Формула суммы пятой степени: Сумма пятой степени | Формулы с примерами

Элементарная алгебра

Элементарная алгебра
  

С.Т. Завало. Элементарная алгебра. Изд-во «Просвещение», М., 1964 г.

В основу этой книги положен курс лекций по элементарной алгебре, читавшийся мною на протяжении ряда лет в Черкасском государственном педагогическом институте.

Первая глава книги — вступительная. В ней сжато изложены сведения о некоторых математических понятиях, с которыми читателю придется встретиться в последующих главах. В главах II—X изложен учебный материал по элементарной алгебре, предусмотренный программой специального курса элементарной математики для студентов-математиков педагогических институтов.

Книга рассчитана на студентов-математиков педагогических институтов. Она может быть также пособием для учителей математики средней школы.




Оглавление

Глава I. ПРЕДВАРИТЕЛЬНЫЕ ЗАМЕЧАНИЯ
§ 2. Понятия кольца и поля
§ 3. Упорядоченные поля
§ 4. Понятие функции и аналитического выражения
§ 5. Элементарные функции и их классификация
§ 6. Метод математической индукции
Глава II. ОБЩИЕ СВЕДЕНИЯ ОБ УРАВНЕНИЯХ
§ 1. Понятие уравнения. Решения уравнения
§ 2. Классификация уравнений, изучаемых в элементарной математике
§ 3. Равносильность уравнений
§ 4. Преобразование уравнений при их решении
Глава III. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ РЕШЕНИЯ АЛГЕБРАИЧЕСКИХ И ДРОБНО-РАЦИОНАЛЬНЫХ УРАВНЕНИЙ С ОДНИМ НЕИЗВЕСТНЫМ
§ 1. Алгебраические уравнения n-й степени с одним неизвестным
§ 2. Корни квадратного трехчлена
§ 3. Исследование квадратного трехчлена над полем действительных чисел
§ 4. Двучленные уравнения
§ 5. Трехчленные уравнения, приводящиеся к квадратным
§ 6. Симметрические уравнения
§ 7. Алгебраическое уравнение n-й степени с рациональными коэффициентами
§ 8. Частные приемы решения уравнений высших степеней
§ 9. Дробно-рациональные уравнения
Глава IV. ТЕОРИЯ СОЕДИНЕНИЙ
§ 2. Перестановки
§ 3. Сочетания
§ 4. Размещения
§ 5. Перестановки с повторениями
§ 6. Сочетания с повторениями
§ 7. Размещения с повторениями
Глава V. БИНОМ НЬЮТОНА И ПОЛИНОМИАЛЬНАЯ ТЕОРЕМА
§ 1. Бином Ньютона
§ 2. Биномиальные коэффициенты и их основные свойства
§ 3. Треугольник Паскаля
§ 4. Полиномиальная теорема
§ 5. Вычисление сумм степеней первых n чисел натурального ряда
Глава VI. МНОГОЧЛЕНЫ ОТ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
§ 1. Многочлен от нескольких переменных и его каноническая форма
§ 2. Однородный многочлен от n переменных и число его членов
§ 3. Число членов в каноническом представлении многочлена от n переменных
§ 4. Тождественность двух многочленов
§ 5. Тождественные преобразования многочленов. Тождество Лагранжа
§ 6. Применение метода неопределенных коэффициентов при выполнении алгебраических действий над многочленами
Глава VII. СИСТЕМЫ УРАВНЕНИЙ С НЕСКОЛЬКИМИ НЕИЗВЕСТНЫМИ
§ 1. Понятие системы уравнений
§ 2. Равносильность систем уравнений
§ 3. Уравнения и системы уравнений, являющиеся следствием данной системы уравнений
§ 4. Основные элементарные методы решения систем уравнений
§ 5. Решение нелинейных систем алгебраических уравнений элементарными методами
1. Решение системы двух уравнений с двумя неизвестными, из которых одно—второй степени, а другое — первой.
2. Решение системы двух уравнений второй степени с двумя неизвестными, которые не имеют членов первой степени.
3. Решение системы двух уравнений второй степени с двумя неизвестными в общем виде.
4. Решение системы двух однородных уравнений с двумя неизвестными.
5. Решение системы двух уравнений с двумя неизвестными, одно из которых однородное, а второе не однородное.
7. Решение нелинейной системы алгебраических уравнений, в состав которой входят линейные уравнения.
8. Решение нелинейной системы алгебраических уравнений, левая часть одного из которых представляется в виде произведения.
§ 6. Графическое решение нелинейных систем алгебраических уравнений с двумя неизвестными
Глава VIII. НЕРАВЕНСТВА
§ 1. Основные свойства неравенств
§ 2. Тождественные неравенства
§ 3. Применение неравенств для определения наибольших и наименьших значений
§ 4. Решение неравенств
§ 5. Решение алгебраических неравенств с одним неизвестным первой и второй степени
§ 6. Решение систем алгебраических неравенств первой степени с двумя неизвестными
§ 7. Применение неравенств для задания числовых и точечных множеств
Глава IX. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ НАД ПОЛЕМ ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ
§ 1. Корни с натуральными показателями в поле действительных чисел
§ 2. Тождественные преобразования иррациональных выражений в поле действительных чисел
§ 3. Решение иррациональных уравнений и систем, в состав которых входят иррациональные уравнения, в поле действительных чисел
Глава X. ПОКАЗАТЕЛЬНЫЕ И ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ В ПОЛЕ ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ
§ 1. Теоретические основы решения показательных и логарифмических уравнений
§ 2. Решение показательных уравнений с одним неизвестным
§ 3. Решение логарифмических уравнений с одним неизвестным
§ 4. Решение трансцендентных уравнений, приводящихся к показательным и логарифмическим уравнениям
§ 5. Решение некоторых трансцендентных систем уравнений
§ 6. Графические способы решения трансцендентных уравнений и систем
ЛИТЕРАТУРА

Формулы сокращенного умножения

Для упрощения выражений, разложения многочленов на множители, приведения многочленов к стандартному виду используются формулы сокращенного умножения. Формулы сокращенного умножения нужно знать наизусть.

Пусть а, b   R. Тогда:

1. Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

(a + b)2 = a2 + 2ab + b2

2. Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

(a — b)2 = a2 — 2ab + b2

3. Разность квадратов двух выражений равна произведению разности этих выражений и их суммы.

a2 — b2 = (a -b) (a+b)

4. Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

(a + b)3 = a3 + 3a2b + 3ab2 + b3

5. Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

(a — b)3 = a3 — 3a2b + 3ab2 — b3

6.

Сумма кубов двух выражений равна произведению суммы первого и второго выражения на неполный квадрат разности этих выражений.

a3 + b3 = (a + b) (a2 — ab + b2)

7. Разность кубов двух выражений равна произведению разности первого и второго выражения на неполный квадрат суммы этих выражений.

a3 — b3 = (a — b) (a2 + ab + b2)

8. Разность чисел в четвертой степени

(a — b)4 = a4 — 4a3b + 6a2b2 — 4ab3 + b4

9. Сумма чисел в четвертой степени

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

10. Разность чисел в пятой степени

(a — b)5 = a5 — 5a4b + 10a3b

2 — 10a2b3 + 5ab4 — b5

11. Сумма чисел в пятой степени

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

12. Квадрат трехчлена

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc

13. Квадрат линейной формы

(a + b + c + … + u + v)2 = a2 + b2 + c2 + … + u2 + v2 + 2(ab + ac + … + au + av + bc + … + bu + bv + … + uv)

14. Куб трехчлена

(a + b + c)3 = a3 + b3 + c3 + 3a2b + 3ab2 + 3a2c + 3ac2 + 3b2c + 3bc2 + 6abc

Степени и степени

Обновлено 26 июня 2019 г. | Инфопожалуйста Персонал

в степени — это произведение , умножающее число само на себя.


Обычно степень представлена ​​ основанием, и показателем степени. Базовое число сообщает , какое число умножается. Показатель степени , небольшое число, написанное выше и справа от основного числа, говорит о сколько раз умножается основное число.

Например, «6 в 5-й степени» можно записать как «6 5 ». Здесь базовое число равно 6, а показатель степени равен 5. Это означает, что 6 умножается само на себя 5 раз: 6 х 6 х 6 х 6 х 6

6 х 6 х 6 х 6 х 6 = 7 776 или

6 5 = 7,776

базовый номер 2-я степень 3-я степень 4-я степень 5-я степень 90 014
1 1 1 1 1
2 4 8 16 32
3 9 27 81 243
4 16 64 256 1024
5 25 125 625 3 125
6 36 216 1 296 7 776
7 49 343 2 ,401 16 807
8 64 512 4 096 32 768
9 81 729 6 561 59 049
10 100 1 000 9001 4 10 000 100 000
11 121 1 331 14 641 161 051
12 144 1 728 20 736 248 832


9001 3 Таблица умножения
Факториалы Числа и формулы
Факториалы Числа и формулы Таблица умножения

Источники +

Наши общие источники

Видео с вопросами: Формулы множественных углов из формулы Эйлера

Стенограмма видео

Используйте формулу Эйлера, чтобы вывести формулу для cos 5 𝜃 и sin 5 𝜃 через sin 𝜃 и cos 𝜃.

Напомним, формула Эйлера говорит, что 𝑒 в степени 𝑖𝜃 равно cos 𝜃 плюс 𝑖 sin 𝜃. Итак, как мы применим это, чтобы вывести формулу для cos, равного пяти 𝜃, и sin, равного пяти 𝜃? Что ж, мы собираемся начать с возведения обеих частей этой формулы в пятую степень. Теперь мы можем сказать, что 𝑒 в 𝑖𝜃 все в пятой степени равно 𝑒 в пяти 𝑖𝜃. Но тогда, конечно, мы могли бы использовать формулу Эйлера, чтобы переписать это как cos пять 𝜃 плюс 𝑖 sin of Five 𝜃. Итак, у нас есть уравнение потому что пять 𝜃 плюс 𝑖 грех пяти 𝜃 равно косинусу 𝜃 плюс 𝑖 грех 𝜃 все в пятой степени. И теперь мы можем использовать биномиальную теорему, чтобы распределить эти скобки.

Это говорит о том, что 𝑎 плюс 𝑏 в 𝑛-й степени является суммой от 𝑘 равной нулю до 𝑛 из 𝑛 выберите 𝑘, умноженное на 𝑎 в степени 𝑛 минус 𝑘, умноженное на 𝑏 в 𝑘-й степени. Когда 𝑛 равно пяти, мы имеем 𝑎 плюс 𝑏 в пятой степени равно 𝑎 в пятой степени плюс пять выбрать один 𝑎 в четвертой степени 𝑏 плюс пять выбрать два раза 𝑎 в кубе умножить на 𝑏 в квадрате и так далее. На самом деле, пять выбирают один и пять выбирают четыре равно пяти, а пять выбирают два и пять выбирают три равны 10. Итак, у нас есть следующая формула, которая поможет нам распределить скобки cos 𝜃 плюс 𝑖 sin 𝜃 в пятой степени. Первый член — это просто cos 𝜃 в пятой степени, а второй — пять cos 𝜃 в четвертой степени, умноженные на 𝑖 sin 𝜃.

Но на самом деле, давайте переместим 𝑖 вперед и запишем это как пять 𝑖 cos 𝜃 в четвертой степени sin 𝜃. Тогда третий член равен 10 кос в кубе 𝜃 умножить на 𝑖 грех 𝜃 в квадрате, что можно записать как 10 кос в кубе 𝜃 умножить на 𝑖 в квадрате умножить на квадрат греха 𝜃. Но мы знаем, что 𝑖 в квадрате равен минус единице. Таким образом, мы можем переписать это далее как отрицательные 10 cos в кубе 𝜃 sin в квадрате 𝜃. Тогда наш четвертый член равен 10 кос в квадрате 𝜃 умножить на 𝑖 грех 𝜃 в кубе. И если мы считаем 𝑖 в кубе равным 𝑖 умножить на 𝑖 в квадрате, мы увидим, что все это выражение можно переписать как минус 10 𝑖 умножить на кос в квадрате 𝜃 умножить на грех в кубе 𝜃. Тогда у нас есть пять cos 𝜃 умноженных на 𝑖 sin 𝜃 в четвертой степени. А так как 𝑖 в четвертой степени равно 𝑖 в квадрате, это отрицательная единица в квадрате, то есть просто единица. И этот термин становится пятью cos 𝜃 sin 𝜃 в четвертой степени.

Наш последний термин равен 𝑖 sin 𝜃 в пятой степени. 𝑖 в пятой степени равно 𝑖 в четвертой степени, умноженное на 𝑖. Итак, мы имеем просто 𝑖 sin 𝜃 в пятой степени. Итак, наше уравнение теперь представляет собой кос пять 𝜃 плюс 𝑖 грех пять 𝜃 равно кос 𝜃 в пятой степени плюс пять 𝑖 cos 𝜃 в четвертой степени умножить на грех 𝜃 минус 10 кос в кубе 𝜃 грех в квадрате 𝜃 и так далее. И теперь мы готовы вывести формулу для пяти 𝜃. Мы делаем это, приравнивая или сравнивая действительные части с каждой стороны нашего уравнения. в левой части это просто кос пять 𝜃, тогда как в правой части у нас есть кос 𝜃 в пятой степени минус 10 куб куб 𝜃 квадрат греха 𝜃 плюс пять кос 𝜃 грех 𝜃 в четвертой степени.

Поскольку мы знаем, что действительные компоненты в каждой части нашего уравнения должны быть равны, мы создаем следующее уравнение. И мы могли бы оставить это так. Но мы могли бы также вспомнить, что квадрат греха 𝜃 плюс квадрат квадрата 𝜃 равен единице. А затем, написав, что грех в квадрате 𝜃 равен единице минус косинус в квадрате 𝜃, мы находим косинус пять 𝜃 равно косинусу 𝜃 в пятой степени минус 10 косинус в кубе 𝜃 умноженный на один минус косинус в квадрате 𝜃 плюс пять косинусов 𝜃 умноженный на один минус косинус в квадрате 𝜃 в квадрате .

Наконец, мы распределяем скобки. И мы находим, что правая часть этого уравнения становится 16 cos 𝜃 в пятой степени минус 20 cos в кубе 𝜃 плюс пять cos 𝜃. Итак, мы получили нашу формулу для пяти 𝜃. Фактически, мы повторяем этот процесс для пяти 𝜃. На этот раз, однако, мы собираемся сравнить воображаемые части. В левой части у нас есть грех пять 𝜃, тогда как в правой части у нас есть пять кос 𝜃 в четвертой степени грех 𝜃 минус 10 кос в квадрате 𝜃 грех в кубе 𝜃 плюс грех 𝜃 в пятой степени. Таким образом, наше уравнение для греха пять 𝜃 становится грехом пять 𝜃 равно пяти, потому что 𝜃 в четвертой степени, грех 𝜃 минус 10, потому что в квадрате 𝜃 грех в кубе 𝜃 плюс грех 𝜃 в пятой степени.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *