Нахождение косинуса – Косинус угла — cos(A) | Формулы и расчеты онлайн

Косинус в треугольнике | Треугольники

Что такое косинус в треугольнике? Как найти косинус острого угла в прямоугольном треугольнике?

Определение

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

 

  Например, для угла A треугольника ABC

прилежащий катет — это AC.

Соответственно, косинус угла A в треугольнике ABC — это

   

 

 

  Для угла B треугольника ABC

прилежащим является катет BC.

Соответственно,  косинус угла B в треугольнике ABC

равен отношению BC к AB:

   

 

Таким образом, косинус острого угла в прямоугольном треугольнике — это некоторое число, получаемое в результате деления длины прилежащего катета на длину гипотенузы.

Длины отрезков — положительные числа, поэтому косинус острого угла прямоугольного треугольника также является положительным числом.

Поскольку длина катета всегда меньше длины гипотенузы, то косинус острого угла прямоугольного треугольника — число, меньшее единицы.

Вывод:

Косинус любого острого угла прямоугольного треугольника больше нуля, но меньше единицы:

   

 

Косинус зависит от величины угла.

Если в треугольнике изменить длины сторон, но не изменять угол, значение косинуса этого угла не изменится.

 

Например,

в треугольниках ABC и FPK

∠A=60º, ∠F=60º.

 

   

   

 

Косинус угла в произвольном (не прямоугольном треугольнике) определяется через теорему косинусов. О том, как это делать, мы будем говорить позже.

www.treugolniki.ru

Функция косинуса: онлайн калькулятор, формулы, график

Косинус — тригонометрическая функция, которая геометрически определяется как соотношение прилежащего катета к гипотенузе. Как и все тригонометрические функции, косинус нашел широчайшее применение в науке.

История вопроса

Тригонометрия как наука возникла еще в Древней Индии, когда ученые разработали таблицу соотношений катетов и гипотенуз и их численных значений для основных углов. Термин «косинус» — сравнительно молодой, так как изначально ученые пользовались только синусом и тангенсом угла. Complementry sinus, он же дополнительный синус, он же косинус — это просто синус угла, смещенного на 90 градусов. Именно поэтому для расчета соотношений прилежащего к углу катета и гипотенузы использовался синус смещенного угла, что упрощало расчеты.

Геометрически косинус — это соотношение прилежащего катета к гипотенузе. Прилежащий катет — это сторона прямоугольного треугольника, которая вместе с гипотенузой образует рассматриваемый угол. Как и любая тригонометрическая функция, изначально косинус рассчитывался только для углов. Для любого значения угла косинус имеет строго определенное значение и никогда не изменяется. С развитием математической науки тригонометрические функции были расширены на всю числовую ось, и сегодня легко взять косинус не только целого числа, но также вещественного и даже комплексного.

Определение косинуса

Итак, есть прямоугольный треугольник, катеты которого обозначаются как A и B, а гипотенуза как C. Из определения косинуса мы получаем, что для заданного угла AC его соотношение прилежащего катета и гипотенузы будет равно cosAC = A/C. Изначально косинусы рассчитывались только для прямоугольных треугольников, однако с развитием математической науки косинусы прочно вошли в расчеты и сейчас используются для любых треугольников. Одним из таких примеров является теорема косинусов — теорема евклидовой геометрии, которая расширяет теорему Пифагора на любые плоские треугольники.

Теорема косинусов

Для любого треугольника справедливо равенство:

a2 = b2 + c

2 — 2b × c × cosA,

где угол A — это угол, противолежащий стороне a.

Данное уравнение правдиво для любых плоских треугольников и при помощи него легко определить угол или одну из сторон. Если угол A — прямой, то выражение 2b×c×cosA обращается в ноль, так как cos90 = 0. Следовательно, напротив прямого угла лежит наибольшая сторона или гипотенуза, а теорема косинусов превращается в классическую теорему Пифагора:

a2 = b2 + c2,

где a — гипотенуза.

Использование косинусов

В повседневной жизни тригонометрические функции не находят применения. Вся бытовая математика находится на уровне математических познаний древних греков, когда для простейших расчетов используются элементарные арифметические функции и рациональные соотношения. Однако большая часть современных технологий функционирует с использованием различных тригонометрических функций. К примеру, для определения мощности электротехнических приборов используется косинус фи — косинус угла между векторными значениями тока и напряжения. Еще пример: через тригонометрические функции легко перевести геодезические углы в привычные нам координаты на земной поверхности.

Наша программа представляет собой онлайн-калькулятор, который позволяет рассчитывать значения основных тригонометрических функций углов, выраженных в градусах или радианах. Для использования калькулятора требуется выбрать в меню программы требуемую функцию и ввести величину угла в градусах. Калькулятор вычисляет и обратную функцию арккосинуса. Если требуется определить угол по известному значению косинуса, введите значение функции в ячейку «Косинус» и выполните расчет. Программа мгновенно выдаст значение угла. Рассмотрим пару примеров использования калькулятора.

Примеры из жизни

Вычисление углов

Пусть в задаче по геометрии дан треугольник со сторонами A = 3 см, B = 4 см и C = 5 см. Требуется найти значения всех углов. На первый взгляд это сложная задача, однако мы знаем, что 3, 4 и 5 — это классическая пифагорова тройка, следовательно, известны значения катетов и гипотенуз. Очевидно, что угол AB = 90 градусов, так как катеты всегда образуют прямой угол. Теперь мы можем найти углы AC и BC. Косинус угла численно равен дроби, в числителе которой стоит прилежащий катет, а в знаменателе — гипотенуза. Прилежащие катеты — это образующие угол катеты, следовательно, cosAC = A/C и cosBC = B/C. Подсчитаем численные значения:

  • cosAC = A/C = 3/5 = 0,6;
  • cosBC = B/C = 4/5 = 0,8.

Теперь определим соответствующие углы при помощи нашего калькулятора. Углы с такими значениями косинусов равны соответственно 53,13 и 36,87 градуса. Правильность решения легко проверить, сложив величины углов:

90 + 53,13 + 36,87 = 180.

Расчет косинусов

Прямая задача определения численных значений функций — это вычисление косинуса в зависимости от величины угла. Для такой задачи можно использовать таблицу Брадиса — четырехзначные таблицы значений тригонометрических функций для целочисленных величин углов. Вычислим значения косинусов для основных углов. Для этого введем значения в ячейки «Косинус»:

  • cos30 = 0,866;
  • cos45 = 0,707;
  • cos60 = 0,5;
  • cos90 = 0;
  • cos120 = –0,5;
  • cos150 = — 0,866;
  • cos180 = — 1.

Это основные значения косинусов для стандартных величин углов треугольника. В целом значения тригонометрических функций периодически повторяются каждые 360 градусов.

Заключение

Тригонометрия — определенно важный раздел математики, функции которого повсеместно используются в современных технологиях. Наши калькуляторы прекрасно подходят для элементарных расчетов по геометрии и тригонометрии.

bbf.ru

Как найти косинус угла

Рассмотрим варианты, как можно найти косинус угла.
Первым и наиболее распространенным способом, который мы рассмотрим, является метод нахождения значения косинуса угла в прямоугольном треугольнике, который является еще и традиционным.

В прямоугольном треугольнике косинус острого угла найти очень легко, если известны длины катета, который расположен противоположно к необходимому углу, и гипотенузы.
При известных данных можно записать и высчитать значение косинуса угла как отношения длины этого катета и длины гипотенузы.
К примеру, пусть необходимо найти косинус угла альфа. Тогда запишем формулу для нахождения косинуса:

   

Также можно записать формулу и для косинуса угла бета:

   

При этом косинус третьего угла прямоугольного треугольника, который будет соответственно прямым, вычислять не принято, поскольку косинус 90 градусов равен нулю:

   

Вторым способом вычисления косинуса можно найти его значение в произвольном треугольнике. Для этого используют соответственно теорему косинусов.
По теореме записывается следующее выражение:

   

Выразим из приведенного выражения косинус альфа:

   

Аналогичным образом записывается теорема для косинуса угла бета и также выражается косинус из нее.

ru.solverbook.com

Как найти синус, если известен косинус?

Когда дана задача, в которой известна одна тригонометрическая функция, и требуется найти другую тригонометрическую функцию, решить ее несложно. Но при этом очень важно учесть маленькие тонкости в решении. Рассмотрим подробные решения, учитывая нюансы. Есть несколько вариантов задач, в которых требуется найти синус, если известен косинус.

Вариант 1. Дан прямоугольный треугольник. Известно значение косинуса угла этого треугольника (не прямого угла). Насти синус.

Решение:

Вспомним основное тригонометрическое тождество: sin2α + cos 2α =1.

Отсюда sin2α =1 – cos2α.

sin α = ±√(1- cos2α)

В прямоугольном треугольнике значение угла (не прямого) может лежать в пределах от 10 до 890. Синус такого угла всегда положителен, следовательно, перед корнем у нас будет плюс.

Вариант 2. Известно значение косинуса некоторого угла. Также известно, к какой четверти тригонометрического круга принадлежит угол.

Решение:

sin2α + cos 2α =1.

sin2α =1 – cos2α.

sin α = ±√(1- cos2α)

Известно, что тригонометрическая функция синус может принимать значения от -1 до+1. Поэтому, извлекая корень, мы должны это учесть. В зависимости от того, к какой четверти принадлежит угол, ставим знак перед корнем «+» или «-» .

Какие бывают четверти:

  • I (первая) – α от 00  до 900;
  • II (вторая) – α от 900 до 1800;
  • III (третья) – α от 1800 до 2700;
  • IV (четвертая) – α от 2700 до 3600.

Если угол принадлежит I или  II четверти, то перед знаком корня «-» не ставим, так как в этом случае sin α всегда положительный.

Если угол принадлежит III или IV четверти, то перед знаком корня ставим «-», так как в этом случае sin α всегда отрицательный.

Пример.  Дан косинус, найти синус. cos α = v3/2. Угол в четвертой четверти.

Решение:

Итак, как найти синус, зная косинус:

sin α = ±v(1- cos2α)

Так как по условию задачи угол принадлежит четвертой четверти тригонометрического круга, перед корнем став

elhow.ru

Вычисление синуса, косинуса, тангенса и котангенса онлайн

Определения синуса, косинуса, тангенса и котангенса

Синус угла  (обозначается ) – ордината точки , полученной поворотом точки вокруг начала координат на угол .

Косинус угла (обозначается ) – абсцисса точки , полученной поворотом точки вокруг начала координат на угол .

Тангенс угла (обозначается ) – отношение синуса угла к его косинусу, т.е.

   

Котангенс угла (обозначается ) – отношение косинуса угла к его синусу, т.е.

   

Таблица значений синуса, косинуса, тангенса и котангенса

Калькулятор синусов, косинусов, тангенсов и котангенсов

Данный калькулятор поможет легко вычислить значения этих тригонометрических функций от углов, заданных в градусах, радианах или градах.

umath.ru

Как найти косинус треугольника?

Косинус – это всем известная тригонометрическая функция, которая к тому же является еще и одной из основных функций тригонометрии. Косинус угла в треугольнике прямоугольного типа — это отношение прилежащего катета треугольника к гипотенузе треугольника. Наиболее часто определение косинуса связывают с треугольником именно прямоугольного типа. Но бывает и так, что тот угол, для которого необходимо вычислить в треугольнике прямоугольного типа косинус, в этом самом треугольнике прямоугольного типа не расположен. Что же тогда делать? Как найти косинус угла треугольника?

Если требуется вычислить косинус угла именно в треугольнике прямоугольного типа, то тут все очень просто. Нужно лишь вспомнить определение косинуса, в котором и кроется решение данной задачи. Просто требуется найти то самое отношение между прилежащим катетом, а также гипотенузой треугольника. Действительно здесь нетрудно выразить косинус угла. Формула выглядит следующим образом: — cosα = a/c, здесь «а» – это длина катета, а сторона «с», соответственно, длина гипотенузы. К примеру, косинус острого угла прямоугольного треугольника можно найти по этой формуле.

Если Вас интересует, чему равен косинус угла в произвольном треугольнике, то на помощь приходит теорема косинусов, которой и стоит воспользоваться в подобных случаях. Теорема косинусов гласит о том, что квадрат стороны треугольника априори равен сумме квадратов остальных сторон того же треугольника, но уже без удвоенного произведения этих сторон на косинус того угла, который расположен между ними.

  1. Если в треугольнике необходимо найти косинус острого угла, то нужно воспользоваться такой формулой: cosα = (a2 + b2 – c2)/(2ab).
  2. Если же в треугольнике необходимо найти косинус тупого угла, то нужно воспользоваться такой формулой: cosα = (с2 – a2 – b2)/(2ab). Обозначения в формуле – а и b – это длины сторон, которые явля

elhow.ru

Ответы@Mail.Ru: как найти косинус угла?

есть разные формулы: sin углаA= BC\AB cos углаA=AC\CA — это если даны стороны есть ещё такое: sin 30* = 1\2 ; 45*=Ккорень из2 \2 (тоже самое и косинус) да это вообще трудно ответить… . вы бы задали точную задачу: что вам известно, какие то обозначения ведь должны быть….

Решение: 1) Набираете величину угла, затем выставляем единицы измерения ( градусы или радианы) а потом нажимаем значение какой функции нужно найти.

Все очень просто! Синус— это тангенс умнжить на косинус <a rel=»nofollow» href=»http://crazysound.by/catalog/gitary» target=»_blank» >купить гитару</a>

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *