Тангенс в квадрате равен: Тангенс в квадрате, формула и примеры

Алгебра Упрощение тригонометрических выражений

Материалы к уроку

Конспект урока

14. Упрощение тригонометрических выражений

Равенства

Часто они используются при упрощении  и доказательстве тригонометрических  выражений.

 Рассмотрим примеры использования этих формул при упрощении тригонометрических выражений.

( вынесем за скобку общий множитель косинус квадрат тэ, в скобках получим разность единицы и квадрата косинуса тэ, что равно  по первому тождеству квадрату синуса тэ.  Получим  сумму синус четвертой степени тэ произведения косинус квадрат тэ и синус квадрат тэ.  общий множитель синус квадрат тэ вынесем за скобки, в скобках получим сумму квадратов косинуса и синуса, что по основному тригонометрическому  тождеству равно единице. В итоге получим квадрат  синуса тэ).

( Вынесем общий множитель косинус тэ за скобки, а в скобках приведем к общему знаменателю, который представляет собой произведение один минус синус тэ на один плюс синус тэ.

В числителе получим:  единица плюс синус тэ плюс единица минус синус тэ, приводим подобные, числитель равен  двум после приведения подобных.

В знаменателе можно применить формулу сокращенного умножения (разность квадратов) и получить разность единицы и квадрата синуса тэ, что по основному тригонометрическому тождеству 

 равно квадрату косинуса тэ. После сокращения на косинус тэ получим конечный ответ : два деленное на косинус тэ).

 

Рассмотрим примеры использования этих формул при доказательстве тригонометрических выражений.

ПРИМЕР 4.Найти значение выражения tg 2 t + ctg 2 t ,если  tg t + ctg t = 6.

( сумма квадратов тангенса тэ и котангенса тэ, если сумма тангенса и котангенса равна шести).

Решение. (tg t + ctg t)2 = 62

tg 2 t + 2 ∙ tg t ∙ctg t + ctg 2 t = 36

tg 2 t + 2 + ctg 2 t = 36

tg 2 t + ctg 2 t = 36-2

tg 2 t + ctg 2 t = 34

Возведем обе части исходного равенства в квадрат:

(tg t + ctg t)2 = 62 ( квадрат суммы тангенса тэ и котангенса тэ равна шести в квадрате).   Вспомним формулу сокращённого умножения: Квадрат суммы двух величин равен квадрату первой плюс удвоенное произведение первой на вторую плюс квадрат второй. (a+b)2=a2+2ab+b2    Получим tg 2 t + 2 ∙ tg t ∙ctg t + ctg 2 t = 36 (тангенс квадрат тэ плюс удвоенное произведение тангенса тэ на котангенс тэ плюс котангенс квадрат тэ равно тридцати шести).

Так как произведение тангенса тэ на котангенс тэ равно единице, то  tg 2 t + 2 + ctg 2 t = 36 ( сумма квадратов тангенса тэ и котангенса тэ и двух равна тридцати шести),

 значит  tg 2 t + ctg 2 t = 34 (сумма квадратов тангенса тэ и котангенса тэ равна тридцати четырем).  Ответ: 34.

Остались вопросы по теме? Наши репетиторы готовы помочь!

  • Подготовим к ЕГЭ, ОГЭ и другим экзаменам

  • Найдём слабые места по предмету и разберём ошибки

  • Повысим успеваемость по школьным предметам

  • Поможем подготовиться к поступлению в любой ВУЗ

Выбрать репетитора

Mathway | Популярные задачи

1Найти точное значениеsin(30)
2Найти точное значениеsin(45)
3Найти точное значениеsin(30 град. )
4Найти точное значениеsin(60 град. )
5Найти точное значениеtan(30 град. )
6Найти точное значениеarcsin(-1)
7
Найти точное значение
sin(pi/6)
8Найти точное значениеcos(pi/4)
9Найти точное значениеsin(45 град. )
10Найти точное значениеsin(pi/3)
11Найти точное значениеarctan(-1)
12Найти точное значениеcos(45 град. )
13Найти точное значение
cos(30 град. )
14Найти точное значениеtan(60)
15Найти точное значениеcsc(45 град. )
16Найти точное значениеtan(60 град. )
17Найти точное значениеsec(30 град. )
18Найти точное значениеcos(60 град. )
19Найти точное значениеcos(150)
20Найти точное значениеsin(60)
21Найти точное значениеcos(pi/2)
22Найти точное значениеtan(45 град. )
23Найти точное значениеarctan(- квадратный корень из 3)
24Найти точное значениеcsc(60 град. )
25Найти точное значениеsec(45 град. )
26Найти точное значениеcsc(30 град. )
27Найти точное значениеsin(0)
28Найти точное значениеsin(120)
29Найти точное значениеcos(90)
30Преобразовать из радианов в градусыpi/3
31Найти точное значениеtan(30)
32Преобразовать из градусов в радианы45
33Найти точное значениеcos(45)
34
Упростить
sin(theta)^2+cos(theta)^2
35Преобразовать из радианов в градусыpi/6
36Найти точное значениеcot(30 град. )
37Найти точное значениеarccos(-1)
38Найти точное значениеarctan(0)
39Найти точное значениеcot(60 град. )
40Преобразовать из градусов в радианы30
41Преобразовать из радианов в градусы(2pi)/3
42Найти точное значениеsin((5pi)/3)
43Найти точное значениеsin((3pi)/4)
44Найти точное значениеtan(pi/2)
45Найти точное значениеsin(300)
46Найти точное значениеcos(30)
47Найти точное значениеcos(60)
48Найти точное значениеcos(0)
49Найти точное значениеcos(135)
50Найти точное значениеcos((5pi)/3)
51Найти точное значениеcos(210)
52Найти точное значениеsec(60 град. )
53Найти точное значениеsin(300 град. )
54Преобразовать из градусов в радианы135
55Преобразовать из градусов в радианы150
56Преобразовать из радианов в градусы(5pi)/6
57Преобразовать из радианов в градусы(5pi)/3
58Преобразовать из градусов в радианы89 град.
59Преобразовать из градусов в радианы60
60Найти точное значениеsin(135 град. )
61Найти точное значениеsin(150)
62Найти точное значениеsin(240 град. )
63Найти точное значениеcot(45 град. )
64Преобразовать из радианов в градусы(5pi)/4
65Найти точное значениеsin(225)
66Найти точное значениеsin(240)
67Найти точное значениеcos(150 град. )
68Найти точное значениеtan(45)
69Вычислитьsin(30 град. )
70Найти точное значениеsec(0)
71Найти точное значениеcos((5pi)/6)
72Найти точное значениеcsc(30)
73Найти точное значениеarcsin(( квадратный корень из 2)/2)
74Найти точное значение
tan((5pi)/3)
75Найти точное значениеtan(0)
76Вычислитьsin(60 град. )
77Найти точное значениеarctan(-( квадратный корень из 3)/3)
78Преобразовать из радианов в градусы(3pi)/4
79Найти точное значениеsin((7pi)/4)
80Найти точное значениеarcsin(-1/2)
81Найти точное значение
sin((4pi)/3)
82Найти точное значениеcsc(45)
83Упроститьarctan( квадратный корень из 3)
84Найти точное значениеsin(135)
85Найти точное значениеsin(105)
86Найти точное значениеsin(150 град. )
87Найти точное значениеsin((2pi)/3)
88Найти точное значениеtan((2pi)/3)
89Преобразовать из радианов в градусыpi/4
90Найти точное значениеsin(pi/2)
91Найти точное значениеsec(45)
92Найти точное значениеcos((5pi)/4)
93Найти точное значениеcos((7pi)/6)
94Найти точное значениеarcsin(0)
95
Найти точное значение
sin(120 град. )
96Найти точное значениеtan((7pi)/6)
97Найти точное значениеcos(270)
98Найти точное значениеsin((7pi)/6)
99Найти точное значениеarcsin(-( квадратный корень из 2)/2)
100Преобразовать из градусов в радианы88 град.
2{\theta}-1$

Квадрат функции загара, равный вычитанию единицы из квадрата функции секущей, называется формулой квадрата загара. Его также называют квадратом идентичности функции загара.

Введение

Касательные функции часто используются в тригонометрических выражениях и уравнениях квадратной формы. 2{\theta} \,=\, 1$ 92{\theta}-1$

Таким образом, получается, что квадрат функции тангенса равен вычитанию из квадрата функции секущей.

Последние математические темы

ноября 03, 2022

соседних сторон четырехсторонних

сентябрь 06, 2022

Доказательство для взаимного правила фракций или рациональных номеров

июля 242, 2022

Стандарт Antry aftion

9001 Стандарт

. 15 июля 2022 г.

Геометрическое доказательство стандартного уравнения окружности 9\circ}}$

Функция тангенса-квадрата — Исчисление

Эта статья о конкретной функции из подмножества действительных чисел в действительные числа. В статье представлена ​​информация о функции, включая ее домен, диапазон и ключевые данные, относящиеся к построению графиков, дифференцированию и интегрированию.
Посмотреть полный список конкретных функций на этой вики
Для функций, включающих углы (тригонометрические функции, обратные тригонометрические функции и т. д.), мы следуем соглашению, что все углы измеряются в радианах. Так, например, угол измеряется как .

Содержание

  • 1 Определение
  • 2 Ключевые данные
  • 3 Дифференциация
    • 3.1 Первая производная
  • 4 Интеграция
    • 4.1 Первая первообразная
    • 4.2 Вторая первообразная
    • 4.3 Высшие первообразные
    • 4.4 Интегрирование произведений с полиномами

Определение

Эта функция определяется как композиция функции квадрата и функции тангенса. В явном виде это функция:

записывается как стенография.

Ключевые данные

Товар Значение
Домен по умолчанию все действительные числа кроме нечетные целые числа кратные .
диапазон , т. е. . Все неотрицательные действительные числа.
нет абсолютного максимального значения; абсолютное минимальное значение 0
период , т. е. .
локальные максимальные значения и точки достижения Нет локальных максимальных значений
местные минимальные значения и точки достижения 0 во всех целых кратных .
точки перегиба (обе координаты) Нет
вертикальные асимптоты во всех нечетных кратных , с функцией, идущей в обоих направлениях в каждом случае.
производная
первообразная . Обратите внимание, что значение должно быть постоянным в пределах каждого интервала между последовательными нечетными числами, кратными , но может отличаться в разных интервалах. Домен вообще не подключен.
Описание интервала на основе увеличения/уменьшения и вогнутости вверх/вниз Для каждого целого числа:
по убыванию и вогнутости от до
по возрастанию и вогнутости от до .

Дифференцирование

Первая производная

Первую производную можно вычислить, комбинируя цепное правило дифференцирования и знание производных функции квадрата и функции тангенса:

Интегрирование

Первая первообразная

Используем тождество:

Используя это, мы перепишем:

где мы используем, что функция тангенса является первообразной для функции квадрата секанса

Вторая первообразная

Мы можем антидифференцировать функцию еще раз:

Старшие первообразные

Невозможно вычислить высшие первообразные в терминах элементарных функций, но мы можем вычислить их с помощью полилогарифма.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *