), разбивают координатную плоскость аОх на четыре области, в каждой из которых квадратный трехчлен

сохраняет постоянный знак. Уравнение (2) задает окружность радиуса  2  с центром в начале координат. Тогда решением исходной системы будет пересечение заштрихован

ной области с окружностью, где , а значения  и  находятся из системы

а значения  и  находятся из системы

Решая эти системы, получаем, что

Ответ:

 

III. Решить неравенство  на  в зависимости от значений параметра а.

 

Решение.

                        Находим область допустимых значений –

                        Построим график функции в системе координат хОу.

·    при  неравенство решений не имеет.

·    при  для

 решение х удовлетворяет соотношению , где

 

Ответ: Решения неравенства существуют при 

, где  , причем при  решения ; при  решения  .

IV. Решить неравенство

 

Решение.

                        Находим ОДЗ или линии разрыва (асимптоты)

 

                                        

 

                        Найдем уравнения функций, графики которых нужно построить в ПСК; для чего перейдем к равенству :

 

 

Разложим числитель на множители.

т. к.    то

Разделим обе части равенства на  при . Но  является решением : левая часть уравнения равна правой части и равна нулю при .

3. Строим в ПСК хОа  графики функций

 

и нумеруем  образовавшиеся области (оси роли не играют). Получилось девять областей.

4. Ищем, какая из областей подходит для данного неравенства, для чего берем точку из области и подставляем в неравенство.

Для наглядности составим таблицу.

 

?

точка

неравенство:

вывод

1

2

+

3

4

+

5

6

+

7

8

+

9

 

5. Найдем точки пересечения графиков

6. Зададим прямую а=сonst и будем сдвигать её от  -∞ до + ∞.

Ответ.

при                                                               

при                                                               

при                                                   

при                                                           решений нет

при                                                          

Решение неравенства с параметром спросил

Изменено 7 лет, 1 месяц назад

Просмотрено 1к раз

$\begingroup$

Найдите параметр $a$, для которого решение неравенства $7(x+3) < -2(ax + 3)$ равно $x \in (3, \infty)$

Я обнаружил, что $a < - \frac{7x + 27}{2x}$, но не знаю, что делать дальше.

  • неравенство

$\endgroup$

1

$\begingroup$

Лучше решить для $x$: $$ (7+2а)х < -21-6 = -27. $$ Если $7+2a>0$, деление дает неравенство вида $x<\cdots$, которое нам не нужно. Если $7+2a<0$, деление на него меняет смысл неравенства на противоположный, поэтому $$ x > \frac{-27}{7+2a}. $$ Вы ищете, чтобы этому удовлетворяли все $x>3$, поэтому правая часть должна быть равна $3$ (если это не так, получаемое нами неравенство не будет $x>3$. ..). Следовательно, $$ 3=\frac{-27}{7+2a}, $$ которые вы можете решить, чтобы найти $a$.

$\endgroup$

$\begingroup$

Общая стратегия, когда у вас есть параметр, заключается в попытке формально решить неравенство (или что-то еще), включая параметр в ваши вычисления.

Тогда неравенство: $$\begin{выравнивание} 7\,(х+3) &<-2\,(а\,х+3) \\ (7+2\,а)\, х &< -27 \end{выравнивание}$$ Поскольку результат, который вы хотите получить, равен $x>3$, то он должен быть равен $7+2\,a<0$, так что, разделив обе части, вы получите: $$x>\frac{-27}{7+2\,a}$$ Тогда вы получите желаемый результат, если $$\frac{-27}{7+2\,a}=3$$ или же $$a=-8$$

$\endgroup$

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *