Z числа – Числовые множества N,Z,Q,R

Содержание

Числовые множества N,Z,Q,R

Текст 1.           Числовые множества

N = {1; 2; 3; …; n; …} – множество всех натуральных чисел.

Z = {… — 3; — 2; — 1; 0; 1; 2; 3; …} – множество всех целых чисел. Q = {    (m∈Z, n∈ N)} – множество всех рациональных чисел.

R – множество всех действительных чисел.

N ⊂ Z ⊂ Q ⊂ R

Задание 1. 1) Смотрите, слушайте и повторяйте текст 1.

2) Читайте текст.     3) Пишите текст. 4) Выучите текст.

Задание 2. 1)Смотрите, слушайте и повторяйте:

1 – натуральное число.

1, 2, 3, … , n, … – натуральные числа.

N= {1; 2; 3; …; n; …} – множество всех натуральных чисел.

1∈ N,     2∈N,    0∉N,    – 2 ∉ N.

2) Читайте.     3) Пишите.     4) Ответьте на вопросы:

а) Какой буквой обозначают множество всех натуральных чисел?

б)   Какое   множество   обозначают   буквой   N?   в)   Какое   самое маленькое  натуральное  число?  г)  Какое  самое  большое натуральное число? д) Сумма двух натуральных чисел – натуральное число? е) Разность двух натуральных чисел – тоже натуральное число?

Задание 3. 1)Смотрите, слушайте и повторяйте:

-2 – целое число.

2; 0; 2 – целые числа.

Z = {… — 3; — 2; — 1; 0; 1; 2; 3; …} – множество всех целых чисел.

1∈ Z,  — 1∈Z, 0∈Z,   ½∉Z.

2)  Читайте.    3)  Пишите.  4)  Ответьте  на  вопросы:  а)  Какой буквой          обозначают    множество            всех     целых чисел? б)         Какое множество обозначают буквой Z? в) Разность двух целых чисел – целое число? г) Частное двух целых чисел – тоже целое число?

Задание 4. 1) Смотрите, слушайте и повторяйте:

½ рациональное число.

3½; ⅔; 1,215; 0; — 7 рациональные числа.

Числа вида     (m∈Z, n∈N) это рациональные числа. Рациональные числа можно записать в виде            (m∈ Z, n∈N). Q = { (m∈Z, n∈N)} – множество всех рациональных чисел.

-1⅔∈Q; 6,723∈Q; 5∈Q;     3 (корень из трёх)∉Q.

2) Читайте.     3) Пишите.   4) Ответьте на вопросы: а) Какой буквой обозначают множество всех рациональных чисел? б) Какое множество           обозначают   буквой   Q?   в)   Какие   числа   называют рациональными? г) Почему числа -1⅔; 6,723; 5 – рациональные?

Задание 5. 1) Смотрите, слушайте и повторяйте:

Если    число  нельзя записать         в          виде    (m∈Z,            n∈N), то        это

иррациональное число.        3 = 1, 73205…;           —           2 = — 1,41421…;

е          =          2,71828…;      π (пи)            =          3,14159…–     иррациональные       числа.

Иррациональные      числа  –          бесконечные  непериодические

десятичные дроби.

Рациональные и иррациональные числа образуют множество всех действительных чисел R.

2) Читайте.     3) Пишите.   4) Ответьте на вопросы: а) Какой буквой обозначают множество всех действительных чисел? б) Какое множество   обозначают   буквой   R?   в)   Какие   числа   образуют

множество R? г) Какие из следующих чисел действительные: 0; 5⅜;

-9,02; — ;           −        ; е; 10; 12,5?

Задание 6. Рассмотрите схему и опишите её:

√3

-√2

π

Задание 7. Поставьте знак Ѓ или ∉:

-2 … Z 4  16 … Z        π …R            –          … R

0 … N 3 …Q  –          … Q    0,175 … Q

100 … N         5,5 …Q           −        …R     е          …        R

Задание 8. Выпишите: 1) рациональные числа;  2) иррациональные числа:

25 ;      17 ;

3

;           0;         – 6;      —           2 ;        3,6;      0,6666… ;        0,313131… ;

7

0,272272227… ; 5       .

Задание 9. Выполните действия:

1) N ∩ Z;        2) N U Z;        3) Q ∩ Z;        4) Z U Q; 5) N U R;   6)R∩N;

7) N ∩ Q;        8) R∩ Q;         9) Q U R; 10) Z ∩ Q.

Задание 10. Ответьте на вопросы:

1) Чему           равно  пересечение   множеств       рациональных           и иррациональных чисел?

2) Чему           равно  объединение  множеств       рациональных           и иррациональных чисел?

Задание 11. Назовите несколько элементов множества:

1) натуральных чисел; 2) положительных чисел; 3) отрицательных

чисел; 4) целых чисел; 5) рациональных чисел; 6) иррациональных чисел; 7) действительных чисел; 8) недействительных чисел.

Задание 12. Скажите, верны или нет следующие утверждения.

Приведите примеры.

1)  Целые  числа  состоят  из  натуральных  чисел,  нуля  и  чисел,

противоположных натуральным. 2) Рациональные числа состоят из

p

целых чисел и дробей вида

, где р – целое, q – натуральное. q

3) Рациональные числа – это бесконечные периодические десятичные дроби. 4) Иррациональные числа – это бесконечные непериодические десятичные дроби. 5) Действительные числа – это бесконечные десятичные дроби. 6) Квадратный корень из рационального числа всегда иррациональное число.

Слова и словосочетания:

натуральное число    действительное число целое число            периодическая дробь рациональное число            десятичная дробь иррациональное число

Материал взят из книги Начальный   курс   по   математике   для студентов-иностранцев подготовительных факультетов (Т.А. Полевая)

studik.net

Целые числа. Определение целого числа

Латинской буквой \mathbb{Z} обозначается множество целых чисел.

К примеру: 1, 3, 7, 19, 23 и т.д. Такие числа мы используем для подсчета (на столе лежит 5 яблок, у машины 4 колеса и др.)

Латинской буквой \mathbb{N} — обозначается множество натуральных чисел.

К натуральным числам нельзя отнести отрицательные (у стула не может быть отрицательное количество ножек) и дробные числа (Иван не мог продать 3,5 велосипеда).

Числами, противоположными натуральным, являются отрицательные целые числа: −8, −148, −981, … . 

Арифметические действия с целыми числами

Что можно делать с целыми числами? Их можно перемножать, складывать и вычитать друг из друга. Разберем каждую операцию на конкретном примере.

Сложение целых чисел

Два целых числа с одинаковыми знаками складываются следующим образом: производится сложение модулей этих чисел и перед полученной суммой ставится итоговый знак:

(+11) + (+9) = +20

Вычитание целых чисел

Два целых числа с разными знаками складываются следующим образом: из модуля большего числа вычитается модуль меньшего и перед полученным ответом ставят знак большего по модулю числа:

(-7) + (+8) = +1

Умножение целых чисел

Чтобы умножить одно целое число на другое нужно выполнить перемножение модулей этих чисел и поставить перед полученным ответом знак «+», если исходные числа были с одинаковыми знаками, и знак «−», если исходные числа были с разными знаками:

(-5) \cdot (+3) = -15

(-3) \cdot (-4) = +12

Следует запомнить следующее правило перемножения целых чисел:

+ \cdot + = +

+ \cdot — = —

— \cdot + = —

— \cdot — = +

Существует правило перемножения нескольких целых чисел. Запомним его:

Знак произведения будет «+», если количество множителей с отрицательным знаком четное и «−», если количество множителей с отрицательным знаком нечетное.

(-5) \cdot (-4) \cdot (+1) \cdot (+6) \cdot (+1) = +120

Деление целых чисел

Деление двух целых чисел производится следующим образом: модуль одного числа делят на модуль другого и если знаки чисел одинаковые, то перед полученным частным ставят знак «+», а если знаки исходных чисел разные, то ставится знак «−».

(-25) : (+5) = -5

Свойства сложения и умножения целых чисел

Разберем основные свойства сложения и умножения для любых целых чисел a, b и c:

  1. a + b = b + a – переместительное свойство сложения;
  2. (a + b) + c = a + (b + c) – сочетательное свойство сложения;
  3. a \cdot b = b \cdot a – переместительное свойство умножения;
  4. (a \cdot c) \cdot b = a \cdot (b \cdot c) – сочетательное свойства умножения;
  5. a \cdot (b \cdot c) = a \cdot b + a \cdot c – распределительное свойство умножения.

academyege.ru

Числа: натуральные, целые, рациональные, иррациональные, действительные, комплексные

Тестирование онлайн

  • Округление чисел

Натуральные числа

Это числа, которые используются при счете: 1, 2, 3… и т.д.

Ноль не является натуральным.

Натуральные числа принято обозначать символом N.

Целые числа. Положительные и отрицательные числа

Два числа отличающиеся друг от друга только знаком, называются противоположными, например, +1 и -1, +5 и -5. Знак «+» обычно не пишут, но предполагают, что перед числом стоит «+». Такие числа называются

положительными. Числа, перед которыми стоит знак «-«, называются отрицательными.

Натуральные числа, противоположные им и ноль называют целыми числами. Множество целых чисел обозначают символом Z.

Рациональные числа

Это конечные дроби и бесконечные периодические дроби . Например,

Множество рациональных чисел обозначается Q. Все целые числа являются рациональными.

Иррациональные числа

Бесконечная непериодическая дробь называется иррациональным числом. Например:

Множество иррациональных чисел обозначается J.

Действительные числа

Множество всех рациональных и всех иррациональных чисел называется множеством действительных (вещественных) чисел.

Действительные числа обозначаются символом R.

Округление чисел

Рассмотрим число 8,759123… . Округлить до целой части означает записать лишь ту часть числа, которая находится до запятой. Округлить до десятых означает записать целую часть и после запятой одну цифру; округлить до сотых — после запятой две цифры; до тысячных — три цифры и т.д.

Округлить 8,759123… с точностью до целой части.

Округлить 8,759123… с точностью до десятой части.

Округлить 8,759123… с точностью до сотой части.

Округлить 8,759123… с точностью до тысячной части.

fizmat.by

Целые числа (Z). Рациональные числа (Q), их сложение, вычитание, умножение и деление. Сравнение рациональных чисел

Возьмем какое-нибудь натуральное число, например, 11. Противоположное ему будет число -11. На координатной прямой, оно находится на том же расстоянии от начала отсчета, что и число 11, только 11 находится справа, а -11 — слева. Числа 11 и -11 называются противоположными. Противоположные числа – это числа, отличающиеся только знаком. Понятно, что 0 = -0. Поэтому, число 0 противоположно самому себе.

Целые числа – это натуральные числа, противоположные им числа и 0.

Примеры целых чисел: -8, 111, 0, 1285642, -20051 и т. д.

Рациональные числа – это числа, которые можно представить в виде дроби , где m и n – целые числа, n ? 0. Пример: ; ; ; 1,01; 12 и т.д. Все целые числа являются рациональными.

Действительно, любое целое число n можно представить в виде дроби . Например, целое число

18 – это .

Две дроби считаются равными, если .

Пример: = , так как 3 • 2 = 6 • 1.

Очевидно, что дроби равны. На этом свойстве основано сокращение дробей. Для того чтобы сократить дробь, находим общий делитель числителя и знаменателя и на этот делитель делим числитель и знаменатель — полученная дробь будет равна исходной.

Пример: Сократить дробь .

Над рациональными числами операции сложения, умножения и деления определены следующим образом:

1. Операция сложения:.

Пример: .

2. Операция умножения: .

Пример: .

3. Операция деления:, то есть, делитель «переворачиваем»

Пример: .

При сравнении рациональных чисел применяют следующие правила:

1. Всякое положительное рациональное число всегда больше всякого отрицательного рационального числа.

2. Если два числа положительны, то число больше , если , для отрицательных — наоборот.

Пример: , так как 3 • 6 > 5 • 2.

studyport.ru

Знакомство с комплексными числами на примерах

Тема «Комплексные числа» зачастую вызывает затруднения у учащихся, а ведь на самом деле в них нет ничего страшного, как может показаться на первый взгляд.

Итак, сейчас мы разберем и рассмотрим на простых примерах, что такое комплексное число, как обозначается и из чего состоит. Выражение z = a + bi называется комплексным числом. Это единое число, а не сложение.

Пример 1: z = 6 + 4i

Из чего состоит комплексное число?

Комплексное число имеет действительную и мнимую часть в своем составе.

Число a называется действительной частью комплексного числа и обозначается a = Re (z). А вот то, что стоит вместе с буквой i — т.е. число b называется коэффициентом мнимой части комплексного числа и обозначается b = Im (z). Вместе bi образуют мнимую часть комплексного числа.

Нетрудно догадаться и легко запомнить, что сокращение «Re» происходит от слова «Real» — реальная, действительная часть. Соответственно, «Im» является сокращением слова «Imaginary» — мнимая, воображаемая часть.

Пример 2: z = 0,5 + 9i. Здесь действительная часть a = Re (z) = 0,5, а мнимая часть b = Im (z) = 9i

Пример 3: z = -5 + 19i. Здесь действительная часть

a = Re (z) = -5, а мнимая часть b = Im (z) = 19.

Чисто мнимое комплексное число

Комплексное число, в котором нет действительной части, т.е. Re (z) = 0, называется чисто мнимым.

Пример 4: z = 2i. Действительная часть отсутствует, a = Re (z) = 0, а мнимая часть b = Im (z) = 2.

Пример 5. z = -8i. Здесь мнимая часть b = Im (z) = -8, действительная часть a = Re (z) = 0.

Сопряженные комплексные числа

Комплексно-сопряженное число обозначается «зэт» с чертой и используется, к примеру, для нахождения частного двух комплексных чисел, проще говоря — для реализации деления чисел. Те, кто сейчас задумался, вам сюда — читать про деление комплексных чисел.

Числа называются комплексно-сопряженными, имеют одинаковые действительные части и различаются лишь знаком мнимых частей. Рассмотрим пример:

Пример 6. Комплексно сопряженным к числу z = 7 + 13i является число .

Мнимая единица комплексного числа

И наконец поговорим про букву i. Та самая буква, которая образует в комплексном числе мнимую составляющую. Даже если перед нами выражение z = 5, это просто значит, что мнимая часть данного числа равна нулю, а действительная равна пяти.

Величина i называется мнимой единицей.

Мнимая единица пригодится при решении квадратных уравнений в случае, когда дискриминант меньше нуля. Мы привыкли считать, что если он отрицательный, решения нет, корней нет. Это не совсем корректно. Корни существуют, просто они комплексные. Но об этом позже. А теперь, переходим к следующей статье по изучению комплексных чисел, узнаем же, как посчитать произведение комплексных чисел.

matematyka.ru

Целое число Википедия

Целые числа — расширение множества натуральных чисел[1], получаемое добавлением к нему нуля и отрицательных чисел[2]. Необходимость рассмотрения целых чисел продиктована невозможностью в общем случае вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего. Введение нуля и отрицательных чисел делает вычитание такой же полноценной операцией, как сложение[3].

Вещественное число является целым, если его десятичное представление не содержит дробной части (но может содержать знак). Примеры вещественных чисел:

Числа 142857; 0; −273 являются целыми.
Числа 5½; 9,75 не являются целыми.

Множество целых чисел обозначается Z{\displaystyle \mathbb {Z} } (от нем. Zahlen — «числа»[4]). Изучением свойств целых чисел занимается раздел математики, называемый теорией чисел.

Положительные и отрицательные числа[ | ]

Согласно своему построению, множество целых чисел состоит из трёх частей:

  1. Натуральные числа (или, что то же самое, целые положительные). Они возникают естественным образом при счёте (1, 2, 3, 4, 5…)[5].
  2. Ноль — число, обозначаемое 0{\displaystyle 0}. Его определяющее свойство: 0+n=n+0=n{\displaystyle 0+n=n+0=n} для любого числа

ru-wiki.ru

Целое число — Википедия

Целые числа — расширение множества натуральных чисел , получаемое добавлением к нуля и отрицательных чисел[1] вида . Множество целых чисел обозначается Необходимость рассмотрения целых чисел продиктована невозможностью, в общем случае, вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего.

Сумма, разность и произведение двух целых чисел дают снова целые числа, то есть целые числа образуют кольцо относительно операций сложения и умножения. Впервые отрицательные числа стали использовать в древнем Китае и в Индии, в Европе их ввели в математический обиход Николя Шюке (1484 год) и Михаэль Штифель (1544).

Алгебраические свойства[править]

не замкнуто относительно деления двух целых чисел (например, 1/2). Следующая таблица иллюстрирует несколько основных свойств сложения и умножения для любых целых a, b и c.

На языке общей алгебры первые пять вышеперечисленных свойств сложения говорят о том, что является абелевой группой относительно бинарной операции сложения, и, следовательно, также циклической группой, так как каждый ненулевой элемент может быть записан в виде конечной суммы 1 + 1 + … 1 или (−1) + (−1) + … + (−1). Фактически, является единственной бесконечной циклической группой по сложению в силу того, что любая бесконечная циклическая группа изоморфна группе .

Первые четыре свойства умножения говорят о том, что  — коммутативный моноид по умножению. Однако стоит заметить, что не каждое целое имеет противоположное по умножению, например, нет такого x из , что 2x = 1, так как левая часть уравнения чётна, а правая нечётна. Из этого следует, что не является группой по умножению, а также не является полем. Наименьшее поле, содержащее целые числа, — множество рациональных чисел ().

Совокупность всех свойств таблицы означает, что является коммутативным кольцом с единицей относительно сложения и умножения.

Обычное деление не определено на множестве целых чисел, но определено так называемое деление с остатком: для любых целых a и b, , существует единственный набор целых чисел q и r, что a = bq + r и , где |b| — абсолютная величина (модуль) числа b. Здесь a — делимое, b — делитель, q — частное, r — остаток. На этой операции основан алгоритм Евклида нахождения наибольшего общего делителя двух целых чисел.

Теоретико-множественные свойства[править]

 — линейно упорядоченное множество без верхней и нижней границ. Порядок в нём задаётся соотношениями:

… < −2 < −1 < 0 < 1 < 2 < …

Целое число называется положительным, если оно больше нуля, отрицательным, если меньше нуля. Нуль не является положительным или отрицательным.

Для целых чисел справедливы следующие соотношения:

  1. если a < b и c < d, тогда a + c < b + d.
  2. если a < b и 0 < c, тогда ac < bc. (Отсюда легко показать, что если c < 0, то ac > bc.)

Целые числа в вычислительной технике[править]

Тип целое число — зачастую один из основных типов данных в языках программирования. Тем не менее эти «целые числа» — лишь имитация класса в математике, так как это множество бесконечно и всегда найдётся целое число, которое данный компьютер не сможет хранить в своей памяти. Целые типы данных обычно реализуются как фиксированный набор битов, но любые представления в конце концов приведут к тому, что свободное место на носителе (жёстком диске) закончится. С другой стороны, теоретические модели цифровых компьютеров имеют потенциально бесконечное (но счётное) пространство.

Приведение к целому числу[править]

Операция приведения числа к целому числу в математике обозначается — наибольшее целое число, не превосходящее

Примеры.

Округление числа до целого обозначается

Примеры.

Нахождение дробной части числа обозначается

Примеры.

www.wiki-wiki.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *