Решение системы уравнений методом гаусса примеры: Решение систем линейных уравнений методом Гаусса

Содержание

Примеры систем линейных уравнений: метод решения

Системы уравнений получили широкое применение в экономической отрасли при математическом моделировании различных процессов. Например, при решении задач управления и планирования производства, логистических маршрутов (транспортная задача) или размещения оборудования.

Системы уравнения используются не только в области математики, но и физики, химии и биологии, при решении задач по нахождению численности популяции.

Системой линейных уравнений называют два и более уравнения с несколькими переменными, для которых необходимо найти общее решение. Такую последовательность чисел, при которых все уравнения станут верными равенствами или доказать, что последовательности не существует.

Линейное уравнение

Уравнения вида ax+by=c называют линейными. Обозначения x, y — это неизвестные, значение которых надо найти, b, a — коэффициенты при переменных, c — свободный член уравнения.
Решение уравнение путем построение его графика будет иметь вид прямой, все точки которой являются решением многочлена.

Виды систем линейных уравнений

Наиболее простыми считаются примеры систем линейных уравнений с двумя переменными X и Y.

F1(x, y) = 0 и F2(x, y) = 0, где F1,2 — функции, а (x, y) — переменные функций.

Решить систему уравненийэто значит найти такие значения (x, y), при которых система превращается в верное равенство или установить, что подходящих значений x и y не существует.

Пара значений (x, y), записанная в виде координат точки, называется решением системы линейных уравнений.

Если системы имеют одно общее решение или решения не существует их называют равносильными.

Однородными системами линейных уравнений являются системы правая часть которых равна нулю. Если правая после знака «равенство» часть имеет значение или выражена функцией, такая система неоднородна.

Количество переменных может быть гораздо больше двух, тогда следует говорить о примере системы линейных уравнений с тремя переменными или более.

Сталкиваясь с системами школьники предполагают, что количество уравнений обязательно должно совпадать с количеством неизвестных, но это не так. Количество уравнений в системе не зависит от переменных, их может быть сколь угодно много.

Простые и сложные методы решения систем уравнений

Не существует общего аналитического способа решения подобных систем, все методы основаны на численных решениях. В школьном курсе математики подробно описаны такие методы как перестановка, алгебраическое сложение, подстановка, а так же графический и матричный способ, решение методом Гаусса.

Основная задача при обучении способам решения — это научить правильно анализировать систему и находить оптимальный алгоритм решения для каждого примера. Главное не вызубрить систему правил и действий для каждого способа, а понять принципы применения того или иного метода

Решение примеров систем линейных уравнений 7 класса программы общеобразовательной школы довольно простое и объяснено очень подробно. В любом учебнике математике этому разделу отводится достаточно внимания. Решение примеров систем линейных уравнений методом Гаусса и Крамера более подробно изучают на первых курсах высших учебных заведений.

Решение систем методом подстановки

Действия метода подстановки направлены на выражение значения одной переменной через вторую. Выражение подставляется в оставшееся уравнение, затем его приводят к виду с одной переменной. Действие повторяется в зависимости от количества неизвестных в системе

Приведем решение примера системы линейных уравнений 7 класса методом подстановки:

Как видно из примера, переменная x была выражена через F(X) = 7 + Y. Полученное выражение, подставленное во 2-е уравнение системы на место X, помогло получить одну переменную Y во 2-е уравнении. Решение данного примера не вызывает трудностей и позволяет получить значение Y. Последний шаг это проверка полученных значений.

Решить пример системы линейных уравнений подстановкой не всегда возможно. Уравнения могут быть сложными и выражение переменной через вторую неизвестную окажется слишком громоздким для дальнейших вычислений. Когда неизвестных в системе больше 3-х решение подстановкой также нецелесообразно.

Решение примера системы линейных неоднородных уравнений:

Решение с помощью алгебраического сложения

При поиске решении систем методом сложения производят почленное сложение и умножение уравнений на различные числа. Конечной целью математических действий является уравнение с одной переменной.

Для применений данного метода необходима практика и наблюдательность. Решить систему линейных уравнений методом сложения при количестве переменных 3 и более непросто. Алгебраическое сложение удобно применять когда в уравнениях присутствуют дроби и десятичные числа.

Алгоритм действий решения:

  1. Умножить обе части уравнения на некое число. В результате арифметического действия один из коэффициентов при переменной должен стать равным 1.
  2. Почленно сложить полученное выражение и найти одно из неизвестных.
  3. Подставить полученное значение во 2-е уравнение системы для поиска оставшейся переменной.

Способ решения введением новой переменной

Новую переменную можно вводить, если в системе требуется найти решение не более чем для двух уравнений, количество неизвестных тоже должно быть не больше двух.

Способ используется, чтобы упростить одно из уравнений, вводом новой переменной. Новое уравнение решается относительно введенной неизвестной, а полученное значение используется для определения первоначальной переменной.

Из примера видно, что введя новую переменную t удалось свести 1-е уравнение системы к стандартному квадратному трехчлену. Решить многочлен можно отыскав дискриминант.

Необходимо найти значение дискриминанта по известной формуле: D = b2 — 4*a*c, где D — искомый дискриминант, b, a, c — множители многочлена. В заданном примере a=1, b=16, c=39, следовательно, D=100. Если дискриминант больше нуля, то решений два: t = -b±√D / 2*a, если дискриминант меньше нуля, то решение одно: x= -b / 2*a.

Решение для полученных в итоге системы находят методом сложения.

Наглядный метод решения систем

Подходит для систем с 3-мя уравнениями. Метод заключается в построении на координатной оси графиков каждого уравнения, входящего в систему. Координаты точек пересечения кривых и будут общим решением системы.

Графический способ имеет ряд нюансов. Рассмотрим несколько примеров решения систем линейных уравнений наглядным способом.

Как видно из примера, для каждой прямой было построено две точки, значения переменной x были выбраны произвольно: 0 и 3. Исходя из значений x, найдены значения для y: 3 и 0. Точки с координатами (0, 3) и (3, 0) были отмечены на графике и соединены линией.

Действия необходимо повторить для второго уравнения. Точка пересечения прямых является решением системы.

В следующем примере требуется найти графическое решение системы линейных уравнений: 0,5x-y+2=0 и 0,5x-y-1=0.

Как видно из примера, система не имеет решения, потому что графики параллельны и не пересекаются на всем своем протяжении.

Системы из примеров 2 и 3 похожи, но при построении становится очевидно, что их решения разные. Следует помнить, что не всегда можно сказать имеет ли система решение или нет, всегда необходимо построить график.

Матрица и ее разновидности

Матрицы используются для краткой записи системы линейных уравнений. Матрицей называют таблицу специального вида, заполненную числами. Матрица вида n*m имеет n — строк и m — столбцов.

Матрица является квадратной, когда количество столбцов и строк равно между собой. Матрицей — вектором называется матрица из одного столбца с бесконечно возможным количеством строк. Матрица с единицами по одной из диагоналей и прочими нулевыми элементами называется единичной.

Обратная матрица — это такая матрица при умножении на которую исходная превращается в единичную, такая матрица существует только для исходной квадратной.

Правила преобразования системы уравнений в матрицу

Применительно к системам уравнений в качестве чисел матрицы записывают коэффициенты и свободные члены уравнений, одно уравнение — одна строка матрицы.

Строка матрицы называется ненулевой, если хотя бы один элемент строки не равен нулю. Поэтому если в каком-либо из уравнений количество переменных разнится, то необходимо на месте отсутствующей неизвестной вписать нуль.

Столбцы матрицы должны строго соответствовать переменным. Это означает что коэффициенты переменной x могут быть записаны только в один столбец, например первый, коэффициент неизвестной y — только во второй.

При умножении матрицы все элементы матрицы последовательно умножаются на число.

Варианты нахождения обратной матрицы

Формула нахождения обратной матрицы довольно проста: K-1= 1 / |K|, где K-1 — обратная матрица, а |K| — определитель матрицы. |K| не должен быть равен нулю, тогда система имеет решение.

Определитель легко вычисляется для матрицы «два на два», необходимо лишь помножить друг на друга элементы по диагонали. Для варианта «три на три» существует формула |K|=a1b2c3 + a1b3c2 + a3b1c2 + a2b3c1 + a2b1c3 + a3b2c1. Можно воспользоваться формулой, а можно запомнить что необходимо взять по одному элементу из каждой строки и каждого столбца так, чтобы в произведении не повторялись номера столбцов и строк элементов.

Решение примеров систем линейных уравнений матричным методом

Матричный способ поиска решения позволяет сократить громоздкие записи при решении систем с большим количеством переменных и уравнений.

В примере anm — коэффициенты уравнений, матрица — вектор xn — переменные, а bn — свободные члены.

Далее необходимо найти обратную матрицу и умножить на нее исходную. Найти значения переменных в полученной единичной матрицы легко выполнимая задача.

Решение систем методом Гаусса

В высшей математике способ Гаусса изучают совместно с методом Крамера, а процесс поиска решения систем так и называется метод решения Гаусса — Крамера. Данные способы используют при нахождении переменных систем с большим количеством линейных уравнений.

Метод Гаусса очень похож на решения с помощью подстановок и алгебраического сложения, но более систематичен. В школьном курсе решение способом Гаусса применяется для систем из 3 и 4 уравнений. Цель метода состоит в приведении системы к виду перевернутой трапеции. Путем алгебраических преобразований и подстановок находится значение одной переменной в одном из уравнении системы. Второе уравнение представляет собой выражение с 2-мя неизвестными, ну а 3 и 4 — соответственно с 3-мя и 4-мя переменными.

После приведения системы к описанному виду, дальнейшее решение сводится к последовательной подстановке известных переменных в уравнения системы.

В школьных учебниках для 7 класса пример решения методом Гаусса описан следующим образом:

Как видно из примера, на шаге (3) было получено два уравнения 3x3-2x4=11 и 3x3+2x4=7. Решение любого из уравнений позволит узнать одну из переменных xn.

Теорема 5, о которой упоминается в тексте, гласит что если одно из уравнений системы заменить равносильным, то полученная система будет также равносильна исходной.

Метод Гаусса труден для восприятия учеников средней школы, но является одним из наиболее интересных способов для развития смекалки детей, обучающихся по программе углубленного изучения в математических и физических классах.

Для простоты записи вычислений принято делать следующим образом:

Коэффициенты уравнений и свободные члены записываются в виде матрицы, где каждая строка матрицы соотносится с одним из уравнений системы. Вертикальная черта отделяет левую часть уравнения от правой. Римскими цифрами обозначаются номера уравнений в системе.

Сначала записывают матрицу, с которой предстоит работать, затем все действия проводимые с одной из строк. Полученную матрицу записывают после знака «стрелка» и продолжают выполнять необходимые алгебраические действия до достижения результата.

В итоге должна получиться матрица в которой по одной из диагоналей стоят 1, а все другие коэффициенты равны нулю, то есть матрицу приводят к единичному виду. Нельзя забывать производить вычисления с цифрами обеих частей уравнения.

Данный способ записи менее громоздкий и позволяет не отвлекаться на перечисление многочисленных неизвестных.

Свободное применение любого способа решения потребует внимательности и определенного опыта. Не все методы имеют прикладной характер. Какие-то способы поиска решений более предпочтительны в той иной области деятельности людей, а другие существуют в целях обучения.

Метод Гаусса, СЛАУ — понятие, примеры задач

Иоганн Карл Фридрих Гаусс (1777-1855) немецкий математик, физик, механик, геодезист и астроном. Его называют «королём математиков». Гаусс внес величайший вклад в науку. Во всех областях математики он провёл фундаментальные исследования: в алгебре, в теории вероятностей, в теории чисел, в теории функций комплексного переменного, в дифференциальной и неевклидовой геометрии, в математическом анализе, в аналитической и небесной механике, в астрономии, в физике и в геодезии. Но метод Гаусса не был им открыт. Он был известен за долго до рождения математика. Впервые этот метод упоминается в китайском трактате «Математика в девяти книгах», возраст которого датируется примерно с ІІ в. до н. э.

Иоганн Карл Фридрих Гаусс (1777-1855)

СЛАУ: определение, виды систем

Определение

Системой линейных алгебраических уравнений (СЛАУ), содержащей m линейных уравнений и n неизвестных, называется система вида

Число уравнений \[m\]  не обязательно совпадает с числом неизвестных n.  Особенности системы линейных алгебраических уравнений:

  • Уравнение не обязательно заранее на совместность.
  • Есть возможность при помощи метода Гаусса приводить к результату при сравнительно небольшом количестве вычисленных операций.
  • Можно решать такие системы уравнений, у которых определитель основной матрицы равняется нулю или количество уравнений не совпадает с числом неизвестных переменных.

Система линейных алгебраических уравнений может иметь:

  1. Одно решение;
  2. Много решений;
  3. Не имеет решений.

Если решений нет тогда СЛАУ называется несовместима, если есть — совместимой. Если решение одно, тогда система линейных алгебраических уравнений называется определённой, если решений несколько – неопределённой.

Метод Гаусса и метод последовательного исключения неизвестных

Определения

Метод Гаусса – это метод решение квадратных систем линейных алгебраических уравнений (СЛАУ), суть которого заключается в последовательном исключение неизвестных переменных с помощью элементарных преобразований строк.

Прямой ход метода Гаусса – это поочерёдное преобразования уравнений системы для последующего избавления от переменных неизвестных.

Обратный ход метода Гаусса – это вычисление переменных неизвестных от последнего уравнения к первому.

Решение уравнений методом Гаусса


Пример №1 решение уравнений методом Гаусса:

С первой строки определяем х. Сначала -2у переносим на другую сторону уравнения, а затем обе стороны делим на 4.

Теперь во второе уравнение системы подставляем значение

х. Находим у. 

Теперь когда у нас есть значение у, ми возвращаемся в первое уравнение и определяем х.

Ответ: \[x=-\frac{5}{4} ; \quad y=\frac{3}{2}\]


Пример №2.

Для упрощение перепишем уравнение так, чтобы на первом месте была строка с коэффициентом 1.

Теперь последовательно исключаем \[x_{1}\]с последующих строк.  Для исключения с второго уравнения обе части первого уравнение надо умножаем на -3, а затем сложить с вторым.

Так же и с третьим уравнением, только умножение на -4.

Теперь приводим уравнение к ступенчатому виду. Нужно сделать так, чтобы во второй строке возле \[x_{2}\] стала 1. Значит нам надо обе части уравнения умножить \[-\frac{1}{4}\]

Для того чтобы избавится от \[x_{2}\] в третьим уравнении, мы множим вторую строку на 5 и слаживаем её с третьей.

Теперь с третьей строки находим \[x_{3}\].

Мы закончили прямой ход метода Гаусса. Теперь приступаем к обратному ходу. Подставляем значение х3 во вторую строку и вычисляем \[x_{2}\]

Подставляем значение \[x_{2} и x_{3}\] в первое уравнение и вычисляем \[x_{1}\].

\[\left\{\begin{array}{l} x_{1}=1 \\ x_{2}=2 \\ x_{3}=3 \end{array}\right.\]

Ответ: \[x_{1}=1, x_{2}=2, x_{3}=3\]

Рассмотрим решение систем уравнений методом Гаусса.

Определение

Матрица системы уравнений – это та матрица, которая создаётся только с коэффициентов при переменных неизвестных.

Матрицей данной системы линейных алгебраических уравнений есть:

Вектор неизвестных – это вектор \[\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)\], координатами которого являются неизвестные нашей системы.

Вектор \[\bar{b}=\left(b_{1}, b_{2}, \ldots, b_{m}\right)\] – это вектор-столбец из свободных членов правых частей уравнений.

Расширенная матрица – та, в которой ещё записаны и свободные члены.

Если хотя бы одно из чисел \[b_{1}, b_{2}, \ldots, b_{m}\] не равно нулю, то система называется неоднородной. Если в правой части стоят только нули \[\left(b_{1}=b_{2}=\ldots=b_{m}=0\right)\], то такая система однородная.

Решение системы уравнений – это набор чисел \[x_{1}, x_{2} \ldots, x_{n}\], то есть вектор \[\bar{x}\].

Эквивалентными системами называются, когда каждое решение одной системы является решением другой, и на оборот.

Элементарные преобразования матрицы:

Если в матрице две строки становятся идентичными, оставляем одну, а другую убираем.

Рассмотрим, например, матрицу

В данной матрице второй и третий ряд одинаковые, а четвёртый (если разделить на 2) такой же, как и они. Значить нам достаточно оставить только одну строку. И теперь наша матрица будет выглядеть так:

Если в ходе работы с матрицей один из рядом имеет сплошные нули, его тоже нужно удалить.

В матрице строки и столбцы можно менять местами.

Матричную строку можно делить, умножать на любое число, не равное нулю.

В этом примере целесообразно первую строку разделить на 5, а вторую умножить на 2. И теперь матрица будет выглядеть так:

Данные преобразования не меняют совокупности решений системы линейных алгебраических уравнений, то есть новые системы эквивалентные прежней.

А теперь рассмотрим тот же пример системы линейных алгебраических уравнений, что рассматривали ранее, только теперь с помощью матрицы.

Нет времени решать самому?

Наши эксперты помогут!

Контрольная

| от 300 ₽ |

Реферат

| от 500 ₽ |

Курсовая

| от 1 000 ₽ |

Пример №3:

Запишем матрицу.

Теперь так же само, как и в предыдущем варианте, надо 3 во втором ряду первом столбце превратить в 0. Каждое число первого ряда надо умножаем на -3, а затем сложить с числами второго.

Так же само 4 в третьем ряду первом столбце превращаем в 0. Каждое число первого ряда умножаем на -4, а затем сложить с числами третьего ряда.

Чтобы привести к ступенчатому виду, или как в научной и учебной литературе называется трапециевидный или треугольный вид. Нужно сделать так чтобы во второй строке во втором столбце место -4 стала 1. Умножаем на \[-\frac{1}{4}\]

В третьем ряду надо – 5 превратить в 0. Множим вторую строку на 5 и слаживаем её с третьей.

\[-\frac{7}{2}\] превращаем в 1. Третий ряд умножаем на \[-\frac{7}{2}\].

Теперь возвращаемся от матрицы к системе уравнений.

Конечный вариант выходит тот же.

\[ \left\{\begin{array}{l} x_{1}=1 \\ x_{2}=2 \\ x_{3}=3 \end{array}\right. \]

Ответ: \[x_{1}=1, x_{2}=2, x_{3}=3\].


Пример №4.

Записываем расширенную матрицу для данного СЛАУ.

\[ \left(\begin{array}{llrr} 3 & 2 & -5 \mid & -1 \\ 2 & -1 & 3 \mid & 13 \\ 1 & 2 & -1 & 9 \end{array}\right) \]

Переставляем третью строку на первое место.

\[ \left(\begin{array}{rrrr} 1 & 2 & -1 & 9 \\ 3 & 2 & -5 & -1 \\ 2 & -1 & 3 \mid & 13 \end{array}\right) \]

Убираем 3 с первого столбца второй строки. Первый ряд умножаем на -3 и складываем с вторым.

\[ \left(\begin{array}{cccc} 1 & 2 & -1 & 9 \\ 0 & -4 & -2 \mid & -28 \\ 2 & -1 & 3 \mid & 13 \end{array}\right) \]

Убираем 2 с первого столбца второй строки. Первый ряд умножаем на -2 и складываем с третьим.

\[ \left(\begin{array}{cccc} 1 & 2 & -1 & 9 \\ 0 & -4 & -2 \mid & -28 \\ 0 & -5 & 5 \mid & -5 \end{array}\right) \]

Превращаем -4 во втором столбце второй строки в 1. Умножаем второй ряд на -\[\frac{1}{4}\].

\[ \left(\begin{array}{cccc} 1 & 2 & -1 \mid & 9 \\ 0 & 1 & \frac{1}{2} \mid & 7 \\ 0 & -5 & 5 \mid & -5 \end{array}\right) \]

Убираем -5 с второго столбца третьей строки. Второй ряд умножаем на 5 и складываем с третьим.

\[ \left(\begin{array}{cccc} 1 & 2 & -1 \mid & 9 \\ 0 & 1 & \frac{1}{2} \mid & 7 \\ 0 & 0 & \frac{15}{2} \mid & 30 \end{array}\right) \]

Превращаем \[\frac{15}{2}\] с третьего столбце третьей строки в 1. Умножаем третий ряд на \[\frac{2}{15}\]

\[ \left(\begin{array}{cccc} 1 & 2 & -1 & 9 \\ 0 & 1 & \frac{1}{2} \mid & 7 \\ 0 & 0 & 1 \mid & 4 \end{array}\right) \]

А теперь возвращаемся к системе линейных алгебраических уравнений.

\[ \left\{\begin{array}{c} x+2 y-z=9 \\ y+\frac{1}{2} z=7 \\ z=4 \end{array}\right. \]

Приступаем к обратному ходу методу Гаусса.

\[ \left\{\begin{array}{c} x+2 y-z=9 \\ y=5 \\ z=4 \end{array}\right. \]

\[ \left\{\begin{array}{l} x=3 \\ y=5 \\ z=4 \end{array}\right. \]

Ответ: х=3, у=5, z=4.


Пример №5.

Переводим в матричную систему и проводим элементарные преобразование.

В конечном результате исходная система свелась к ступенчатой.

\[\left\{\begin{array}{c} x_{1}-x_{2}-5 x_{3}=2 \\ x_{2}+13 x_{3}-5 x_{4}=-3 \end{array}\right.\]

Ответ: \[x_{2}=5 x_{4}-13 x_{3}-3 ; \quad x_{1}=5 x_{4}-8 x_{3}-1\]<span tabindex=»0″ data-mathml=»x2=5×4−13×3−3;x1=5×4−8×3−1″ role=»presentation» style=»font-size: 109%; text-align: center; position: relative;»>x2=5×4−13×3−3;x1=5×4−8×3−1×2=5×4−13×3−3;x1=5×4−8×3−1×2=5×4−13×3−3;x1=5×4−8×3−1

IJRAR (ISSN 2348–1269, ISSN для печати 2349-5138) | Журнал UGC CARE | Список UGC-CARE, Новый справочный список UGC-CARE, Журналы UGC CARE, Международный рецензируемый журнал и рецензируемый журнал, одобренный ugc журнал, UGC CARE, список UGC CARE, список журналов UGC CARE, UGCCARE, список журналов по уходу, UGC-CARE список, Новый справочный список UGC-CARE, Новый список журналов по уходу за угком, Исследовательский журнал, Публикация в исследовательском журнале, Исследовательская статья, Недорогой исследовательский журнал, Бесплатная бумажная публикация в исследовательском журнале, Журнал с высоким импакт-фактором, Журнал, Журнал с исследовательской бумагой, Журнал UGC CARE, Журналы UGC CARE, список журналов по уходу за угком, одобренный список угк, одобренный список угк журналов, Следуйте журналу, утвержденному угк, журнал угк CARE, утвержденный угк список журналов, журнал угк уход, список угк забод, UGC-CARE , журнал по уходу, список UGC-CARE, публикация в журнале, утвержденный ISSN, исследовательский журнал, исследовательская работа, публикация исследовательской статьи, публикация исследовательского журнала, высокий импакт-фактор, бесплатная публикация, индексный журнал, публикация статьи, публикация исследовательской статьи, недорогая публикация,Утвержденный UGC журнал, UGC CARE, утвержденный список журналов UGC, журнал ухода UGC, список UGC CARE, UGCCARE, журнал ухода, список UGC-CARE, новый справочный список UGC-CARE, журналы UGC CARE, список журналов ухода UGC, уход UGC список 2020, журнал, утвержденный ugc, список 2020, одобренный ugc, новый журнал, одобренный ugc, в 2020 г.

, список 2021, одобренный ugc, журнал, одобренный ugc, в 2021 г., Scopus, web of Science. | Журнал, одобренный UGC | Журнал пользовательского контента
UGC и ISSN одобрены | E-ISSN 2348-1269, P-ISSN 2349-5138.
Пожалуйста, отметьте нашу страницу Facebook и получите скидку 100 индийских рупий в DOI | DOI и печатная копия сертификата Предоставьте, если требуется.
Международный журнал исследований и аналитических обзоров (IJRAR) | www.ijrar.org
Лицензия и индексирование

Индексирование в Google Scholar, SSRN, ResearcherID-Publons, ученый-семантик | Инструмент исследований на базе ИИ, Microsoft Academic, Academia.edu, arXiv.org, Research Gate, CiteSeerX, ResearcherID Thomson Reuters, Mendeley: менеджер ссылок, DocStoc, ISSUU, Scribd и многие другие | Высокий коэффициент воздействия | Предоставляется цифровой идентификатор объекта (DOI) и бумажная копия сертификата.

С чего начать Новый журнал и программное обеспечениеПубликации книг и тезисов

International Journal of Research and Analytical Reviews (IJRAR.

ORG)
International Peer Reviewed & Refereed Journal, Open Access Journal

ISSN Approved Journal No: E-ISSN 2348-1269, P-ISSN 2349-5138
Журнал ESTD Год: 2014

Вызов бумаги — Том 9 | Выпуск 4 | Месяц – декабрь 2022 г.

Прочтите все новые публикации, связанные с рекомендациями, перед отправкой или публикацией. Научный открытый доступ, рецензирование и рецензирование, импакт-фактор: 7,17, исследовательский инструмент на основе ИИ, междисциплинарный, ежемесячно, индексирование во всех основных базах данных и метаданных, генератор цитирования, цифровой идентификатор объекта (DOI), утвержденный UGC журнал №: 43602 (19)

Свяжитесь с нами Нажмите здесь

Свяжитесь с нами WhatsApp
Нажмите здесь

Неработающая ссылка Ошибка HTTP 404: Страница не найдена Пожалуйста, проверьте URL