1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | cos((5pi)/12) | |
3 | Найти точное значение | arctan(-1) | |
4 | Найти точное значение | sin(75) | |
5 | Найти точное значение | arcsin(-1) | |
6 | Найти точное значение | sin(60 град. ) | |
7 | Найти точное значение | sin(pi/3) | |
8 | Найти точное значение | arctan(- квадратный корень 3) | |
9 | Найти точное значение | cos(pi/3) | |
10 | Найти точное значение | sin(0) | |
11 | Найти точное значение | cos(pi/12) | |
12 | Найти точное значение | sin(30 град. ) | |
13 | Найти точное значение | cos(60 град. ) | |
14 | Найти точное значение | cos(30 град. ) | |
15 | Найти точное значение | sin((2pi)/3) | |
16 | Найти точное значение | arcsin(1) | |
17 | Найти точное значение | sin(pi/2) | |
18 | График | f(x)=x^2 | |
19 | Найти точное значение | sin(45 град. ) | |
20 | Найти точное значение | sin(15) | |
21 | Упростить | квадратный корень x^2 | |
22 | Найти точное значение | arccos(-1) | |
23 | Найти точное значение | tan(60 град. ) | |
24 | Найти точное значение | cos(45 град. ) | |
25 | Вычислить | логарифм по основанию 2 от 8 | |
26 | Упростить | квадратный корень x^3 | |
27 | Найти точное значение | arcsin(-1/2) | |
28 | Найти точное значение | cos(45) | |
29 | Найти точное значение | tan(30 град. ) | |
30 | Найти точное значение | tan(30) | |
31 | Найти точное значение | arcsin(1) | |
32 | Найти точное значение | arctan( квадратный корень 3) | |
33 | Найти точное значение | sin(45) | |
34 | Найти точное значение | cos(0) | |
35 | Найти точное значение | tan(45 град. ) | |
36 | Найти точное значение | arctan(0) | |
37 | Преобразовать из радианов в градусы | pi/3 | |
38 | График | y=x^2 | |
39 | Вычислить | натуральный логарифм 1 | |
40 | Вычислить | логарифм по основанию 3 от 81 | |
41 | Найти точное значение | cos(15) | |
42 | Вычислить | логарифм по основанию 5 от 125 | |
43 | Упростить | кубический корень из квадратного корня 64x^6 | |
44 | Вычислить | логарифм по основанию 3 от 81 | |
45 | Вычислить | логарифм по основанию 2 от 8 | |
46 | Найти точное значение | arcsin(-( квадратный корень 2)/2) | |
47 | Найти точное значение | cos(75) | |
48 | Найти точное значение | sin((3pi)/4) | |
49 | Упростить | (1/( квадратный корень x+h)-1/( квадратный корень x))/h | |
50 | Упростить | кубический корень x^3 | |
51 | Найти точное значение | sin((5pi)/12) | |
52 | Найти точное значение | arcsin(-1/2) | |
53 | Найти точное значение | sin(30) | |
54 | Найти точное значение | sin(105) | |
55 | Найти точное значение | tan((3pi)/4) | |
56 | Упростить | квадратный корень s квадратный корень s^7 | |
57 | Упростить | корень четвертой степени x^4y^2z^2 | |
58 | Найти точное значение | sin(60) | |
59 | Найти точное значение | arccos(-( квадратный корень 2)/2) | |
60 | Найти точное значение | tan(0) | |
61 | Найти точное значение | sin((3pi)/2) | |
62 | Вычислить | логарифм по основанию 4 от 64 | |
63 | Упростить | корень шестой степени 64a^6b^7 | |
64 | Вычислить | квадратный корень 2 | |
65 | Найти точное значение | arccos(1) | |
66 | Найти точное значение | arcsin(( квадратный корень 3)/2) | |
67 | График | f(x)=2^x | |
68 | Найти точное значение | sin((3pi)/4) | |
69 | Преобразовать из радианов в градусы | (3pi)/4 | |
70 | Вычислить | логарифм по основанию 5 от 25 | |
71 | Найти точное значение | tan(pi/2) | |
72 | Найти точное значение | cos((7pi)/12) | |
73 | Упростить | 1/( кубический корень от x^4) | |
74 | Найти точное значение | sin((5pi)/6) | |
75 | Преобразовать из градусов в радианы | 150 | |
76 | Найти точное значение | tan(pi/2) | |
77 | Множитель | x^3-8 | |
78 | Упростить | корень пятой степени 1/(x^3) | |
79 | Упростить | корень пятой степени 1/(x^3) | |
80 | Найти точное значение | sin(135) | |
81 | Преобразовать из градусов в радианы | 30 | |
82 | Преобразовать из градусов в радианы | 60 | |
83 | Найти точное значение | sin(120) | |
84 | Найти точное значение | tan((2pi)/3) | |
85 | Вычислить | -2^2 | |
86 | Найти точное значение | tan(15) | |
87 | Найти точное значение | tan((7pi)/6) | |
88 | Найти точное значение | arcsin(( квадратный корень 3)/2) | |
89 | Найти точное значение | sin(pi/2) | |
90 | Преобразовать из радианов в градусы | (5pi)/6 | |
91 | Упростить | кубический корень 8x^7y^9z^3 | |
92 | Упростить | arccos(( квадратный корень 3)/2) | |
93 | Упростить | i^2 | |
94 | Вычислить | кубический корень 24 кубический корень 18 | |
95 | Упростить | квадратный корень 4x^2 | |
96 | Найти точное значение | sin((3pi)/4) | |
97 | Найти точное значение | tan((7pi)/6) | |
98 | Найти точное значение | tan((3pi)/4) | |
99 | Найти точное значение | arccos(-1/2) | |
100 | Упростить | корень четвертой степени x^4 |
www.mathway.com
1 | Найти производную — d/dx | квадратный корень x | |
2 | Найти производную — d/dx | натуральный логарифм x | |
3 | Вычислить | интеграл натурального логарифма x по x | |
4 | Найти производную — d/dx | e^x | |
5 | Вычислить | интеграл e^(2x) относительно x | |
6 | Найти производную — d/dx | 1/x | |
7 | Найти производную — d/dx | x^2 | |
8 | Вычислить | интеграл e^(-x) относительно x | |
9 | Найти производную — d/dx | 1/(x^2) | |
10 | Найти производную — d/dx | sin(x)^2 | |
11 | Найти производную — d/dx | sec(x) | |
12 | Вычислить | интеграл e^x относительно x | |
13 | Вычислить | интеграл x^2 относительно x | |
14 | Вычислить | интеграл квадратного корня x по x | |
15 | Вычислить | натуральный логарифм 1 | |
16 | Вычислить | e^0 | |
17 | Вычислить | sin(0) | |
18 | Найти производную — d/dx | cos(x)^2 | |
19 | Вычислить | интеграл 1/x относительно x | |
20 | Вычислить | cos(0) | |
21 | Вычислить | интеграл sin(x)^2 относительно x | |
22 | Найти производную — d/dx | x^3 | |
23 | Найти производную — d/dx | sec(x)^2 | |
24 | Найти производную — d/dx | 1/(x^2) | |
25 | Вычислить | интеграл arcsin(x) относительно x | |
26 | Вычислить | интеграл cos(x)^2 относительно x | |
27 | Вычислить | интеграл sec(x)^2 относительно x | |
28 | Найти производную — d/dx | e^(x^2) | |
29 | Вычислить | интеграл в пределах от 0 до 1 кубического корня 1+7x по x | |
30 | Найти производную — d/dx | sin(2x) | |
31 | Вычислить | интеграл натурального логарифма x по x | |
32 | Найти производную — d/dx | tan(x)^2 | |
33 | Вычислить | интеграл e^(2x) относительно x | |
34 | Вычислить | интеграл 1/(x^2) относительно x | |
35 | Найти производную — d/dx | 2^x | |
36 | График | натуральный логарифм a | |
37 | Вычислить | e^1 | |
38 | Вычислить | интеграл 1/(x^2) относительно x | |
39 | Вычислить | натуральный логарифм 0 | |
40 | Найти производную — d/dx | cos(2x) | |
41 | Найти производную — d/dx | xe^x | |
42 | Вычислить | интеграл 1/x относительно x | |
43 | Вычислить | интеграл 2x относительно x | |
44 | Найти производную — d/dx | ( натуральный логарифм x)^2 | |
45 | Найти производную — d/dx | натуральный логарифм (x)^2 | |
46 | Найти производную — d/dx | 3x^2 | |
47 | Вычислить | натуральный логарифм 2 | |
48 | Вычислить | интеграл xe^(2x) относительно x | |
49 | Найти производную — d/dx | 2e^x | |
50 | Найти производную — d/dx | натуральный логарифм 2x | |
51 | Найти производную — d/dx | -sin(x) | |
52 | Вычислить | tan(0) | |
53 | Найти производную — d/dx | 4x^2-x+5 | |
54 | Найти производную — d/dx | y=16 корень четвертой степени 4x^4+4 | |
55 | Найти производную — d/dx | 2x^2 | |
56 | Вычислить | интеграл e^(3x) относительно x | |
57 | Вычислить | интеграл cos(2x) относительно x | |
58 | Вычислить | интеграл cos(x)^2 относительно x | |
59 | Найти производную — d/dx | 1/( квадратный корень x) | |
60 | Вычислить | интеграл e^(x^2) относительно x | |
61 | Вычислить | sec(0) | |
62 | Вычислить | e^infinity | |
63 | Вычислить | 2^4 | |
64 | Найти производную — d/dx | x/2 | |
65 | Вычислить | 4^3 | |
66 | Найти производную — d/dx | -cos(x) | |
67 | Найти производную — d/dx | sin(3x) | |
68 | Вычислить | натуральный логарифм 1/e | |
69 | Вычислить | интеграл x^2 относительно x | |
70 | Упростить | 1/( кубический корень от x^4) | |
71 | Найти производную — d/dx | 1/(x^3) | |
72 | Вычислить | интеграл e^x относительно x | |
73 | Вычислить | интеграл tan(x)^2 относительно x | |
74 | Вычислить | интеграл 1 относительно x | |
75 | Найти производную — d/dx | x^x | |
76 | Найти производную — d/dx | x натуральный логарифм x | |
77 | Вычислить | интеграл sin(x)^2 относительно x | |
78 | Найти производную — d/dx | x^4 | |
79 | Вычислить | предел (3x-5)/(x-3), если x стремится к 3 | |
80 | Вычислить | интеграл от x^2 натуральный логарифм x по x | |
81 | Найти производную — d/dx | f(x) = square root of x | |
82 | Найти производную — d/dx | x^2sin(x) | |
83 | Вычислить | интеграл sin(2x) относительно x | |
84 | Найти производную — d/dx | 3e^x | |
85 | Вычислить | интеграл xe^x относительно x | |
86 | Найти производную — d/dx | y=x^2 | |
87 | Найти производную — d/dx | квадратный корень x^2+1 | |
88 | Найти производную — d/dx | sin(x^2) | |
89 | Вычислить | интеграл e^(-2x) относительно x | |
90 | Вычислить | интеграл натурального логарифма квадратного корня x по x | |
91 | Вычислить | 2^5 | |
92 | Найти производную — d/dx | e^2 | |
93 | Найти производную — d/dx | x^2+1 | |
94 | Вычислить | интеграл sin(x) относительно x | |
95 | Вычислить | 2^3 | |
96 | Найти производную — d/dx | arcsin(x) | |
97 | Вычислить | предел (sin(x))/x, если x стремится к 0 | |
98 | Вычислить | e^2 | |
99 | Вычислить | интеграл e^(-x) относительно x | |
100 | Вычислить | интеграл 1/x относительно x |
www.mathway.com
Натуральный логарифм — Википедия
График функции натурального логарифма. Функция медленно приближается к положительной бесконечности при увеличении x и быстро приближается к отрицательной бесконечности, когда x стремится к 0 («медленно» и «быстро» по сравнению с любой степенной функцией от x).Натуральный логарифм — это логарифм по основанию e, где e — иррациональная константа, равная приблизительно 2,718281828. Натуральный логарифм обычно обозначают как ln(x), loge(x) или иногда просто log(x), если основание e подразумевается[1]. Другими словами, натуральный логарифм числа x — это показатель степени, в которую нужно возвести число e, чтобы получить x.
Примеры.
- ln(7,389…) равен 2, потому что e2=7,389….
- ln(e) равен 1, потому что e1 = e
- ln(1) равен 0, потому что e0 = 1.
Натуральный логарифм может быть определён для любого положительного вещественного числа a как площадь под кривой y = 1/x от 1 до a. Простота этого определения, которое согласуется со многими другими формулами, в которых применяется натуральный логарифм, привела к появлению названия «натуральный». Это определение можно расширить на комплексные числа, о чём будет сказано ниже.
Если рассматривать натуральный логарифм как вещественную функцию действительной переменной, то она является обратной функцией к экспоненциальной функции, что приводит к тождествам:
Подобно всем логарифмам, натуральный логарифм отображает умножение в сложение:
С точки зрения общей алгебры, логарифмическая функция осуществляет изоморфизм группы положительных действительных чисел относительно умножения на группу вещественных чисел по сложению:
Логарифм может быть определён для любого положительного основания, отличного от 1, а не только для e, но логарифмы для других оснований отличаются от натурального логарифма только постоянным множителем, и, как правило, определяются в терминах натурального логарифма. Логарифмы полезны для решения уравнений, в которых неизвестные присутствуют в качестве показателя степени. Например, логарифмы используются для нахождения постоянной распада для известного периода полураспада, или для нахождения времени распада в решении проблем радиоактивности. Они играют важную роль во многих областях математики и прикладных наук, применяются в сфере финансов для решения многих задач, включая нахождение сложных процентов.
Первое упоминание натурального логарифма сделал Николас Меркатор в работе Logarithmotechnia, опубликованной в 1668 году[2], хотя учитель математики Джон Спайделл ещё в 1619 году составил таблицу натуральных логарифмов.[3] Ранее его называли гиперболическим логарифмом,[4] поскольку он соответствует площади под гиперболой. Иногда его называют логарифмом Непера, хотя первоначальный смысл этого термина был несколько другой.
Соглашение об обозначениях[править]
Обозначение «ln(x)» всегда относится к натуральному логарифму. Обозначения «lg(x)» и «log(x)» зависят от контекста и традиций, описываемых ниже.
Русская и европейская система[править]
Натуральный логарифм принято обозначать через «ln(x)», логарифм по основанию 10 — через «lg(x)», а прочие основания принято указывать явно при символе «log».
Во многих работах по дискретной математике, кибернетике, информатике авторы используют обозначение «log( x)» для логарифмов по основанию 2, но это соглашение не является общепринятым и требует разъяснения либо в списке использованных обозначений, либо (при отсутствии такого списка) сноской или комментарием при первом использовании.
Скобки вокруг аргумента логарифмов (если это не приводит к ошибочному чтению формулы) обычно опускают, а при возведении логарифма в степень показатель приписывают непосредственно к знаку логарифма: ln2 ln3 4x5 = [ln([ln(4x5)]3)]2.
Англо-американская система[править]
Обозначение натурального логарифма, как , где является аргументом, ввёл американский математик Ирвинг Стрингхем в 1893 году[5].
Математики, статистики и часть инженеров обычно используют для обозначения натурального логарифма либо «log(x)», либо «ln(x)», а для обозначения логарифма по основанию 10 — «log10(x)».
Некоторые инженеры, биологи и другие специалисты всегда пишут «ln(
В теоретической информатике, теории информации и криптографии «log(x)» обычно означает логарифм по основанию 2 «log2(x)» (хотя часто вместо этого пишется просто lg(x)).
Техника[править]
В наиболее часто используемых языках программирования и пакетах прикладных программ, включая C, C++, SAS, MATLAB, Фортран и BASIC функция «log» или «LOG» относится к натуральному логарифму.
В ручных калькуляторах натуральный логарифм обозначается ln, тогда как log служит для обозначения логарифма по основанию 10.
Происхождение термина[править]
Сначала может показаться, что поскольку наша система счисления имеет основание 10, то это основание является более «натуральным», чем основание e. Но математически число 10 не является особо значимым. Его использование скорее связано с культурой, оно является общим для многих систем счисления, и связано это, вероятно, с числом пальцев у людей. [6] Некоторые культуры основывали свои системы счисления на других основаниях: 5, 8, 12, 20 и 60.[7][8][9]
loge является «натуральным» логарифмом, поскольку он возникает автоматически и появляется в математике очень часто. Например, рассмотрим проблему производной логарифмической функции:[10]
Если основание b равно e, то производная равна просто 1/x, а при x = 1 эта производная равна 1. Другим обоснованием, по которому основание e логарифма является наиболее натуральным, является то, что он может быть довольно просто определён в терминах простого интеграла или ряда Тейлора, чего нельзя сказать о других логарифмах.
Дальнейшие обоснования натуральности не связаны со счислением. Так, например, есть несколько простых рядов с натуральными логарифмами. Пьетро Менголи и Николай Меркатор называли их
Формально ln(a) может быть определён как площадь под кривой графика 1/x от 1 до a, т. е. как интеграл:
Это действительно логарифм, поскольку он удовлетворяет фундаментальному свойству логарифма:
Это можно продемонстрировать, допуская следующим образом:
Число e может быть определено как единственное действительное число a такое, что ln(a) = 1.
Или же, если показательная функция была определена раньше с использованием бесконечных рядов, натуральный логарифм может быть определён как обратная к ней функция, т. е. ln — это функция, такая что . Так как диапазон значений экспоненциальной функции от реальных аргументов есть все положительные вещественные числа, а экспоненциальная функция строго возрастает, то это хорошо определённая функция для всех положительных x.
- — комплексный логарифм
Производная и разложение в ряд Тейлора[править]
Многочлены Тейлора дают точную аппроксимацию для только в области сходимости −1 x ≤ 1.Используя то, что производная натурального логарифма равна
можно выполнить разложение в ряд Тейлора около x = 0, называемое иногда рядом Меркатора:
Ограничение этого бесконечного ряда i-м членом порождает многочлены Тейлора i-го порядка, содержащие степени не выше i-й. На рисунке справа приведены графики функции и некоторых многочленов Тейлора около x = 0. Аппроксимации сходятся к функции только в области сходимости −1 <
Подставляя x−1 вместо x, получаем альтернативную форму для ln(x), а именно:
- [12]
С помощью преобразования Эйлера из ряда Тейлора можно получить следующее выражение, справедливое для любого |x| > 1:
Этот ряд похож на формулу Бэйли—Боруэйна—Плаффа.
Также заметим, что — это её собственная инверсная функция, поэтому для получения натурального логарифма определенного числа y нужно просто для x присвоить значение .
Натуральный логарифм в интегрировании[править]
Натуральный логарифм даёт простую интегральную функцию вида g(x) = f ‘(x)/f(x): первообразная функции g(x) имеет вид ln(|f(x)|). Это подтверждается цепным правилом и следующим фактом:
В другом виде:
и
Ниже дан пример для g(x) = tan(x):
Пусть f(x) = cos(x) и f’(x)= — sin(x):
где C — произвольная константа.
Натуральный логарифм можно проинтегрировать с помощью интегрирования по частям:
Численное значение[править]
Для расчета численного значения натурального логарифма числа можно использовать разложение его в ряд Тейлора в виде:
Чтобы получить лучшую скорость сходимости, можно воспользоваться следующим тождеством:
- при условии, что y = (x−1)/(x+1) и x > 0.
Для ln(x), где x > 1, чем ближе значение x к 1, тем быстрее скорость сходимости. Тождества, связанные с логарифмом, можно использовать для достижения цели:
Эти методы применялись ещё до появления калькуляторов, для чего использовались числовые таблицы и выполнялись манипуляции, аналогичные вышеописанным.
Высокая точность[править]
Для вычисления натурального логарифма с большим количеством цифр точности ряд Тейлора не является эффективным, поскольку его сходимость медленная. Альтернативой является использование метода Ньютона, чтобы инвертировать в экспоненциальную функцию, ряд которой сходится быстрее.
Альтернативой для очень высокой точности расчёта является формула:[13][14]
где M обозначает арифметико-геометрическое среднее 1 и 4/s, и
m выбрано так, что p знаков точности достигается. (В большинстве случаев значение 8 для m вполне достаточно.) В самом деле, если используется этот метод, может быть применена инверсия Ньютона натурального логарифма для эффективного вычисления экспоненциальной функции. (Константы ln 2 и пи могут быть предварительно вычислены до желаемой точности, используя любой из известных быстро сходящихся рядов.)
Вычислительная сложность[править]
Вычислительная сложность натуральных логарифмов (с помощью арифметико-геометрического среднего) равна O(M(n) ln n). Здесь n — число цифр точности, для которой натуральный логарифм должен быть оценен, а M(n) — вычислительная сложность умножения двух n-значных чисел.
Непрерывные дроби[править]
Хотя для представления логарифма отсутствуют простые непрерывные дроби, но можно использовать несколько обобщённых непрерывных дробей, в том числе:
Комплексные логарифмы[править]
Экспоненциальная функция может быть расширена до функции, которая даёт комплексное число вида ex для любого произвольного комплексного числа x, при этом используется бесконечный ряд с комплексным x. Эта показательная функция может быть инвертирована с образованием комплексного логарифма, который будет обладать большей частью свойств обычных логарифмов. Есть, однако, две трудности: не существует x, для которого ex = 0, и оказывается, что e2πi = 1 = e0. Поскольку свойство мультипликативности действительно для комплексной экспоненциальной функции, то ez = ez+2nπi для всех комплексных z и целых n.
Логарифм не может быть определён на всей комплексной плоскости, и даже при этом он является многозначным — любой комплексный логарифм может быть заменён на «эквивалентный» логарифм, добавив любое целое число, кратное 2πi. Комплексный логарифм может быть однозначным только на срезе комплексной плоскости. Например, ln i = 1/2 πi или 5/2 πi или −3/2 πi, и т.д., и хотя i4 = 1, 4 log i может быть определена как 2πi, или 10πi или −6 πi, и так далее.
- Функции натурального логарифма на комплексной плоскости (главная ветвь)
-
Суперпозиция трёх предыдущих графиков
- ↑ Mathematics for physical chemistry. — 3rd. — Academic Press, 2005. — P. 9. — ISBN 0-125-08347-5., Extract of page 9
- ↑ J J O’Connor and E F Robertson. The number e. The MacTutor History of Mathematics archive (сентябрь 2001). Архивировано из первоисточника 12 февраля 2012.
- ↑ Cajori Florian. A History of Mathematics, 5th ed. — AMS Bookstore, 1991. — P. 152. — ISBN 0821821024.
- ↑ Flashman, Martin. Estimating Integrals using Polynomials. Архивировано из первоисточника 12 февраля 2012.
- ↑ Charles Smith, Irving Stringham, Elementary algebra for the use of schools and colleges 2nd ed, (The Macmillan Company, New York, 1904)
- ↑ Boyers Carl. A History of Mathematics. — John Wiley & Sons, 1968.
- ↑ Harris, John (1987). «Australian Aboriginal and Islander mathematics» (PDF). Australian Aboriginal Studies 2: 29–37.
- ↑ Large, J.J. (1902). «The vigesimal system of enumeration». Journal of the Polynesian Society 11 (4): 260–261.
- ↑ Cajori first=Florian (1922). «Sexagesimal fractions among the Babylonians». American Mathematical Monthly 29 (1): 8–10. DOI:10.2307/2972914.
- ↑ Larson Ron. Calculus: An Applied Approach. — 8th. — Cengage Learning, 2007. — P. 331. — ISBN 0-618-95825-8.
- ↑ Ballew, Pat Math Words, and Some Other Words, of Interest. Архивировано из первоисточника 12 февраля 2012.
- ↑ «Logarithmic Expansions» at Math3.org
- ↑ (1982) «Practically fast multiple-precision evaluation of log(x)». Journal of Information Processing 5 (4): 247–250. Проверено 30 March 2011.
- ↑ (1999) «Fast computations of the exponential function» 1564: 302–312. DOI:10.1007/3-540-49116-3_28.
www.wiki-wiki.ru
Что такое ln в математике???
по основанию e вообще здесь можно посмотреть чуть подробнее <a rel=»nofollow» href=»http://www.wolframalpha.com/input/?i=ln» target=»_blank»>http://www.wolframalpha.com/input/?i=ln</a>(x) <a rel=»nofollow» href=»http://ru.wikipedia.org/wiki/Логарифм» target=»_blank»>http://ru.wikipedia.org/wiki/Логарифм</a>
это натуральный логарифм, в основании которого число е (приблизит равно 2,7)
в математике это есть НАТУРАЛЬНЫЙ ЛОГАРИФМ!!!)
как рассчитать -ln 0,242 ?
touch.otvet.mail.ru
Натуральный логарифм — Википедия
График функции натурального логарифма. Функция медленно приближается к положительной бесконечности при увеличении x и быстро приближается к отрицательной бесконечности, когда x стремится к 0 («медленно» и «быстро» по сравнению с любой степенной функцией от x).Натуральный логарифм — это логарифм по основанию e, где e — иррациональная константа, равная приблизительно 2,718281828. Натуральный логарифм обычно обозначают как ln(x), loge(x) или иногда просто log(x), если основание e подразумевается[1]. Другими словами, натуральный логарифм числа x — это показатель степени, в которую нужно возвести число e, чтобы получить x.
Примеры.
- ln(7,389…) равен 2, потому что e2=7,389….
- ln(e) равен 1, потому что e1 = e
- ln(1) равен 0, потому что e0 = 1.
Натуральный логарифм может быть определён для любого положительного вещественного числа a как площадь под кривой y = 1/x от 1 до a. Простота этого определения, которое согласуется со многими другими формулами, в которых применяется натуральный логарифм, привела к появлению названия «натуральный». Это определение можно расширить на комплексные числа, о чём будет сказано ниже.
Если рассматривать натуральный логарифм как вещественную функцию действительной переменной, то она является обратной функцией к экспоненциальной функции, что приводит к тождествам:
Подобно всем логарифмам, натуральный логарифм отображает умножение в сложение:
С точки зрения общей алгебры, логарифмическая функция осуществляет изоморфизм группы положительных действительных чисел относительно умножения на группу вещественных чисел по сложению:
Логарифм может быть определён для любого положительного основания, отличного от 1, а не только для e, но логарифмы для других оснований отличаются от натурального логарифма только постоянным множителем, и, как правило, определяются в терминах натурального логарифма. Логарифмы полезны для решения уравнений, в которых неизвестные присутствуют в качестве показателя степени. Например, логарифмы используются для нахождения постоянной распада для известного периода полураспада, или для нахождения времени распада в решении проблем радиоактивности. Они играют важную роль во многих областях математики и прикладных наук, применяются в сфере финансов для решения многих задач, включая нахождение сложных процентов.
Первое упоминание натурального логарифма сделал Николас Меркатор в работе Logarithmotechnia, опубликованной в 1668 году[2], хотя учитель математики Джон Спайделл ещё в 1619 году составил таблицу натуральных логарифмов.[3] Ранее его называли гиперболическим логарифмом,[4] поскольку он соответствует площади под гиперболой. Иногда его называют логарифмом Непера, хотя первоначальный смысл этого термина был несколько другой.
Соглашение об обозначениях[править]
Обозначение «ln(x)» всегда относится к натуральному логарифму. Обозначения «lg(x)» и «log(x)» зависят от контекста и традиций, описываемых ниже.
Русская и европейская система[править]
Натуральный логарифм принято обозначать через «ln(x)», логарифм по основанию 10 — через «lg(x)», а прочие основания принято указывать явно при символе «log».
Во многих работах по дискретной математике, кибернетике, информатике авторы используют обозначение «log(x)» для логарифмов по основанию 2, но это соглашение не является общепринятым и требует разъяснения либо в списке использованных обозначений, либо (при отсутствии такого списка) сноской или комментарием при первом использовании.
Скобки вокруг аргумента логарифмов (если это не приводит к ошибочному чтению формулы) обычно опускают, а при возведении логарифма в степень показатель приписывают непосредственно к знаку логарифма: ln2 ln3 4x5 = [ln([ln(4x5)]3)]2.
Англо-американская система[править]
Обозначение натурального логарифма, как , где является аргументом, ввёл американский математик Ирвинг Стрингхем в 1893 году[5].
Математики, статистики и часть инженеров обычно используют для обозначения натурального логарифма либо «log(x)», либо «ln(x)», а для обозначения логарифма по основанию 10 — «log10(x)».
Некоторые инженеры, биологи и другие специалисты всегда пишут «ln(x)» (или изредка «loge(x)»), когда они имеют в виду натуральный логарифм, а запись «log(x)» у них означает log10(x).
В теоретической информатике, теории информации и криптографии «log(x)» обычно означает логарифм по основанию 2 «log2(x)» (хотя часто вместо этого пишется просто lg(x)).
Техника[править]
В наиболее часто используемых языках программирования и пакетах прикладных программ, включая C, C++, SAS, MATLAB, Фортран и BASIC функция «log» или «LOG» относится к натуральному логарифму.
В ручных калькуляторах натуральный логарифм обозначается ln, тогда как log служит для обозначения логарифма по основанию 10.
Происхождение термина[править]
Сначала может показаться, что поскольку наша система счисления имеет основание 10, то это основание является более «натуральным», чем основание e. Но математически число 10 не является особо значимым. Его использование скорее связано с культурой, оно является общим для многих систем счисления, и связано это, вероятно, с числом пальцев у людей.[6] Некоторые культуры основывали свои системы счисления на других основаниях: 5, 8, 12, 20 и 60.[7][8][9]
loge является «натуральным» логарифмом, поскольку он возникает автоматически и появляется в математике очень часто. Например, рассмотрим проблему производной логарифмической функции:[10]
Если основание b равно e, то производная равна просто 1/x, а при x = 1 эта производная равна 1. Другим обоснованием, по которому основание e логарифма является наиболее натуральным, является то, что он может быть довольно просто определён в терминах простого интеграла или ряда Тейлора, чего нельзя сказать о других логарифмах.
Дальнейшие обоснования натуральности не связаны со счислением. Так, например, есть несколько простых рядов с натуральными логарифмами. Пьетро Менголи и Николай Меркатор называли их логарифмус натуралис несколько десятилетий до тех пор, пока Ньютон и Лейбниц не разработали дифференциальное и интегральное исчисление.[11]
ln(a) определяется как площадь под кривой f(x) = 1/x от 1 до a.Формально ln(a) может быть определён как площадь под кривой графика 1/x от 1 до a, т. е. как интеграл:
Это действительно логарифм, поскольку он удовлетворяет фундаментальному свойству логарифма:
Это можно продемонстрировать, допуская следующим образом:
Число e может быть определено как единственное действительное число a такое, что ln(a) = 1.
Или же, если показательная функция была определена раньше с использованием бесконечных рядов, натуральный логарифм может быть определён как обратная к ней функция, т. е. ln — это функция, такая что . Так как диапазон значений экспоненциальной функции от реальных аргументов есть все положительные вещественные числа, а экспоненциальная функция строго возрастает, то это хорошо определённая функция для всех положительных x.
- — комплексный логарифм
Производная и разложение в ряд Тейлора[править]
Многочлены Тейлора дают точную аппроксимацию для только в области сходимости −1 x ≤ 1.Используя то, что производная натурального логарифма равна
можно выполнить разложение в ряд Тейлора около x = 0, называемое иногда рядом Меркатора:
Ограничение этого бесконечного ряда i-м членом порождает многочлены Тейлора i-го порядка, содержащие степени не выше i-й. На рисунке справа приведены графики функции и некоторых многочленов Тейлора около x = 0. Аппроксимации сходятся к функции только в области сходимости −1 < x ≤ 1, а за её пределами быстро отклоняются от точной функции, причем многочлены высших степеней дают бо́льшую ошибку.
Подставляя x−1 вместо x, получаем альтернативную форму для ln(x), а именно:
- [12]
С помощью преобразования Эйлера из ряда Тейлора можно получить следующее выражение, справедливое для любого |x| > 1:
Этот ряд похож на формулу Бэйли—Боруэйна—Плаффа.
Также заметим, что — это её собственная инверсная функция, поэтому для получения натурального логарифма определенного числа y нужно просто для x присвоить значение .
Натуральный логарифм в интегрировании[править]
Натуральный логарифм даёт простую интегральную функцию вида g(x) = f ‘(x)/f(x): первообразная функции g(x) имеет вид ln(|f(x)|). Это подтверждается цепным правилом и следующим фактом:
В другом виде:
и
Ниже дан пример для g(x) = tan(x):
Пусть f(x) = cos(x) и f’(x)= — sin(x):
где C — произвольная константа.
Натуральный логарифм можно проинтегрировать с помощью интегрирования по частям:
Численное значение[править]
Для расчета численного значения натурального логарифма числа можно использовать разложение его в ряд Тейлора в виде:
Чтобы получить лучшую скорость сходимости, можно воспользоваться следующим тождеством:
- при условии, что y = (x−1)/(x+1) и x > 0.
Для ln(x), где x > 1, чем ближе значение x к 1, тем быстрее скорость сходимости. Тождества, связанные с логарифмом, можно использовать для достижения цели:
Эти методы применялись ещё до появления калькуляторов, для чего использовались числовые таблицы и выполнялись манипуляции, аналогичные вышеописанным.
Высокая точность[править]
Для вычисления натурального логарифма с большим количеством цифр точности ряд Тейлора не является эффективным, поскольку его сходимость медленная. Альтернативой является использование метода Ньютона, чтобы инвертировать в экспоненциальную функцию, ряд которой сходится быстрее.
Альтернативой для очень высокой точности расчёта является формула:[13][14]
где M обозначает арифметико-геометрическое среднее 1 и 4/s, и
m выбрано так, что p знаков точности достигается. (В большинстве случаев значение 8 для m вполне достаточно.) В самом деле, если используется этот метод, может быть применена инверсия Ньютона натурального логарифма для эффективного вычисления экспоненциальной функции. (Константы ln 2 и пи могут быть предварительно вычислены до желаемой точности, используя любой из известных быстро сходящихся рядов.)
Вычислительная сложность[править]
Вычислительная сложность натуральных логарифмов (с помощью арифметико-геометрического среднего) равна O(M(n) ln n). Здесь n — число цифр точности, для которой натуральный логарифм должен быть оценен, а M(n) — вычислительная сложность умножения двух n-значных чисел.
Непрерывные дроби[править]
Хотя для представления логарифма отсутствуют простые непрерывные дроби, но можно использовать несколько обобщённых непрерывных дробей, в том числе:
Комплексные логарифмы[править]
Экспоненциальная функция может быть расширена до функции, которая даёт комплексное число вида ex для любого произвольного комплексного числа x, при этом используется бесконечный ряд с комплексным x. Эта показательная функция может быть инвертирована с образованием комплексного логарифма, который будет обладать большей частью свойств обычных логарифмов. Есть, однако, две трудности: не существует x, для которого ex = 0, и оказывается, что e2πi = 1 = e0. Поскольку свойство мультипликативности действительно для комплексной экспоненциальной функции, то ez = ez+2nπi для всех комплексных z и целых n.
Логарифм не может быть определён на всей комплексной плоскости, и даже при этом он является многозначным — любой комплексный логарифм может быть заменён на «эквивалентный» логарифм, добавив любое целое число, кратное 2πi. Комплексный логарифм может быть однозначным только на срезе комплексной плоскости. Например, ln i = 1/2 πi или 5/2 πi или −3/2 πi, и т.д., и хотя i4 = 1, 4 log i может быть определена как 2πi, или 10πi или −6 πi, и так далее.
- Функции натурального логарифма на комплексной плоскости (главная ветвь)
-
Суперпозиция трёх предыдущих графиков
- ↑ Mathematics for physical chemistry. — 3rd. — Academic Press, 2005. — P. 9. — ISBN 0-125-08347-5., Extract of page 9
- ↑ J J O’Connor and E F Robertson. The number e. The MacTutor History of Mathematics archive (сентябрь 2001). Архивировано из первоисточника 12 февраля 2012.
- ↑ Cajori Florian. A History of Mathematics, 5th ed. — AMS Bookstore, 1991. — P. 152. — ISBN 0821821024.
- ↑ Flashman, Martin. Estimating Integrals using Polynomials. Архивировано из первоисточника 12 февраля 2012.
- ↑ Charles Smith, Irving Stringham, Elementary algebra for the use of schools and colleges 2nd ed, (The Macmillan Company, New York, 1904)
- ↑ Boyers Carl. A History of Mathematics. — John Wiley & Sons, 1968.
- ↑ Harris, John (1987). «Australian Aboriginal and Islander mathematics» (PDF). Australian Aboriginal Studies 2: 29–37.
- ↑ Large, J.J. (1902). «The vigesimal system of enumeration». Journal of the Polynesian Society 11 (4): 260–261.
- ↑ Cajori first=Florian (1922). «Sexagesimal fractions among the Babylonians». American Mathematical Monthly 29 (1): 8–10. DOI:10.2307/2972914.
- ↑ Larson Ron. Calculus: An Applied Approach. — 8th. — Cengage Learning, 2007. — P. 331. — ISBN 0-618-95825-8.
- ↑ Ballew, Pat Math Words, and Some Other Words, of Interest. Архивировано из первоисточника 12 февраля 2012.
- ↑ «Logarithmic Expansions» at Math3.org
- ↑ (1982) «Practically fast multiple-precision evaluation of log(x)». Journal of Information Processing 5 (4): 247–250. Проверено 30 March 2011.
- ↑ (1999) «Fast computations of the exponential function» 1564: 302–312. DOI:10.1007/3-540-49116-3_28.
www.wikiznanie.ru
Натуральный логарифм — Википедия
График функции натурального логарифма. Функция медленно приближается к положительной бесконечности при увеличении x и быстро приближается к отрицательной бесконечности, когда x стремится к 0 («медленно» и «быстро» по сравнению с любой степенной функцией от x).Натуральный логарифм — это логарифм по основанию e, где e — иррациональная константа, равная приблизительно 2,718281828. Натуральный логарифм обычно обозначают как ln(x), loge(x) или иногда просто log(x), если основание e подразумевается[1]. Другими словами, натуральный логарифм числа x — это показатель степени, в которую нужно возвести число e, чтобы получить x.
Примеры.
- ln(7,389…) равен 2, потому что e2=7,389….
- ln(e) равен 1, потому что e1 = e
- ln(1) равен 0, потому что e0 = 1.
Натуральный логарифм может быть определён для любого положительного вещественного числа a как площадь под кривой y = 1/x от 1 до a. Простота этого определения, которое согласуется со многими другими формулами, в которых применяется натуральный логарифм, привела к появлению названия «натуральный». Это определение можно расширить на комплексные числа, о чём будет сказано ниже.
Если рассматривать натуральный логарифм как вещественную функцию действительной переменной, то она является обратной функцией к экспоненциальной функции, что приводит к тождествам:
Подобно всем логарифмам, натуральный логарифм отображает умножение в сложение:
С точки зрения общей алгебры, логарифмическая функция осуществляет изоморфизм группы положительных действительных чисел относительно умножения на группу вещественных чисел по сложению:
Логарифм может быть определён для любого положительного основания, отличного от 1, а не только для e, но логарифмы для других оснований отличаются от натурального логарифма только постоянным множителем, и, как правило, определяются в терминах натурального логарифма. Логарифмы полезны для решения уравнений, в которых неизвестные присутствуют в качестве показателя степени. Например, логарифмы используются для нахождения постоянной распада для известного периода полураспада, или для нахождения времени распада в решении проблем радиоактивности. Они играют важную роль во многих областях математики и прикладных наук, применяются в сфере финансов для решения многих задач, включая нахождение сложных процентов.
Первое упоминание натурального логарифма сделал Николас Меркатор в работе Logarithmotechnia, опубликованной в 1668 году[2], хотя учитель математики Джон Спайделл ещё в 1619 году составил таблицу натуральных логарифмов.[3] Ранее его называли гиперболическим логарифмом,[4] поскольку он соответствует площади под гиперболой. Иногда его называют логарифмом Непера, хотя первоначальный смысл этого термина был несколько другой.
Соглашение об обозначениях[править]
Обозначение «ln(x)» всегда относится к натуральному логарифму. Обозначения «lg(x)» и «log(x)» зависят от контекста и традиций, описываемых ниже.
Русская и европейская система[править]
Натуральный логарифм принято обозначать через «ln(x)», логарифм по основанию 10 — через «lg(x)», а прочие основания принято указывать явно при символе «log».
Во многих работах по дискретной математике, кибернетике, информатике авторы используют обозначение «log(x)» для логарифмов по основанию 2, но это соглашение не является общепринятым и требует разъяснения либо в списке использованных обозначений, либо (при отсутствии такого списка) сноской или комментарием при первом использовании.
Скобки вокруг аргумента логарифмов (если это не приводит к ошибочному чтению формулы) обычно опускают, а при возведении логарифма в степень показатель приписывают непосредственно к знаку логарифма: ln2 ln3 4x5 = [ln([ln(4x5)]3)]2.
Англо-американская система[править]
Обозначение натурального логарифма, как , где является аргументом, ввёл американский математик Ирвинг Стрингхем в 1893 году[5].
Математики, статистики и часть инженеров обычно используют для обозначения натурального логарифма либо «log(x)», либо «ln(x)», а для обозначения логарифма по основанию 10 — «log10(x)».
Некоторые инженеры, биологи и другие специалисты всегда пишут «ln(x)» (или изредка «loge(x)»), когда они имеют в виду натуральный логарифм, а запись «log(x)» у них означает log10(x).
В теоретической информатике, теории информации и криптографии «log(x)» обычно означает логарифм по основанию 2 «log2(x)» (хотя часто вместо этого пишется просто lg(x)).
Техника[править]
В наиболее часто используемых языках программирования и пакетах прикладных программ, включая C, C++, SAS, MATLAB, Фортран и BASIC функция «log» или «LOG» относится к натуральному логарифму.
В ручных калькуляторах натуральный логарифм обозначается ln, тогда как log служит для обозначения логарифма по основанию 10.
Происхождение термина[править]
Сначала может показаться, что поскольку наша система счисления имеет основание 10, то это основание является более «натуральным», чем основание e. Но математически число 10 не является особо значимым. Его использование скорее связано с культурой, оно является общим для многих систем счисления, и связано это, вероятно, с числом пальцев у людей.[6] Некоторые культуры основывали свои системы счисления на других основаниях: 5, 8, 12, 20 и 60.[7][8][9]
loge является «натуральным» логарифмом, поскольку он возникает автоматически и появляется в математике очень часто. Например, рассмотрим проблему производной логарифмической функции:[10]
Если основание b равно e, то производная равна просто 1/x, а при x = 1 эта производная равна 1. Другим обоснованием, по которому основание e логарифма является наиболее натуральным, является то, что он может быть довольно просто определён в терминах простого интеграла или ряда Тейлора, чего нельзя сказать о других логарифмах.
Дальнейшие обоснования натуральности не связаны со счислением. Так, например, есть несколько простых рядов с натуральными логарифмами. Пьетро Менголи и Николай Меркатор называли их логарифмус натуралис несколько десятилетий до тех пор, пока Ньютон и Лейбниц не разработали дифференциальное и интегральное исчисление.[11]
ln(a) определяется как площадь под кривой f(x) = 1/x от 1 до a.Формально ln(a) может быть определён как площадь под кривой графика 1/x от 1 до a, т. е. как интеграл:
Это действительно логарифм, поскольку он удовлетворяет фундаментальному свойству логарифма:
Это можно продемонстрировать, допуская следующим образом:
Число e может быть определено как единственное действительное число a такое, что ln(a) = 1.
Или же, если показательная функция была определена раньше с использованием бесконечных рядов, натуральный логарифм может быть определён как обратная к ней функция, т. е. ln — это функция, такая что . Так как диапазон значений экспоненциальной функции от реальных аргументов есть все положительные вещественные числа, а экспоненциальная функция строго возрастает, то это хорошо определённая функция для всех положительных x.
- — комплексный логарифм
Производная и разложение в ряд Тейлора[править]
Многочлены Тейлора дают точную аппроксимацию для только в области сходимости −1 x ≤ 1.Используя то, что производная натурального логарифма равна
можно выполнить разложение в ряд Тейлора около x = 0, называемое иногда рядом Меркатора:
Ограничение этого бесконечного ряда i-м членом порождает многочлены Тейлора i-го порядка, содержащие степени не выше i-й. На рисунке справа приведены графики функции и некоторых многочленов Тейлора около x = 0. Аппроксимации сходятся к функции только в области сходимости −1 < x ≤ 1, а за её пределами быстро отклоняются от точной функции, причем многочлены высших степеней дают бо́льшую ошибку.
Подставляя x−1 вместо x, получаем альтернативную форму для ln(x), а именно:
- [12]
С помощью преобразования Эйлера из ряда Тейлора можно получить следующее выражение, справедливое для любого |x| > 1:
Этот ряд похож на формулу Бэйли—Боруэйна—Плаффа.
Также заметим, что — это её собственная инверсная функция, поэтому для получения натурального логарифма определенного числа y нужно просто для x присвоить значение .
Натуральный логарифм в интегрировании[править]
Натуральный логарифм даёт простую интегральную функцию вида g(x) = f ‘(x)/f(x): первообразная функции g(x) имеет вид ln(|f(x)|). Это подтверждается цепным правилом и следующим фактом:
В другом виде:
и
Ниже дан пример для g(x) = tan(x):
Пусть f(x) = cos(x) и f’(x)= — sin(x):
где C — произвольная константа.
Натуральный логарифм можно проинтегрировать с помощью интегрирования по частям:
Численное значение[править]
Для расчета численного значения натурального логарифма числа можно использовать разложение его в ряд Тейлора в виде:
Чтобы получить лучшую скорость сходимости, можно воспользоваться следующим тождеством:
- при условии, что y = (x−1)/(x+1) и x > 0.
Для ln(x), где x > 1, чем ближе значение x к 1, тем быстрее скорость сходимости. Тождества, связанные с логарифмом, можно использовать для достижения цели:
Эти методы применялись ещё до появления калькуляторов, для чего использовались числовые таблицы и выполнялись манипуляции, аналогичные вышеописанным.
Высокая точность[править]
Для вычисления натурального логарифма с большим количеством цифр точности ряд Тейлора не является эффективным, поскольку его сходимость медленная. Альтернативой является использование метода Ньютона, чтобы инвертировать в экспоненциальную функцию, ряд которой сходится быстрее.
Альтернативой для очень высокой точности расчёта является формула:[13][14]
где M обозначает арифметико-геометрическое среднее 1 и 4/s, и
m выбрано так, что p знаков точности достигается. (В большинстве случаев значение 8 для m вполне достаточно.) В самом деле, если используется этот метод, может быть применена инверсия Ньютона натурального логарифма для эффективного вычисления экспоненциальной функции. (Константы ln 2 и пи могут быть предварительно вычислены до желаемой точности, используя любой из известных быстро сходящихся рядов.)
Вычислительная сложность[править]
Вычислительная сложность натуральных логарифмов (с помощью арифметико-геометрического среднего) равна O(M(n) ln n). Здесь n — число цифр точности, для которой натуральный логарифм должен быть оценен, а M(n) — вычислительная сложность умножения двух n-значных чисел.
Непрерывные дроби[править]
Хотя для представления логарифма отсутствуют простые непрерывные дроби, но можно использовать несколько обобщённых непрерывных дробей, в том числе:
Комплексные логарифмы[править]
Экспоненциальная функция может быть расширена до функции, которая даёт комплексное число вида ex для любого произвольного комплексного числа x, при этом используется бесконечный ряд с комплексным x. Эта показательная функция может быть инвертирована с образованием комплексного логарифма, который будет обладать большей частью свойств обычных логарифмов. Есть, однако, две трудности: не существует x, для которого ex = 0, и оказывается, что e2πi = 1 = e0. Поскольку свойство мультипликативности действительно для комплексной экспоненциальной функции, то ez = ez+2nπi для всех комплексных z и целых n.
Логарифм не может быть определён на всей комплексной плоскости, и даже при этом он является многозначным — любой комплексный логарифм может быть заменён на «эквивалентный» логарифм, добавив любое целое число, кратное 2πi. Комплексный логарифм может быть однозначным только на срезе комплексной плоскости. Например, ln i = 1/2 πi или 5/2 πi или −3/2 πi, и т.д., и хотя i4 = 1, 4 log i может быть определена как 2πi, или 10πi или −6 πi, и так далее.
- Функции натурального логарифма на комплексной плоскости (главная ветвь)
-
Суперпозиция трёх предыдущих графиков
- ↑ Mathematics for physical chemistry. — 3rd. — Academic Press, 2005. — P. 9. — ISBN 0-125-08347-5., Extract of page 9
- ↑ J J O’Connor and E F Robertson. The number e. The MacTutor History of Mathematics archive (сентябрь 2001). Архивировано из первоисточника 12 февраля 2012.
- ↑ Cajori Florian. A History of Mathematics, 5th ed. — AMS Bookstore, 1991. — P. 152. — ISBN 0821821024.
- ↑ Flashman, Martin. Estimating Integrals using Polynomials. Архивировано из первоисточника 12 февраля 2012.
- ↑ Charles Smith, Irving Stringham, Elementary algebra for the use of schools and colleges 2nd ed, (The Macmillan Company, New York, 1904)
- ↑ Boyers Carl. A History of Mathematics. — John Wiley & Sons, 1968.
- ↑ Harris, John (1987). «Australian Aboriginal and Islander mathematics» (PDF). Australian Aboriginal Studies 2: 29–37.
- ↑ Large, J.J. (1902). «The vigesimal system of enumeration». Journal of the Polynesian Society 11 (4): 260–261.
- ↑ Cajori first=Florian (1922). «Sexagesimal fractions among the Babylonians». American Mathematical Monthly 29 (1): 8–10. DOI:10.2307/2972914.
- ↑ Larson Ron. Calculus: An Applied Approach. — 8th. — Cengage Learning, 2007. — P. 331. — ISBN 0-618-95825-8.
- ↑ Ballew, Pat Math Words, and Some Other Words, of Interest. Архивировано из первоисточника 12 февраля 2012.
- ↑ «Logarithmic Expansions» at Math3.org
- ↑ (1982) «Practically fast multiple-precision evaluation of log(x)». Journal of Information Processing 5 (4): 247–250. Проверено 30 March 2011.
- ↑ (1999) «Fast computations of the exponential function» 1564: 302–312. DOI:10.1007/3-540-49116-3_28.
wp.wiki-wiki.ru