Длина векторов по координатам: примеры и решения, формулы и теоремы

Содержание

Модуль (длина) вектора. Онлайн калькулятор.

Для записи десятичной дроби используйте точку либо запятую (например, 1.12 или 1,12), для ввода обыкновенных дробей воспользуйтесь знаком «/» (например, 1/2 или 3/4).

Как найти модуль (длину) вектора плоскости и пространства

Модулем вектора |AB| называется число, равное расстоянию между начальной и конечной точками вектора.
Для того чтобы найти модуль (длину) вектора, если известны координаты его начальной и конечной точек необходимо воспользоваться одной из формул.
|AB| =

(xB — xA)2 + (yB — yA)2

— для вычисления длины вектора плоскости
|AB| =

(xB — xA)2 + (yB — yA)2 + (zB — zA)2

— для вычисления длины вектора пространства

Для того чтобы найти модуль (длину) вектора, если известны его координаты необходимо воспользоваться одной из формул.

|ā| =

ax2 + ay2

— для вычисления длины вектора плоскости
|ā| =

ax2 + ay2 + az2

— для вычисления длины вектора пространства

Пример 1, найдем длину вектора плоскости с координатами начальной и конечной точек A(x;y) и точки B(x;y), где A(1;9) и B(4;7).
Тогда согласно формуле
Xb = 4;
Xa = 1;
Yb = 7;
Ya = 9;
Подставим значения в формулу и найдем модуль вектора |AB|
|AB| =

(xB — xA)2 + (yB — yA)2

=

(4 — 1)2 + (7 — 9)2

=

32 + (-2)2

=

9 + 4

=

13

= 3.60555127546399 Пример 2, найдем длину вектора пространства с координатами начальной и конечной точек A(x;y;z) и точки B(x;y;z), где A(5;2;9) и B(3;6;7).
Тогда согласно формуле
Xb = 3;
Xa = 5;
Yb = 6;
Ya = 2;
Zb = 7;
Za = 9;
Подставим значения в формулу и найдем длину вектора |AB|
|AB| =

(xB — xA)2 + (yB — yA)2 + (zB — zA)2

=

(3 — 5)2 + (6 — 2)2 + (7 — 9)2

=

(-2)2 + 42 + (-2)2

=

4 + 16 + 4

=

24

= 2

6

= 4.89897948556636
Пример 3, найдем длину вектора ā плоскости с координатами ā(x;y), где ā(3;8).
Тогда согласно формуле
ax = 3;
ay = 8;
Подставим значения в формулу и найдем модуль вектора ā |ā| =

ax2 + ay2

=

32 + 82

=

9 + 64

=

73

= 8.54400374531753
Пример 4, найдем длину вектора ā пространства с координатами ā(x;y;z), где ā(4;2;7).
Тогда согласно формуле
ax
= 4;
ay = 2;
ay = 7;
Подставим значения в формулу и найдем модуль вектора ā |ā| =

ax2 + ay2 + az2

=

42 + 22 + 72

=

16 + 4 + 49

=

69

= 8.30662386291807
Вам могут также быть полезны следующие сервисы
Калькуляторы линейная алгебра и аналитическая геометрия
Калькулятор сложения и вычитания матриц
Калькулятор умножения матриц
Калькулятор транспонирование матрицы
Калькулятор нахождения определителя (детерминанта) матрицы
Калькулятор нахождения обратной матрицы
Длина отрезка. Онлайн калькулятор расстояния между точками
Онлайн калькулятор нахождения координат вектора по двум точкам
Калькулятор нахождения модуля (длины) вектора
Калькулятор сложения и вычитания векторов
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами
Калькулятор скалярного произведения векторов через координаты
Калькулятор векторного произведения векторов через координаты
Калькулятор смешанного произведения векторов
Калькулятор умножения вектора на число
Калькулятор нахождения угла между векторами
Калькулятор проверки коллинеарности векторов
Калькулятор проверки компланарности векторов
Калькуляторы (Комбинаторика)
Калькулятор нахождения числа перестановок из n элементов
Калькулятор нахождения числа сочетаний из n элементов
Калькулятор нахождения числа размещений из n элементов
Калькуляторы систем счисления
Калькулятор перевода чисел из арабских в римские и из римских в арабские
Калькулятор перевода чисел в различные системы счисления
Системы счисления теория
N2 | Двоичная система счисления
N3 | Троичная система счисления
N4 | Четырехичная система счисления
N5 | Пятеричная система счисления
N6 | Шестеричная система счисления
N7 | Семеричная система счисления
N8 | Восьмеричная система счисления
N9 | Девятеричная система счисления
N11 | Одиннадцатиричная система счисления
N12 | Двенадцатеричная система счисления
N13 | Тринадцатеричная система счисления
N14 | Четырнадцатеричная система счисления
N15 | Пятнадцатеричная система счисления
N16 | Шестнадцатеричная система счисления
N17 | Семнадцатеричная система счисления
N18 | Восемнадцатеричная система счисления
N19 | Девятнадцатеричная система счисления
N20 | Двадцатеричная система счисления
N21 | Двадцатиодноричная система счисления
N22 | Двадцатидвухричная система счисления
N23 | Двадцатитрехричная система счисления
N24 | Двадцатичетырехричная система счисления
N25 | Двадцатипятеричная система счисления
N26 | Двадцатишестеричная система счисления
N27 | Двадцатисемеричная система счисления
N28 | Двадцативосьмеричная система счисления
N29 | Двадцатидевятиричная система счисления
N30 | Тридцатиричная система счисления
N31 | Тридцатиодноричная система счисления
N32 | Тридцатидвухричная система счисления
N33 | Тридцатитрехричная система счисления
N34 | Тридцатичетырехричная система счисления
N35 | Тридцатипятиричная система счисления
N36 | Тридцатишестиричная система счисления
Дроби
Калькулятор интервальных повторений
Учим дроби наглядно
Калькулятор сокращения дробей
Калькулятор преобразования неправильной дроби в смешанную
Калькулятор преобразования смешанной дроби в неправильную
Калькулятор сложения, вычитания, умножения и деления дробей
Калькулятор возведения дроби в степень
Калькулятор перевода десятичной дроби в обыкновенную
Калькулятор перевода обыкновенной дроби в десятичную
Калькулятор сравнения дробей
Калькуляторы (Теория чисел)
Калькулятор со скобками
Калькулятор разложения числа на простые множители
Калькулятор НОД и НОК
Калькулятор НОД и НОК по алгоритму Евклида
Представление многозначных чисел в виде суммы разрядных слагаемых
Калькулятор деления числа в данном отношении
Калькулятор процентов
Калькулятор перевода числа с Е в десятичное
Калькулятор нахождения факториала числа
Калькулятор нахождения логарифма числа
Калькулятор квадратных уравнений
Калькулятор остатка от деления
Калькулятор корней с решением
Калькулятор нахождения периода десятичной дроби
Калькуляторы площади геометрических фигур
Площадь квадрата
Площадь прямоугольника
Генератор Pdf с примерами
Тренажёры решения примеров
Тренажер сложения
Тренажёр вычитания
Тренажёр умножения
Тренажёр деления
Тренажёр таблицы умножения
Тренажер счета для дошкольников
Тренажер счета на внимательность для дошкольников
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ.
Тренажер решения примеров с разными действиями
Тренажёры решения столбиком
Тренажёр сложения столбиком
Тренажёр вычитания столбиком
Тренажёр умножения столбиком
Тренажёр деления столбиком с остатком
Калькуляторы решения столбиком
Калькулятор сложения, вычитания, умножения и деления столбиком
Калькулятор деления столбиком с остатком
Калькуляторы (физика)

Механика

Калькулятор вычисления скорости, времени и расстояния
Калькулятор вычисления ускорения, скорости и перемещения
Калькулятор вычисления времени движения
Калькулятор времени
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения.
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния.
Импульс тела. Калькулятор вычисления импульса, массы и скорости
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы.
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения

Электричество и магнетизм

Калькулятор Закона Ома
Калькулятор Закона Кулона
Калькулятор напряженности E электрического поля
Калькулятор нахождения точечного электрического заряда Q
Калькулятор нахождения силы F действующей на заряд q
Калькулятор вычисления расстояния r от заряда q
Калькулятор вычисления потенциальной энергии W заряда q
Калькулятор вычисления потенциала φ электростатического поля
Калькулятор вычисления электроемкости C проводника и сферы

Конденсаторы

Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе
Калькулятор вычисления энергии W заряженного конденсатора
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов
Калькуляторы по астрономии
Вес тела на других планетах
Ускорение свободного падения на планетах Солнечной системы и их спутниках
Генераторы
Генератор примеров по математике
Генератор случайных чисел
Генератор паролей
Нахождение длины вектора по координатам. — КиберПедия

Нахождение длины вектора по координатам.

Длину вектора будем обозначать . Из-за такого обозначения длину вектора часто называют модулем вектора.

Начнем с нахождения длины вектора на плоскости по координатам.

Введем на плоскости прямоугольную декартову систему координат Oxy. Пусть в ней задан вектор и он имеет координаты . Получим формулу, позволяющую находить длину вектора через координаты и .

Отложим от начала координат (от точки О) вектор . Обозначим проекции точки А на координатные оси как и соответственно и рассмотрим прямоугольник с диагональю ОА.

В силу теоремы Пифагора справедливо равенство , откуда . Из определения координат вектора в прямоугольной системе координатмы можем утверждать, что и , а по построению длина ОА равна длине вектора , следовательно, .

Таким образом, формула для нахождения длины вектора по его координатам на плоскости имеет вид .

Если вектор представлен в виде разложения по координатным векторам , то его длина вычисляется по этой же формуле , так как в этом случае коэффициенты и являются координатами вектора в заданной системе координат.

Рассмотрим пример.

Пример.

Найдите длину вектора , заданного в декартовой системе координат.

Решение.

Сразу применяем формулу для нахождения длины вектора по координатам :

Ответ:

.

Теперь получим формулу для нахождения длины вектора по его координатам в прямоугольной системе координат Oxyz в пространстве.

Отложим от начала координат вектор и обозначим проекции точки А на координатные оси как и . Тогда мы можем построить на сторонах и прямоугольный параллелепипед, в котором ОА будет диагональю.

В этом случае (так как ОА – диагональ прямоугольного параллелепипеда), откуда . Определение координат вектора позволяет нам записать равенства , а длина ОА равна искомой длине вектора, следовательно, .

Таким образом, длина вектора в пространстве равна корню квадратному из суммы квадратов его координат, то есть, находится по формуле .

Пример.

Вычислите длину вектора , где — орты прямоугольной системы координат.

Решение.

Нам дано разложение вектора по координатным векторам вида , следовательно, . Тогда по формуле нахождения длины вектора по координатам имеем .

Ответ:

.

Прямая на плоскости


Общее уравнение

 

Ax + By + C ( > 0).

Вектор = (А; В) — нормальный вектор прямой.

В векторном виде: + С = 0, где — радиус-вектор произвольной точки на прямой (рис. 4.11).

Частные случаи:



1) By + C = 0 — прямая параллельна оси Ox;

2) Ax + C = 0 — прямая параллельна оси Oy;

3) Ax + By = 0 — прямая проходит через начало координат;

4) y = 0 — ось Ox;

5) x = 0 — ось Oy.


Уравнение прямой в отрезках

 

где a, b — величины отрезков, отсекаемых прямой на осях координат.


Нормальное уравнение прямой (рис. 4.11)

 

где — угол, образуемый нормально к прямой и осью Ox; p — расстояние от начала координат до прямой.

Приведение общего уравнения прямой к нормальному виду:

Здесь — нормируемый множитель прямой; знак выбирается противоположным знаку C, если и произвольно, если C = 0.

 

Нахождение длины вектора по координатам.

Длину вектора будем обозначать . Из-за такого обозначения длину вектора часто называют модулем вектора.

Начнем с нахождения длины вектора на плоскости по координатам.

Введем на плоскости прямоугольную декартову систему координат Oxy. Пусть в ней задан вектор и он имеет координаты . Получим формулу, позволяющую находить длину вектора через координаты и .

Отложим от начала координат (от точки О) вектор . Обозначим проекции точки А на координатные оси как и соответственно и рассмотрим прямоугольник с диагональю ОА.

В силу теоремы Пифагора справедливо равенство , откуда . Из определения координат вектора в прямоугольной системе координатмы можем утверждать, что и , а по построению длина ОА равна длине вектора , следовательно, .

Таким образом, формула для нахождения длины вектора по его координатам на плоскости имеет вид .

Если вектор представлен в виде разложения по координатным векторам , то его длина вычисляется по этой же формуле , так как в этом случае коэффициенты и являются координатами вектора в заданной системе координат.

Рассмотрим пример.

Пример.

Найдите длину вектора , заданного в декартовой системе координат.

Решение.

Сразу применяем формулу для нахождения длины вектора по координатам :



Ответ:

.

Теперь получим формулу для нахождения длины вектора по его координатам в прямоугольной системе координат Oxyz в пространстве.

Отложим от начала координат вектор и обозначим проекции точки А на координатные оси как и . Тогда мы можем построить на сторонах и прямоугольный параллелепипед, в котором ОА будет диагональю.

В этом случае (так как ОА – диагональ прямоугольного параллелепипеда), откуда . Определение координат вектора позволяет нам записать равенства , а длина ОА равна искомой длине вектора, следовательно, .

Таким образом, длина вектора в пространстве равна корню квадратному из суммы квадратов его координат, то есть, находится по формуле .

Пример.

Вычислите длину вектора , где — орты прямоугольной системы координат.

Решение.

Нам дано разложение вектора по координатным векторам вида , следовательно, . Тогда по формуле нахождения длины вектора по координатам имеем .

Ответ:

.

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Slider

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.

Slider

Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Slider

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Сумма векторов:

Разность векторов:

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Slider

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Slider

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Slider

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Slider

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

Для точки M:

То есть A + C + D = 0.

Для точки N:

Аналогично для точки K:

Получили систему из трех уравнений:

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Выразим C и B через A и подставим в третье уравнение:

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Slider

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Slider

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Упростим систему:

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Slider

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Итак, AA1 = √3

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор  или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Slider

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Slider

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Slider

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

  

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

Как найти длину вектора

Понятие длины вектора

Для того, чтобы разобраться с понятием длины вектора, прежде всего надо разобрать само понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок. Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу — его концом. Направление указывается от его начала к концу отрезка.

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $\overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $\overline{a}$ (рис. 1).

Введем теперь, непосредственно, понятие длин вектора.

Определение 3

Длиной вектора $\overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|\overline{a}|$

Готовые работы на аналогичную тему

Понятие длины вектора связано, к примеру, с таким понятием, как равенство двух векторов.

Определение 4

Два вектора будем называть равными, если они удовлетворяют двух условиям: 1. Они сонаправлены; 1. Их длины равны (рис. 2).

Для того, чтобы определять векторы вводят систему координат и определяют координаты для вектора во введенной системе. Как мы знаем, любой вектор можно разложить в виде $\overline{c}=m\overline{i}+n\overline{j}$, где $m$ и $n$ – действительные числа, а $\overline{i}$ и $\overline{j}$ — единичные векторы на оси $Ox$ и $Oy$, соответственно.

Определение 5

Коэффициенты разложения вектора $\overline{c}=m\overline{i}+n\overline{j}$ будем называть координатами этого вектора во введенной системе координат. Математически:

$\overline{c}={m,n}$

Как найти длину вектора?

Для того, чтобы вывести формулу для вычисления длины произвольного вектора по данным его координатам рассмотрим следующую задачу:

Пример 1

Дано: вектор $\overline{α}$, имеющий координаты ${x,y}$. Найти: длину этого вектора.

Решение.

Введем на плоскости декартову систему координат $xOy$. От начал введенной системы координат отложим $\overline{OA}=\overline{a}$. Построим проекции $OA_1$ и $OA_2$ построенного вектора на оси $Ox$ и $Oy$, соответственно (рис. 3).

Построенный нами вектор $\overline{OA}$ будет радиус вектором для точки $A$, следовательно, она будет иметь координаты ${x,y}$, значит

$[OA_1 ]=x$, $[ OA_2]=y$

Теперь мы легко можем найти искомую длину с помощью теоремы Пифагора, получим

$|\overline{α}|^2=[OA_1]^2+[OA_2]^2$

$|\overline{α}|^2=x^2+y^2$

$|\overline{α}|=\sqrt{x^2+y^2}$

Ответ: $\sqrt{x^2+y^2}$.

Вывод: Чтобы найти длину вектора, у которого задан его координаты, необходимо найти корень из квадрата суммы этих координат.

Пример задач

Пример 2

Найдите расстояние между точками $X$ и $Y$, которые имеют следующие координаты: $(-1,5)$ и $(7,3)$, соответственно.

Решение.

Любые две точки можно легко связать с понятием вектора. Рассмотрим, к примеру, вектор $\overline{XY}$. Как мы уже знаем, координаты такого вектора можно найти, вычтя из координат конечной точки ($Y$) соответствующие координаты начальной точки ($X$). Получим, что

$\overline{XY}=(7+1,3-5)=(8,-2)$

Теперь, найдя длину этого вектора по формуле, выведенной выше, мы и получим искомую длину. Получим:

$d=\sqrt{8^2+(-2)^2}=\sqrt{64+4}=\sqrt{68}=2\sqrt{17}$

Ответ: $2\sqrt{17}$.

Замечание 1

Из этой задачи можно вывести формулу для вычисления такого расстояния. Пусть две точки имеют координаты ${(x’,y’)}$ и ${(x»,y»)}$. Тогда длину между такими точками можно найти по следующей формуле:

$d=\sqrt{(x’-x»)^2+(y’-y»)^2}$

Пример 3

Пусть нам дан треугольник своими координатами вершин $(5,-9)$, $(12,-2)$ и $(4,0)$. Найдем его периметр.

Решение.

Найдем для начала длины всех его сторон по формуле из замечания к задаче 2.

Первая сторона равняется:

$\sqrt{(5-12)^2+(-9+2)^2}=\sqrt{(-7)^2+(-7)^2}=\sqrt{98}=7\sqrt{2}$

Вторая сторона равняется:

$\sqrt{(5-4)^2+(-9-0)^2}=\sqrt{1^2+(-9)^2}=\sqrt{82}$

Третья сторона равняется:

$\sqrt{(12-4)^2+(-2-0)^2}=\sqrt{8^2+(-2)^2 }=\sqrt{68}=2\sqrt{17}$

Складывая, получим

Ответ: $7\sqrt{2}+\sqrt{82}+2\sqrt{17}$

Вектор: определение и основные понятия

Определение вектора

Определение. Вектор — это направленный отрезок, то есть отрезок, имеющий длину и определенное направление. Графически вектора изображаются в виде направленных отрезков прямой определенной длины. (рис.1)

Вектор по двум точкам
рис. 1

Обозначение вектора

Вектор началом которого есть точка А, а концом — точка В, обозначается AB (рис.1). Также вектора обозначают одной маленькой буквой, например a.

Длина вектора

Для обозначения длины вектора используются две вертикальные линии слева и справа |AB|.

Нулевой вектор

Определение. Нулевым вектором называется вектор, у которого начальная и конечная точка совпадают.

Нулевой вектор обычно обозначается как 0.

Длина нулевого вектора равна нулю.

Сонаправленные вектора

Определение. Два коллинеарных вектора a и b называются сонаправленными векторами, если их направления совпадают: a↑↑b (рис. 3).

Сонаправленные вектора
рис. 3

Противоположно направленные вектора

Определение. Два коллинеарных вектора a и b называются противоположно направленными векторами, если их направления противоположны: a↑↓b (рис. 4).

Противоположно направленные вектора
рис. 4

Компланарные вектора

Определение. Вектора, параллельные одной плоскости или лежащие на одной плоскости называют компланарными векторами. (рис. 5).
Компланарные вектора
рис. 5

Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.

Равные вектора

Определение. Вектора a и b называются равными, если они лежат на одной или параллельных прямых, их направления совпадают, а длины равны (рис. 6).

Равные вектора
рис. 6

То есть, два вектора равны, если они коллинеарные, сонаправленые и имеют равные длины:

a = b, если a↑↑b и |a| = |b|.

Действия с векторами

Смешанным произведением трех векторов a, b, c называется число равное векторному произведению a x b, умноженному скалярно на вектор c.

Координаты вектора A

X Y Z

Координаты вектора B

X Y Z

Координаты вектора C

X Y Z

Рассчитать

Как найти длину вектора если известны координаты

Как найти?

Формула длины вектора на плоскости:

Формула длины вектора в пространстве:

Если даны координаты точек начала и конца вектора $ A(a_x; a_y) $ и $ B(b_x; b_y) $, то найти длину можно по формулам:

Примеры решений

Разберем вектор. Первая координата $ a_x = 4 $, а вторая координата $ a_y=-3 $. Так как даны две координаты, то делаем вывод, что задача плоская. Необходимо применить первую формулу. Подставляем в неё значения из условия задачи:

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Пример 1
Найти длину вектора по его координатам $ overline = (4;-3) $
Решение
Ответ
Длина вектора $|overline| = 5 $

Сразу замечаем, что дана пространственная задача. А именно $ a_x=4, a_y=2, a_z=4 $. Для нахождения длины вектора используем вторую формулу. Подставляем неизвестные в неё:

Пример 2
Найти длину вектора по координатам $ overline=(4;2;4) $
Решение
Ответ
Длина вектора $|overline|=6 $

Задача дана плоская судя по наличию только двух координат у векторов. Но даны на этот раз начало и конец вектора. Поэтому сначала находим координаты вектора $ overline $, а только потом его длину по формуле координат:

Теперь когда координаты вектора $ overline $ стали известны можно использовать привычную формулу:

Пример 3
Найти длину вектора, если известны координаты его начала и конца. $ A=(2;1), B=(-1;3) $
Решение
Ответ
$|overline|=sqrt <13>$

В статье мы ответили на вопрос:»Как найти длину вектора?» с помощью формул. А также рассмотрели практические примеры решения задач на плоскости и в пространстве. Следует заметить, что существуют аналогичные формулы для пространств больше, чем трёхмерные.

Длина вектора — основные формулы

Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.

Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .

От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .

Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .

Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .

Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.

Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.

Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2 : a → = 7 2 + e 2 = 49 + e

Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)

В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .

Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .

Вычислить длину вектора a → = 4 · i → — 3 · j → + 5 · k → , где i → , j → , k → — орты прямоугольной системы координат.

Дано разложение вектора a → = 4 · i → — 3 · j → + 5 · k → , его координаты равны a → = 4 , — 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + ( — 3 ) 2 + 5 2 = 5 2 .

Длина вектора через координаты точек его начала и конца

Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.

Итак, даны точки с заданными координатами A ( a x ; a y ) и B ( b x ; b y ) , отсюда вектор A B → имеет координаты ( b x — a x ; b y — a y ) значит, его длина может быть определена по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2

А если даны точки с заданными координатами A ( a x ; a y ; a z ) и B ( b x ; b y ; b z ) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле

A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2

Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B — 3 , 1 .

Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = ( b x — a x ) 2 + ( b y — a y ) 2 : A B → = ( — 3 — 1 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 .

Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = ( — 3 — 1 ; 1 — 3 ) = ( — 4 ; 1 — 3 ) ; A B → = ( — 4 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 . —

Ответ: A B → = 20 — 2 3 .

Определить, при каких значениях длина вектора A B → равна 30 , если A ( 0 , 1 , 2 ) ; B ( 5 , 2 , λ 2 ) .

Для начала распишем длину вектора A B → по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 = ( 5 — 0 ) 2 + ( 2 — 1 ) 2 + ( λ 2 — 2 ) 2 = 26 + ( λ 2 — 2 ) 2

Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ :

26 + ( λ 2 — 2 ) 2 = 30 26 + ( λ 2 — 2 ) 2 = 30 ( λ 2 — 2 ) 2 = 4 λ 2 — 2 = 2 и л и λ 2 — 2 = — 2 λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Ответ: λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Нахождение длины вектора по теореме косинусов

Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.

Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.

Рассмотрим такой случай на следующем примере.

Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .

Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 — 2 · A B · A C · cos ∠ ( A B , → A C → ) = 3 2 + 7 2 — 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .

Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = ( b x — a x ) 2 + ( b y — a y ) 2 или A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 , в некоторых случаях следует использовать теорему косинусов.

Определение длины вектора

Для обозначения длины вектора используются две вертикальные линии слева и справа | AB |.

Формулы длины вектора

Формула длины вектора для плоских задач

В случае плоской задачи модуль вектора a = < ax ; ay > можно найти воспользовавшись следующей формулой:

Формула длины вектора для пространственных задач

В случае пространственной задачи модуль вектора a = < ax ; ay ; az > можно найти воспользовавшись следующей формулой:

Формула длины n -мерного вектора

В случае n -мерного пространства модуль вектора a = < a 1 ; a 2; . ; an > можно найти воспользовавшись следующей формулой:

| a | = ( n ai 2 ) 1/2
Σ
i =1

Примеры задач на вычисление длины вектора

Примеры вычисления длины вектора для плоских задачи

Решение: | a | = √ 2 2 + 4 2 = √ 4 + 16 = √ 20 = 2√ 5 .

Решение: | a | = √ 3 2 + (-4) 2 = √ 9 + 16 = √ 25 = 5.

Примеры вычисления длины вектора для пространственных задачи

Решение: | a | = √ 2 2 + 4 2 + 4 2 = √ 4 + 16 + 16 = √ 36 = 6.

Решение: | a | = √ (-1) 2 + 0 2 + (-3) 2 = √ 1 + 0 + 9 = √ 10 .

Примеры вычисления длины вектора для пространств с размерностью большей 3

Решение: | a | = √ 1 2 + (-3) 2 + 3 2 + (-1) 2 = √ 1 + 9 + 9 + 1 = √ 20 = 2√ 5

Решение: | a | = √ 2 2 + 4 2 + 4 2 + 6 2 + 2 2 = √ 4 + 16 + 16 + 36 + 4 = √ 76 = 2√ 19 .

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

MathScene — Векторы — Урок 3

MathScene — Векторы — Урок 3

2008 Rasmus EHF и Jhann Sak

Урок 3

Векторы в системе координат


Пример 1

точка A имеет координаты (2, 2) и координаты точки B (6, 5) (см. схему).Координаты вектора

Мы можно использовать формулу для расстояния между двумя точками, чтобы найти расстояние между А и В, то есть длина вектора
(см. правило Пифагора в уроке 2). Формула выглядит следующим образом:

Подставляя заданные координаты в формулу, получаем:

Мы видим, что числа под квадратным корнем являются просто координатами вектор.Это, конечно, потому что длина вектора просто гипотенуза в прямоугольном треугольнике с более короткими сторонами 3 и 4.

Формула для длины вектора, который начинается в точке
A = (x 1 , y 1 ) и заканчивается в B = (x 2 , y 2 ):

Если координаты вектора тогда мы имеем следующее правило:



Пример 2

Найти вектор который параллелен и который имеет длину 2 единицы (видеть диаграмма).

Два треугольника на диаграмме похожи и, следовательно, соответствующие стороны находятся в одинаковом соотношении.
|| = t ∙ || Число t — это соотношение между соответствующими сторонами. Соотношение есть.
Мы можем найти координаты как следует:

Если векторы и являются параллельно тогда существует число t такое, что:

= t ∙


Пример 3

Какие из следующих векторов параллельны и ,

Если векторы и являются параллельна, то существует такое число t, что = т ∙. Если векторы и являются параллельно существует такое число г, что знак равно г ∙.

Мы можно найти числа т и г, используя координаты х, а затем проверить, чтобы увидеть найдены ли одинаковые значения при использовании y-координат.

= t ∙

3 = t ∙ 13 дает t = 3/13 = 2/9

4 = t ∙ 18 также дает t = 4/18 = 2/9

векторы и являются параллель .

= r ∙

3 = r ∙ 6 дает r =

4 = r ∙ 9 дает r = 4/9

векторы и являются непараллельно (Это означает, что и являются тоже не параллельно).

Вектор на диаграмме имеет координаты , вектор начинается в точке (0, 0) и заканчивается в (3, 2), поэтому координаты конечная точка совпадает с координатами самого вектора.Это верно для все векторы, которые начинаются в начале координат системы координат, то есть в точка (0, 0).

Вектор, который начинается в точке (0, 0), имеет те же координаты, что и его конечная точка. Этот вектор называется вектором положения для A.

Каждая точка в системе координат может быть представлена ​​ее вектором положения. Координаты точки и вектор ее положения совпадают.Это может быть очень полезно при просмотре переводов в системе координат.


Пример 4

Треугольник, показанный на диаграмме, должен быть переведен вектором ,

Мы используем векторы положения вершинных точек (−3, 0),
(2, -2) и (3, 1) и добавить вектор каждому из них.

Это дает нам новый вектор положения каждой вершины.Диаграмма ниже показывает перевод.


Пример 5

Теперь мы будем использовать векторы положения, чтобы найти середину отрезка AB, если A = (1, 2) и B = (4, 3).

Как обычно, точка O является началом системы координат. Если М середина АБ тогда:

знак равно + ∙

Вектор является вектор положения точки М и, следовательно, имеет те же координаты, что и Точка М, которую мы хотим вычислить.Вектор вектор положения A. Чтобы достичь средней точки M, нам нужно добавить половину вектор Нарисуйте схему, чтобы увидеть это.

Сначала нам нужно найти вектор ,

Теперь мы можем найти ,

знак равно + ∙

Координаты М такие же, как и у вектора положения или (2, 2) .


Легко найти формулу, которую мы можем использовать, чтобы найти координаты средняя точка отрезка AB.

2 = + ∙ + — 000

Мы видим, что вектор положения средней точки отрезка прямой является своего рода среднее векторов положения конечных точек. Поэтому мы можем найти координаты средней точки, находя среднее из координат х и у координаты соответственно.
Это приводит нас к правилу, которое мы называем правилом средней точки.

Средняя точка M отрезка AB определяется по правилу:

Используя координаты, правило:


Пример 6

Вершинами треугольника ABC являются A = (1, 2), B = (4, 3) и C = (3, 0).

Найти длину линии от А до середины стороны до н.э. (медиана треугольник азбука).

Мы начнем с нахождения средней точки BC, используя приведенное выше правило.

Мы называем середину M и находим вектор ее положения (видеть диаграмма).

Поэтому M, средняя точка BC имеет координаты
М = (3, 1).

Далее находим координаты вектора ,

Наконец, мы можем найти длину вектора как обязательный.

2,55

= + ∙

= + ∙ — ∙

= — ∙ — 000

Когда мы сложим их вместе, выходит и мы получаем:

3 знак равно + +

Для нахождения координат Т возьмем среднее значение х и y координаты вершин соответственно.

Поэтому мы находим точку пересечения, T, медианы треугольник, находя своего рода среднее векторов положения Вершины. Следовательно, это правило является расширением правила средней точки.


Пример 7

Найти точку пересечения медиан треугольника ABC T ( центр), учитывая, что A = (1, 2), B = (4, 3) и C = (3, 0) (см. диаграмма).

Центр Т = (2, 1) .


Попробуйте викторину 3 на векторах.
Не забудьте использовать контрольный список, чтобы отслеживать свою работу.

,

Исчисление III — длина дуги с векторными функциями

Пол Заметки Онлайн

Ноты Быстрая навигация Скачать

  • Перейти к
  • Ноты
  • Проблемы практики
  • Проблемы с назначением
  • Показать / Скрыть
  • Показать все решения / шаги / и т. Д.
  • Скрыть все решения / шаги / и т. Д.
  • Разделы
  • Касательные, нормальные и бинормальные векторы
  • Кривизна
  • глав
  • Частичные производные
  • Классы
  • Алгебра
  • Исчисление I
  • Исчисление II
  • Исчисление III
  • Дифференциальные уравнения
  • Дополнительно
  • Обзор алгебры и триггеров
  • Распространенные математические ошибки
  • Комплексное число праймер
  • Как изучать математику
  • Шпаргалки и таблицы
  • Разное
  • Свяжитесь со мной
  • Справка и настройка MathJax
  • Мои ученики
  • Примечания Загрузки
  • Полная книга
  • Текущий Глава
  • Текущий раздел
  • Практика Проблемы Загрузки
  • Complete Book — Проблемы только
  • Complete Book — Решения
  • Текущая глава — только проблемы
  • Текущая глава — Решения
  • Текущий раздел — только проблемы
  • Текущий раздел — Решения
  • Проблемы с назначением Загрузки
  • Полная книга
  • Текущий Глава
  • Текущий раздел
  • Другие предметы
  • Получить URL для загрузки элементов
  • Распечатать страницу в текущей форме (по умолчанию)
  • Показать все решения / шаги и распечатать страницу
  • Скрыть все решения / шаги и распечатать страницу
  • Дом
  • Классы
  • алгебра
    • Предварительные
      • Целочисленные экспоненты
      • Рациональные экспоненты
      • Радикалы
      • полиномов
      • Факторинг Полиномы
      • Rational Expressions
      • Комплексные числа
    • Решение уравнений и неравенств
      • Решения и комплекты решений
      • линейных уравнений
      • приложений линейных уравнений
      • уравнений с более чем одной переменной
      • Квадратичные уравнения — Часть I
      • Квадратичные уравнения — Часть II
      • Квадратичные уравнения: краткое изложение
      • Приложения квадратичных уравнений
      • Уравнения
      • , приводимые к квадратичной форме
      • Уравнения с радикалами
      • линейных неравенств
      • Полиномиальное неравенство
      • Рациональное неравенство
      • Уравнения абсолютной стоимости
      • Абсолютное неравенство в значениях
    • Графика и функции
      • График
      • Линии
      • Круги
      • Определение функции
      • Графические функции
      • Объединение функций
      • Обратные функции
    • общих графиков
      • Линии, окружности и кусочные функции
      • Параболы
      • Эллипсы
      • Гипербол
      • Разные функции
      • Преобразования
      • Симметрия
      • Рациональные функции
    • полиномиальных функций
      • делительных полиномов
      • Нули / корни полиномов
      • графических полиномов
      • В поисках нулей полиномов
      • Частичные дроби
    • Экспоненциальные и логарифмические функции
      • экспоненциальных функций
      • Логарифм Функции
      • Решение экспоненциальных уравнений
      • Решение логарифмических уравнений
      • приложений
    • Системы Уравнений
      • Линейные системы с двумя переменными
      • Линейные системы с тремя переменными
      • дополненных матриц
      • Подробнее о дополненной матрице
      • Нелинейные системы
  • Исчисление I
    • Обзор
      • Функции
      • Обратные функции
      • Функции триггера
      • Решения Уравнений Триггера
      • Trig Equations с калькуляторами, часть I
      • Trig Equations с калькуляторами, часть II
      • экспоненциальных функций
      • Логарифм Функции
      • Уравнения экспоненты и логарифма
      • Общие графики
    • лимитов
      • Касательные линии и скорости изменения
      • Предел
      • Односторонние лимиты
      • Limit Properties
      • компьютерных лимитов
      • Бесконечные лимиты
      • Пределы на Бесконечности, Часть I
      • Пределы на Бесконечности, Часть II
      • Непрерывность
      • Определение предела
    • Производные
      • Определение производной
      • Интерпретация производного
      • Дифференциальные формулы
      • Продукт и частное правило
      • Производные тригонометрических функций
      • Производные экспоненциальных и логарифмических функций
      • Производные обратных функций триггера
      • Производные гиперболических функций
      • Цепное правило
      • Неявное дифференцирование
      • Похожие цены
      • Производные высшего порядка
      • Логарифмическое дифференцирование
    • приложений производных
      • курсы валют
      • Критических Очков
      • минимальных и максимальных значений
      • В поисках абсолютных экстремумов
      • Форма Графика, Часть I
      • Форма Графа, Часть II
      • Теорема о среднем значении
      • Оптимизация
      • Больше проблем с оптимизацией
      • Правило и неопределенные формы L’Hospital
      • линейных приближений
      • Дифференциалы
      • метод Ньютона
      • Бизнес-приложения
    • Интегралы
      • неопределенных интегралов
.

Прямоугольная система координат

Следующее обсуждение ограничено векторами в двумерной координатной плоскости, хотя концепции могут быть расширены до более высоких измерений.

Если вектор смещен так, что его начальная точка находится в начале прямоугольной координатной плоскости, он называется в стандартном положении . Если вектор равен вектору и имеет начальную точку в начале координат, он называется стандартным вектором для .Другие имена для стандартного вектора включают радиус-вектор и вектор положения (рисунок 1).

Рисунок 1
Векторы, нарисованные на плоскости.

Вектор является стандартным вектором для всех векторов на плоскости с тем же направлением и величиной, что и . Чтобы найти стандартный вектор для геометрического вектора в координатной плоскости, необходимо найти только координаты точки P , поскольку точка 0 находится в начале координат.Если координаты точки A ( x a , y a ) и координаты точки B равны ( x b , y b ), то координаты точки P ( x b x a , y ab — y a ).

Пример 1: Если конечные точки вектора имеют координаты A (−2, −7) и B (3, 2), то каковы координаты точки P , так что является стандартом вектор и = (см. рисунок 2)?

Рисунок 2
Рисунок для примера 1.

Если координаты точки P равны ( x , y ),

Алгебраический вектор — это упорядоченная пара действительных чисел. Алгебраический вектор, который соответствует стандартному геометрическому вектору , обозначается как a, b , если конечная точка P имеет координаты (a, b) . Числа a и b называются компонентами вектора a, b (см. Рисунок 3).

Рисунок 3
Компоненты вектора.

Если a, b, c и d — все действительные числа, такие что a = c и b = d , то вектор v = ⟨a, b⟩ и вектор u = ⟨c, d⟩ называется равным. То есть алгебраические векторы с равными соответствующими компонентами равны. Если обе компоненты вектора равны нулю, вектор называется нулевым вектором .Величина вектора v = ⟨a, b⟩ равна .

Пример 2: Какова величина вектора u = ⟨3, −5⟩?

Добавление вектора определяется как сложение соответствующих компонентов векторов, то есть, если v = ⟨a, b⟩ и u = ⟨c, d⟩ , то v + u = 900a + c, b + d⟩ (рисунок 4).

Рисунок 4
Добавление вектора.

Скалярное умножение определяется как умножение каждого компонента на константу, то есть если v = ⟨a, b⟩ и q — постоянная, то q v = q⟨a , b⟩ = ⟨qa, qb⟩ .

Пример 3: Если v = ⟨8, -2⟩ и w = ,3, 7⟩, то найти 5 v -2 w .

Единичный вектор — это вектор, величина которого равна 1. Единичный вектор v с тем же направлением, что и ненулевой вектор u , может быть найден следующим образом:

Пример 4 : Найти единичный вектор v с тем же направлением, что и вектор u , учитывая, что u = ⟨7, — 1⟩.

Два специальных единичных вектора, i = ⟨1, 0⟩ и j = ⟨0, 1⟩, могут использоваться для выражения любого вектора v = ⟨a, b⟩ .

Пример 5: Напишите u = ⟨5, 3⟩ в единицах векторов i и j (рисунок 5).

Рисунок 5
Рисунок для примера 5.

Векторы проявляют алгебраические свойства, подобные свойствам действительных чисел (Таблица 1).


Пример 6: Найти 4 u + 5 v , если u = 7 i — 3 j и v = -2 i + 5 j .

Для двух векторов: u = ⟨a, b = = a i + b j и v = ⟨c, d⟩ = c i + d j , скалярное произведение , записанное как u · v , является скалярным числом u ˙ v = ac + bd . Если u, v и w являются векторами, а q, — действительным числом, то точечные произведения проявляют следующие свойства:

Последнее свойство, u ˙ v = | u | | против | cos α, может использоваться для нахождения угла между двумя ненулевыми векторами и и против .Если два вектора перпендикулярны друг другу и образуют угол 90 °, они называются , ортогональными . Поскольку cos 90 ° = 0, скалярное произведение любых двух ортогональных векторов равно 0.

Пример 7: Учитывая, что u = 22 5 , −3⟩ и v = ⟨6, 10⟩, показывают, что u и v ортогональны, демонстрируя, что скалярное произведение u и v равно нулю.

Пример 8: Какой угол между u = ⟨5, −2⟩ и v = ⟨6, 11⟩?

Говорят, что объект находится в состоянии статического равновесия , если все векторы силы, действующие на объект, суммируются до нуля.

Пример 9: Канатоходец весом 150 фунтов стоит ближе к одному концу веревки, чем к другому. Более короткая длина каната отклоняется на 5 ° от горизонтали. Большая длина веревки отклоняет на 3 °. Какое напряжение на каждой части веревки?

Нарисуйте диаграмму сил со всеми тремя векторами сил в стандартном положении (Рисунок 6).

Рисунок 6
Рисунок для примера 9.

Сумма векторов силы должна быть равна нулю для каждого компонента.

Для компонента i : — | u | cos 5 ° + | против | cos 3 ° = 0

Для компонента j : | u | sin5 ° + | v | cos 3 ° — 150 =

Решите эти два уравнения для | u | и | v |:

Подставляя значения для синусов и косинусов:

Умножьте первое уравнение на 0,0872, а второе на 0,9962:

.

Добавьте два уравнения и решите для | v |:

Заменить и решить для | u |:

,
Исчисление II — длина дуги с полярными координатами Пол Заметки Онлайн

Ноты Быстрая навигация Скачать

  • Перейти к
  • Ноты
  • Проблемы практики
  • Проблемы с назначением
  • Показать / Скрыть
  • Показать все решения / шаги / и т. Д.
  • Скрыть все решения / шаги / и т. Д.
  • Разделы
  • Площадь с полярными координатами
  • Площадь поверхности с полярными координатами
  • глав
  • приложений интегралов
  • Серия
  • и последовательности
  • Классы
  • Алгебра
  • Исчисление I
  • Исчисление II
  • Исчисление III
  • Дифференциальные уравнения
  • Дополнительно
  • Обзор алгебры и триггеров
  • Распространенные математические ошибки
  • Комплексное число праймер
  • Как изучать математику
  • Шпаргалки и таблицы
  • Разное
  • Свяжитесь со мной
  • Справка и настройка MathJax
  • Мои ученики
  • Примечания Загрузки
  • Полная книга
  • Текущий Глава
  • Текущий раздел
  • Практика Проблемы Загрузки
  • Complete Book — Проблемы только
  • Complete Book — Решения
  • Текущая глава — только проблемы
  • Текущая глава — Решения
  • Текущий раздел — только проблемы
  • Текущий раздел — Решения
  • Проблемы с назначением Загрузки
  • Полная книга
  • Текущий Глава
  • Текущий раздел
  • Другие предметы
  • Получить URL для загрузки элементов
  • Распечатать страницу в текущей форме (по умолчанию)
  • Показать все решения / шаги и распечатать страницу
  • Скрыть все решения / шаги и распечатать страницу
  • Дом
  • Классы
  • алгебра
    • Предварительные
      • Целочисленные экспоненты
      • Рациональные экспоненты
      • Радикалы
      • полиномов
      • Факторинг Полиномы
      • Rational Expressions
      • Комплексные числа
    • Решение уравнений и неравенств
      • Решения и комплекты решений
      • линейных уравнений
      • приложений линейных уравнений
      • уравнений с более чем одной переменной
      • Квадратичные уравнения — Часть I
      • Квадратичные уравнения — Часть II
      • Квадратичные уравнения: краткое изложение
      • Приложения квадратичных уравнений
      • Уравнения
      • , приводимые к квадратичной форме
      • Уравнения с радикалами
      • линейных неравенств
      • Полиномиальное неравенство
      • Рациональное неравенство
      • Уравнения абсолютной стоимости
      • Абсолютное неравенство в значениях
    • Графика и функции
      • График
      • Линии
      • Круги
      • Определение функции
      • Графические функции
      • Объединение функций
      • Обратные функции
    • общих графиков
      • Линии, окружности и кусочные функции
      • Параболы
      • Эллипсы
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *