Рациональные иррациональные числа натуральные – натуральные, целые, рациональные, иррациональные, действительные

Существование иррациональных чисел — ПриМат

Натуральные, целые и рациональные числа

В процессе счёта возникли натуральные числа.
.
Сложение и умножение натуральных чисел снова даёт натуральное число. Операция «вычитание» во множестве натуральных чисел приводит к целым числам.
.
Операция «деление» во множестве целых чисел приводит к рациональным числам.
.
Например:
Во множестве рациональных чисел выполняются все 4 арифметических действия. В данном множестве можно решать уравнения 1-ой степени , однако, простейшее уравнение , не всегда разрешимо в , в частности, уравнение не имеет решений в .

Необходимость иррациональных чисел

Докажем, что уравнение не имеет решений в .

Теорема

Не существует рационального числа, квадрат которого равен 2.
 Предположим противное. Предположим, что существует такое рациональное число, квадрат которого равен 2. Числа и — числитель и знаменатель данного рационального числа; и  — взаимно простые (числа, наибольший общий делитель которых равен 1).

 

 — чётное число, тогда — чётное.

Отсюда:

 — чётное  — чётное.

Получили противоречие того утверждения, что и — взаимно простые.

Таким образом, проблема решения уже таких уравнений приводит к необходимости расширения множества рациональных чисел путём добавления к ним иррациональных чисел.
Бесконечные дроби: периодические десятичные дроби
Зная рациональное число, его можно представить либо в виде конечной десятичной дроби, либо в виде бесконечной периодической десятичной дроби.

 — конечная десятичная дробь;
.
— бесконечная периодическая десятичная дробь.
 .
Используем формулу суммы бесконечно убывающей геометрической прогрессии:  , где  — первый член геометрической прогрессии,   — знаменатель прогрессии.
Получим:
.
Договоримся, конечную десятичную дробь будем отождествлять с бесконечной десятичной дробью с в периоде.

.
Между множеством множеством всех рациональных чисел и множеством всех периодических бесконечных десятичных дробей установлена связь, если отождествлять бесконечную периодическую дробь с с бесконечной периодической периодической дробью с .
 

Тест «Существование иррациональных чисел».

Лимит времени: 0

Информация

Тестовые задания по вышеизложенной теме.

Вы уже проходили тест ранее. Вы не можете запустить его снова.

Тест загружается…

Вы должны войти или зарегистрироваться для того, чтобы начать тест.

Вы должны закончить следующие тесты, чтобы начать этот:

Правильных ответов: 0 из 5

Ваше время:

Время вышло

Средний результат

 

 
Ваш результат

 

 
Ваш результат был записан в таблицу лидеров
  1. С ответом
  2. С отметкой о просмотре

Источники:

  1. З. М. Лысенко.  Лекции по математическому анализу.
  2. В. И. Коляда, А.А.Кореновский «Курс лекций по мат.анализу, часть 1» (Одесса, «Астропринт», 2009г.), стр.1.
  3. В. И. Ильин, Э.Г.Позняк «Основы мат.анализа, часть 1, выпуск 2» (Издание четвёртое, переработанное и дополненное, 1982г.) стр.40. (скачать учебник можно здесь).

Подробнее про «существование иррациональных чисел» на:

Wikipedia

Викизнание

Поделиться ссылкой:

Похожее

ib.mazurok.com

иррациональные числа — ПриМат

Натуральные, целые и рациональные числа

В процессе счёта возникли натуральные числа.
.
Сложение и умножение натуральных чисел снова даёт натуральное число. Операция «вычитание» во множестве натуральных чисел приводит к целым числам.
.
Операция «деление» во множестве целых чисел приводит к рациональным числам.
.
Например:
Во множестве рациональных чисел выполняются все 4 арифметических действия. В данном множестве можно решать уравнения 1-ой степени , однако, простейшее уравнение , не всегда разрешимо в , в частности, уравнение не имеет решений в .

Необходимость иррациональных чисел

Докажем, что уравнение не имеет решений в .

Теорема

Не существует рационального числа, квадрат которого равен 2.
 Предположим противное. Предположим, что существует такое рациональное число, квадрат которого равен 2. Числа и — числитель и знаменатель данного рационального числа; и  — взаимно простые (числа, наибольший общий делитель которых равен 1).

 

 — чётное число, тогда — чётное.

Отсюда:

 — чётное  — чётное.

Получили противоречие того утверждения, что и — взаимно простые.

Таким образом, проблема решения уже таких уравнений приводит к необходимости расширения множества рациональных чисел путём добавления к ним иррациональных чисел.
Бесконечные дроби: периодические десятичные дроби
Зная рациональное число, его можно представить либо в виде конечной десятичной дроби, либо в виде бесконечной периодической десятичной дроби.

 — конечная десятичная дробь;
.
— бесконечная периодическая десятичная дробь.

 .
Используем формулу суммы бесконечно убывающей геометрической прогрессии:  , где  — первый член геометрической прогрессии,   — знаменатель прогрессии.
Получим:
.
Договоримся, конечную десятичную дробь будем отождествлять с бесконечной десятичной дробью с в периоде.
.
Между множеством множеством всех рациональных чисел и множеством всех периодических бесконечных десятичных дробей установлена связь, если отождествлять бесконечную периодическую дробь с с бесконечной периодической периодической дробью с .
 

Тест «Существование иррациональных чисел».

Лимит времени: 0

Информация

Тестовые задания по вышеизложенной теме.

Вы уже проходили тест ранее. Вы не можете запустить его снова.

Тест загружается…

Вы должны войти или зарегистрироваться для того, чтобы начать тест.

Вы должны закончить следующие тесты, чтобы начать этот:

Правильных ответов: 0 из 5

Ваше время:

Время вышло

Средний результат

 

 
Ваш результат

 

 
Ваш результат был записан в таблицу лидеров
  1. С ответом
  2. С отметкой о просмотре

Источники:

  1. З. М. Лысенко.  Лекции по математическому анализу.
  2. В. И. Коляда, А.А.Кореновский «Курс лекций по мат.анализу, часть 1» (Одесса, «Астропринт», 2009г.), стр.1.
  3. В. И. Ильин, Э.Г.Позняк «Основы мат.анализа, часть 1, выпуск 2» (Издание четвёртое, переработанное и дополненное, 1982г.) стр.40. (скачать учебник можно здесь).

Подробнее про «существование иррациональных чисел» на:

Wikipedia

Викизнание

Поделиться ссылкой:

ib.mazurok.com

Иррациональные числа — Циклопедия

03 Иррациональные числа // Университет СИНЕРГИЯ

Иррациональные числа — это действительные числа, которые не являются рациональными, иначе говоря, действительные числа, которые нельзя представить в виде отношения целых чисел m/n.

[править] Существование

То, что не все (действительные) числа, являются рациональными, было выяснено математиками Древней Греции, которые доказали, что корень из 2 (длина диагонали квадрата со стороной 1) не является рациональным числом.

Действительно, пусть [math]\sqrt 2 = m/n[/math] с целыми m и n, причем их можно выбрать натуральными и взаимно простыми (если они не взаимно просты, то можно сократить эту дробь на наибольший общий делитель). Возведём уравнение в квадрат: 2 = m2/n2. Следовательно, 2n2 = m2. Отсюда n2 = m2/2 и m2 делится на 2, значит m — чётное (делится на 2), оно может быть представлено как m = 2k, где k — любое целое, и 2n2 = 4k2, n2 = 2k2, при этом k2 = n2/2, то есть n2 тоже делится на 2, значит n — чётное, но это противоречит тому, что m и n — взаимно простые числа.

Полученное противоречие доказывает, что корень из 2 — иррациональное число. Аналогично доказывается иррациональность любого числа вида корень из k, если натуральное число k не является квадратом некоторого натурального числа. Таким образом, иррациональных чисел бесконечно много.

Иррациональные числа записываются в виде непериодических бесконечных десятичных дробей (рациональным числам соответствуют периодические десятичные дроби).

Так [math]\sqrt 2[/math] = 1,414…, log23, π = 3,1415…, e = 2,71828…, число 0,1234567891011121314151617…[Прим. 1] — иррациональные числа, представляющие их бесконечные десятичные дроби непериодичны.

Иррациональность чисел π и e была доказана в XVIII веке Ламбертом.

Иррациональные числа представляются в виде бесконечных цепных дробей:
[math]r = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{ \ddots + \cfrac{1}{a_k + \cfrac{1}{\ddots}}}}}[/math],
где a0 — целое число, ai — натуральные при 1 ≤ i (рациональным числам соответствуют конечные цепные дроби).

В XIX веке Георг Кантор установил, что множество рациональных чисел счетно (рациональные числа можно «перенумеровать», то есть поставить во взаимно-однозначное соответствие с множеством натуральных чисел), а множество действительных чисел — несчетно. Отсюда следует, что множество иррациональных чисел несчетно, то есть иррациональных чисел в некотором смысле «больше», чем рациональных.

Иррациональные числа могут быть алгебраическими и трасцендентными. Алгебраические числа — это числа, которые являются корнем какого-либо многочлена с целыми коэффициентами (они включают в себя рациональные числа), а трансцендентные — которые не являются корнем никакого многочлена с целыми коэффициентами, таким образом, все трансцендентные числа иррациональны.

В XIX веке было установлено существование трансцендентных чисел, и доказано, что e и π — трансцендентны. С помощью подхода, развитого Г. Кантором, устанавливается, что множество алгебраических чисел — счетно, а множество трансцендентных чисел несчетно.

  1. ↑ Для десятичной записи этого числа берется в виде одной последовательности десятичная запись всех натуральных чисел, записанных в порядке возрастания, очевидно что эта последовательность — непериодичная.
  • Бухштаб А. А. Теория чисел — М.: «Просвещение», 1966.
  • К. Айерленд, М. Роузен, Классическое введение в современную теорию чисел — М., 1987.

cyclowiki.org

Иррациональные числа — урок. Алгебра, 8 класс.

Термины рациональное число, иррациональное число происходят от латинского слова ratio — разум
(буквальный перевод: «рациональное число — разумное число», «иррациональное число — неразумное число»; впрочем, так говорят и в реальной жизни: «он поступил рационально» — это значит, что он поступил разумно; «так действовать нерационально» — это значит, что так действовать неразумно).

Иррациональным числом называют бесконечную десятичную непериодическую дробь.

Если натуральное число \(n\) не является точным квадратом, т. е. n≠k2, где k∈ℚ, то  n — иррациональное число.

Пример:

5=2,23606798…11=3,31662479…

Иррациональные числа встречаются не только при извлечении квадратного корня, но и во многих других случаях, в чём вы не раз убедитесь в старших классах.

Если длину любой окружности разделить на её диаметр, то в частном получится иррациональное число \(3,141592…\) Для этого числа в математике введено специальное обозначение π (буква греческого алфавита «пи»; версия происхождения этого понятия такова: с буквы π начинается греческое слово периферия — окружность). Иррациональность числа π была доказана в \(1766\) г. немецким математиком И. Ламбертом.

Итак,

1. любая арифметическая операция над рациональными числами (кроме деления на \(0\)) приводит в результате к рациональному числу.

2. Арифметическая операция над иррациональными числами может привести в результате как к рациональному, так и к иррациональному числу.

3. Если в арифметической операции участвуют рациональное и иррациональное числа, то в результате получится иррациональное число (кроме умножения и деления на \(0\)).

4. Поскольку операция извлечения квадратного и кубического корня из положительного числа часто приводит к иррациональным числам, условились алгебраическое выражение, в котором присутствует операция извлечения квадратного и кубического корня из переменной, называть иррациональным выражением.

www.yaklass.ru

Реферат Иррациональные числа

скачать

Реферат на тему:

План:

    Введение
  • 1 История
    • 1.1 Средние века
    • 1.2 Наше время
  • 2 Свойства
  • 3 Теоремы
    • 3.1 Корень из 2 — иррациональное число
    • 3.2 log23 — иррациональное число
    • 3.3 e — иррациональное число
  • 4 Другие иррациональные числа
  • Примечания

Введение

Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть которое не может быть представленным в виде дроби , где m — целое число, n — натуральное число. О существовании иррациональных чисел, точнее отрезков, несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Множество иррациональных чисел обычно обозначается заглавной латинской буквой «и» в полужирном начертании без заливки — . Таким образом: , т.е. множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.


1. История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. — ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу, который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a:b, где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a² = 2b².
  • Так как a² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a:b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y.
  • Тогда a² = 4y² = 2b².
  • b² = 2y², следовательно b² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Феодор Киренский доказал иррациональность корней натуральных чисел до 17 (исключая, естественно, точные квадраты — 1, 4, 9 и 16), но остановился на этом, так как имевшаяся в его инструментарии алгебра не позволяла доказать иррациональность квадратного корня из 17. По поводу того, каким могло быть это доказательство, историками математики было высказано несколько различных предположений. Согласно наиболее правдоподобному предположению Жана Итара (1961), оно было основано на пифагорейской теории чётных и нечётных чисел, в том числе — на теореме о том, что нечётное квадратное число за вычетом единицы делится на восемь треугольных чисел.

Позже Евдокс Книдский (410 или 408 г. до н. э. — 355 или 347 г. до н. э.) развил теорию пропорций, которая принимала во внимание как рациональные, так и иррациональные отношения. Это послужило основанием для понимания фундаментальной сути иррациональных чисел. Величина стала считаться не числом, но обозначением сущностей, таких как отрезки прямых, углы, площади, объёмы, промежутки времени — сущностей, которые могут меняться непрерывно (в современном понимании этого слова). Величины были противопоставлены числам, которые могут меняться лишь «прыжками» от одного числа к соседнему, например, с 4 на 5. Числа составляются из наименьшей неделимой величины, в то время как величины можно уменьшать бесконечно.

Поскольку никакое количественное значение не сопоставлялось величине, Евдокс смог охватить и соизмеримые, и несоизмеримые величины при определении дроби как отношения двух величин, и пропорции как равенства двух дробей. Убрав из уравнений количественные значения (числа), он избежал ловушки, состоящей в необходимости назвать иррациональную величину числом. Теория Евдокса позволила греческим математикам совершить невероятный прогресс в геометрии, предоставив им необходимое логическое обоснование для работы с несоизмеримыми величинами. «Книга 10 Элементов» Евклида посвящена классификации иррациональных величин.


1.1. Средние века

Средние века ознаменовались принятием таких понятий как ноль, отрицательные числа, целые и дробные числа, сперва индийскими, затем китайскими математиками. Позже присоединились арабские математики, которые первыми стали считать отрицательные числа алгебраическими объектами (наряду и на равных правах с положительными числами), что позволило развить дисциплину, ныне называемую алгеброй.

Арабские математики соединили древнегреческие понятия «числа» и «величины» в единую, более общую идею вещественных чисел. Они критически относились к представлениям Евклида об отношениях, в противовес ей они развили теорию отношений произвольных величин и расширили понятие числа до отношений непрерывных величин. В своих комментариях на Книгу 10 Элементов Евклида, персидский математик Аль Махани (ок 800 гг. н. э.) исследовал и классифицировал квадратичные иррациональные числа (числа вида) и более общие кубические иррациональные числа. Он дал определение рациональным и иррациональным величинам, которые он и называл иррациональными числами. Он легко оперировал этими объектами, но рассуждал как об обособленных объектах, например:

Рациональной [величиной] является, например, 10, 12, 3%, 6% и так далее, поскольку эти величины произнесены и выражены количественно. Что не рационально, то иррационально, и невозможно произнести или представить соответствующую величину количественно. Например, квадратные корни чисел таких так 10, 15, 20 — не являющихся квадратами.

В противовес концепции Евклида, что величины суть в первую очередь отрезки прямых, Аль Махани считал целые числа и дроби рациональными величинами, а квадратные и кубические корни — иррациональными. Он также ввел арифметический подход к множеству иррациональных чисел, поскольку именно он показал иррациональность следующих величин:

результат сложения иррациональной величины и рациональной, результат вычитания рациональной величины из иррациональной, результат вычитания иррациональной величины из рациональной.

Египетский математик Абу Камил (ок. 850 г. н. э. — ок. 930 г. н. э.) был первым, кто счел приемлемым признать иррациональные числа решением квадратных уравнений или коэффициентами в уравнениях — в основном, в виде квадратных или кубических корней, а также корней четвёртой степени. В X веке иракский математик Аль Хашими вывел общие доказательства (а не наглядные геометрические демонстрации) иррациональности произведения, частного и результатов иных математических преобразований над иррациональными и рациональными числами. Ал Хазин (900 г. н. э. — 971 г. н. э.) приводит следующее определение рациональной и иррациональной величины:

Пусть единична величина содержится в данной величине один или несколько раз, тогда эта [данная] величина соответствует целому числу… Каждая величина, которая составляет половину, или треть, или четверть единичной величины, или, сравненная с единичной величиной составляет три пятых от нее, это рациональная величина. И в целом, всякая величина, которая относится к единичной как одно число к другому, является рациональной. Если же величина не может быть представлена как несколько или часть (l/n), или несколько частей (m/n) единичной длины, она иррациональная, то есть невыразимая иначе как с помощью корней.

Многие из этих идей были позже переняты европейскими математиками после перевода на латынь арабских текстов в XII веке. Аль Хассар, арабский математик из Магриба, специализировавшийся на исламских законах о наследстве, в XII веке ввел современную символьную математическую нотацию для дробей, разделив числитель и знаменатель горизонтальной чертой. Та же нотация появилась затем в работах Фибоначчи в XIII веке. В течение XIV—XVI вв. Мадхава из Сангамаграмы и представители Керальской школы астрономии и математики исследовали бесконечные ряды, сходящиеся к некоторым иррациональным числам, например, к π, а также показали иррациональность некоторых тригонометрических функций. Джестадева привел эти результаты в книге Йуктибхаза.


1.2. Наше время

В XVII веке в математике прочно укрепились комплексные числа, вклад в изучение которых внесли Абрахам де Муавр (1667—1754) и Леонард Эйлер (1707—1783). Когда теория комплексных чисел в XIX веке стала замкнутой и чёткой, стало возможным классифицировать иррациональные числа на алгебраические и трансцендентные (доказав при этом существование трансцендентных чисел), тем самым переосмыслив работы Евклида по классификации иррациональных чисел. По этой теме в 1872 были опубликованы работы Вейерштрасса, Гейне, Кантора и Дедекинда. Хотя ещё в 1869 году Мерэ начал рассмотрения, схожие с Гейне, именно 1872 год принято считать годом рождения теории. Вейерштрасс, Кантор и Гейне обосновывали свои теории при помощи бесконечных рядов, в то время как Дедекинд работал с (ныне так называемым) Дедекиндовым сечением множества вещественных чисел, разделяя все рациональные числа на два множества с определёнными характеристическими свойствами.

Цепные дроби, тесно связанные с иррациональными числами (цепная дробь, представляющая данное число, бесконечна тогда и только тогда, когда число является иррациональным), были впервые исследованы Катальди в 1613 году, затем снова привлекли к себе внимание в работах Эйлера, а в начале XIX века — в работах Лагранжа. Дирихле также внёс значительный вклад в развитие теории цепных дробей.

В 1761 году Ламберт показал, что π не может быть рационально, а также что en иррационально при любом ненулевом рациональном n. Хотя доказательство Ламберта можно назвать незавершённым, принято считать его достаточно строгим, особенно учитывая время его написания. Лежандр в 1794 году, после введения функции Бесселя-Клиффорда, показал, что π² иррационально, откуда иррациональность π следует тривиально (рациональное число в квадрате дало бы рациональное). Существование трансцендентных чисел было доказано Лиувиллем в 1844—1851 годах. Позже Георг Кантор (1873) показал их существование, используя другой метод, и обосновал, что любой интервал вещественного ряда содержит бесконечно много трансцендентных чисел. Шарль Эрмит доказал в 1873 году, что e трансцендентно, а Фердинанд и Линдеманн в 1882 года, основываясь на этом результате, показали трансцендентность π. Доказательство Линдеманна было затем упрощено Вейерштрассом в 1885 году, ещё более упрощено Давидом Гильбертом в 1893 году и, наконец, доведено до почти элементарного Адольфом Гурвицем и Паулем Горданом.


2. Свойства

  • Всякое вещественное число может быть записано в виде бесконечной десятичной дроби, при этом иррациональные числа и только они записываются непериодическими бесконечными десятичными дробями.
  • Иррациональные числа определяют Дедекиндовы сечения в множестве рациональных чисел, у которых в нижнем классе нет наибольшего, а в верхнем нет наименьшего числа.
  • Каждое трансцендентное число является иррациональным.
  • Каждое иррациональное число является либо алгебраическим, либо трансцендентным.
  • Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число.
  • Множество иррациональных чисел несчётно, является множеством второй категории.[1]

3. Теоремы

3.1. Корень из 2 — иррациональное число

Допустим противное: рационален, то есть представляется в виде несократимой дроби , где m и n — целые числа. Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что m2 чётно, значит, чётно и m. Пускай m = 2r, где r целое. Тогда

Следовательно, n2 чётно, значит, чётно и n. Мы получили, что m и n чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и  — иррациональное число.


3.2. log23 — иррациональное число

Допустим противное: log23 рационален, то есть представляется в виде дроби , где m и n — целые числа. Поскольку log23 > 0, m и n могут быть выбраны положительными. Тогда

Но 2m чётно, а 3n нечётно. Получаем противоречие.


3.3. e — иррациональное число

См. раздел «Доказательство иррациональности» в статье «e».

4. Другие иррациональные числа

Иррациональными являются:

  • для любого натурального n, не являющегося точным квадратом
  • ex для любого рационального
  • lnx для любого положительного рационального
  • π, а также πn для любого натурального n

wreferat.baza-referat.ru

Добавить комментарий

Ваш адрес email не будет опубликован.