1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(30 град. ) | |
4 | Найти точное значение | sin(60 град. ) | |
5 | Найти точное значение | tan(30 град. ) | |
6 | Найти точное значение | arcsin(-1) | |
7 | Найти точное значение | sin(pi/6) | |
8 | cos(pi/4) | ||
9 | Найти точное значение | sin(45 град. ) | |
10 | Найти точное значение | sin(pi/3) | |
11 | Найти точное значение | arctan(-1) | |
12 | Найти точное значение | cos(45 град. ) | |
13 | Найти точное значение | cos(30 град. ) | |
14 | Найти точное значение | tan(60) | |
15 | Найти точное значение | csc(45 град. ) | |
16 | Найти точное значение | tan(60 град. ) | |
17 | Найти точное значение | sec(30 град. ) | |
18 | Найти точное значение | cos(60 град. ) | |
19 | Найти точное значение | cos(150) | |
20 | Найти точное значение | sin(60) | |
21 | Найти точное значение | cos(pi/2) | |
22 | Найти точное значение | tan(45 град. ) | |
23 | Найти точное значение | arctan(- квадратный корень из 3) | |
24 | Найти точное значение | csc(60 град. ) | |
25 | Найти точное значение | sec(45 град. ) | |
26 | Найти точное значение | csc(30 град. ) | |
27 | Найти точное значение | sin(0) | |
28 | Найти точное значение | sin(120) | |
29 | Найти точное значение | cos(90) | |
30 | Преобразовать из радианов в градусы | pi/3 | |
31 | Найти точное значение | tan(30) | |
32 | Преобразовать из градусов в радианы | 45 | |
33 | Найти точное значение | cos(45) | |
34 | Упростить | sin(theta)^2+cos(theta)^2 | |
35 | Преобразовать из радианов в градусы | pi/6 | |
36 | Найти точное значение | cot(30 град. ) | |
37 | Найти точное значение | arccos(-1) | |
38 | Найти точное значение | arctan(0) | |
39 | Найти точное значение | cot(60 град. ) | |
40 | Преобразовать из градусов в радианы | 30 | |
41 | Преобразовать из радианов в градусы | (2pi)/3 | |
42 | Найти точное значение | sin((5pi)/3) | |
43 | Найти точное значение | sin((3pi)/4) | |
44 | Найти точное значение | tan(pi/2) | |
45 | Найти точное значение | sin(300) | |
46 | Найти точное значение | cos(30) | |
47 | Найти точное значение | cos(60) | |
48 | Найти точное значение | cos(0) | |
49 | Найти точное значение | cos(135) | |
50 | Найти точное значение | cos((5pi)/3) | |
51 | Найти точное значение | cos(210) | |
52 | Найти точное значение | sec(60 град. ) | |
53 | Найти точное значение | sin(300 град. ) | |
54 | Преобразовать из градусов в радианы | 135 | |
55 | Преобразовать из градусов в радианы | 150 | |
56 | Преобразовать из радианов в градусы | (5pi)/6 | |
57 | Преобразовать из радианов в градусы | (5pi)/3 | |
58 | Преобразовать из градусов в радианы | 89 град. | |
59 | Преобразовать из градусов в радианы | 60 | |
60 | Найти точное значение | sin(135 град. ) | |
61 | Найти точное значение | sin(150) | |
62 | Найти точное значение | sin(240 град. ) | |
63 | Найти точное значение | cot(45 град. ) | |
64 | Преобразовать из радианов в градусы | (5pi)/4 | |
65 | Найти точное значение | sin(225) | |
66 | Найти точное значение | sin(240) | |
67 | Найти точное значение | cos(150 град. ) | |
68 | Найти точное значение | tan(45) | |
69 | Вычислить | sin(30 град. ) | |
70 | Найти точное значение | sec(0) | |
71 | Найти точное значение | cos((5pi)/6) | |
72 | Найти точное значение | csc(30) | |
73 | Найти точное значение | arcsin(( квадратный корень из 2)/2) | |
74 | Найти точное значение | tan((5pi)/3) | |
75 | Найти точное значение | tan(0) | |
76 | Вычислить | sin(60 град. ) | |
77 | Найти точное значение | arctan(-( квадратный корень из 3)/3) | |
78 | Преобразовать из радианов в градусы | (3pi)/4 | |
79 | Найти точное значение | sin((7pi)/4) | |
80 | Найти точное значение | arcsin(-1/2) | |
81 | Найти точное значение | sin((4pi)/3) | |
82 | Найти точное значение | csc(45) | |
83 | Упростить | arctan( квадратный корень из 3) | |
84 | Найти точное значение | sin(135) | |
85 | Найти точное значение | sin(105) | |
86 | Найти точное значение | sin(150 град. ) | |
87 | Найти точное значение | sin((2pi)/3) | |
88 | Найти точное значение | tan((2pi)/3) | |
89 | Преобразовать из радианов в градусы | pi/4 | |
90 | Найти точное значение | sin(pi/2) | |
91 | Найти точное значение | sec(45) | |
92 | Найти точное значение | cos((5pi)/4) | |
93 | Найти точное значение | cos((7pi)/6) | |
94 | Найти точное значение | arcsin(0) | |
95 | Найти точное значение | sin(120 град. ) | |
96 | Найти точное значение | tan((7pi)/6) | |
97 | Найти точное значение | cos(270) | |
98 | Найти точное значение | sin((7pi)/6) | |
99 | Найти точное значение | arcsin(-( квадратный корень из 2)/2) | |
100 | Преобразовать из градусов в радианы | 88 град. |
График логарифма и экспоненты. Основное свойство логарифмов и его следствия
Приведены основные свойства натурального логарифма, график, область определения, множество значений, основные формулы, производная, интеграл, разложение в степенной ряд и представление функции ln x посредством комплексных чисел.
Определение
Натуральный логарифм — это функция y = ln x , обратная к экспоненте , x = e y , и являющаяся логарифмом по основанию числа е : ln x = log e x .
Натуральный логарифм широко используется в математике, поскольку его производная имеет наиболее простой вид: (ln x)′ = 1/ x .
Исходя из определения , основанием натурального логарифма является число е :
е
≅ 2,718281828459045…
;
.
График функции y = ln x .
График натурального логарифма (функции y = ln x ) получается из графика экспоненты зеркальным отражением относительно прямой y = x .
Натуральный логарифм определен при положительных значениях переменной x . Он монотонно возрастает на своей области определения.
При x → 0 пределом натурального логарифма является минус бесконечность ( — ∞ ).
При x → + ∞ пределом натурального логарифма является плюс бесконечность ( + ∞ ). При больших x логарифм возрастает довольно медленно.
Свойства натурального логарифма
Область определения, множество значений, экстремумы, возрастание, убывание
Натуральный логарифм является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные свойства натурального логарифма представлены в таблице.
Значения ln x
ln 1 = 0
Основные формулы натуральных логарифмов
Формулы, вытекающие из определения обратной функции:
Основное свойство логарифмов и его следствия
Формула замены основания
Любой логарифм можно выразить через натуральные логарифмы с помощью формулы замены основания:
Доказательства этих формул представлены в разделе «Логарифм» .
Обратная функция
Обратной для натурального логарифма является экспонента .
Если , то
Если , то .
Производная ln x
Производная натурального логарифма:
.
Производная натурального логарифма от модуля x
:
.
Производная n-го порядка:
.
Вывод формул > > >
Интеграл
Интеграл вычисляется интегрированием по частям :
.
Итак,
Выражения через комплексные числа
Рассмотрим функцию комплексной переменной z
:
.
Выразим комплексную переменную z через модуль r и аргумент φ :
.
Используя свойства логарифма, имеем:
.
Или
.
Аргумент φ
определен не однозначно. Если положить
,
где n — целое,
то будет одним и тем же числом при различных n
.
Поэтому натуральный логарифм, как функция от комплексного переменного, является не однозначной функцией.
Разложение в степенной ряд
При имеет место разложение:
Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Совсем неплохо, правда? Пока математики подбирают слова, чтобы дать вам длинное путанное определение, давайте поближе посмотрим на это простое и ясное.
Число e означает рост
Число e означает непрерывный рост. Как мы видели в прошлом примере, e x позволяет нам увязать процент и время: 3 года при росте 100% есть то же самое, что и 1 год при 300%, при условии «сложных процентов».
Можно подставлять любые значения процента и времени (50% на протяжении 4 лет), но лучше задать процент как 100% для удобства (получается 100% на протяжении 2 лет). За счёт перехода к 100% мы можем сфокусироваться исключительно на компоненте времени:
e x = e процент * время = e 1.0 * время = e время
Очевидно, что e x означает:
- насколько вырастет мой вклад через x единиц времени (при условии 100%-го непрерывного роста).
- например, через 3 промежутка времени я получу в e 3 = 20.08 раз больше «штуковин».
e x — это масштабирующий коэффициент, показывающий, до какого уровня мы вырастем за x отрезков времени.
Натуральный логарифм означает время
Натуральный логарифм — это инверсия числа e, такой причудливый термин для обозначения противоположности. Кстати, о причудах; по латыни он называется logarithmus naturali , отсюда и появилась аббревиатура ln.
И что эта инверсия или противоположность означает?
- e x позволяет нам подставить время и получить рост.
- ln(x) позволяет нам взять рост или доход и узнать время, необходимое для его получения.
Например:
- e 3 равняется 20.08. Через три отрезка времени у нас будет в 20.08 раз больше того, с чего мы начали.
- ln(20.08) будет примерно 3. Если вас интересует рост в 20.08 раз, вам понадобится 3 промежутка времени (опять же, при условии стопроцентного непрерывного роста).
Всё ещё читаете? Натуральный логарифм показывает время, нужное, чтобы достичь желаемого уровня.
Этот нестандартный логарифмический счёт
Вы проходили логарифмы — это странные существа. Как им удалось превратить умножение в сложение? А деление в вычитание? Давайте посмотрим.
Чему равняется ln(1)? Интуитивно понятно, что вопрос стоит так: сколько нужно ждать, чтобы получить в 1 раз больше того, что у меня есть?
Ноль. Нуль. Нисколько. У вас уже это есть единожды. Не требуется нисколько времени, чтобы от уровня 1 дорости до уровня 1.
- ln(1) = 0
Хорошо, что насчёт дробного значения? Через сколько у нас останется 1/2 от имеющегося количества? Мы знаем, что при стопроцентном непрерывном росте ln(2) означает время, необходимое для удвоения. Если мы обратим время вспять (т.е. подождём отрицательное количество времени), то получим половину от того, что имеем.
- ln(1/2) = -ln(2) = -0.693
Логично, правда? Если мы вернёмся назад (время вспять) на 0.693 секунды, то обнаружим половину имеющегося количества. Вообще можно переворачивать дробь и брать отрицательное значение: ln(1/3) = -ln(3) = -1.09. Это означает, что, если мы вернёмся в прошлое на 1.09 отрезков времени, то обнаружим только треть от нынешнего числа.
Ладно, а как насчёт логарифма отрицательного числа? Сколько времени нужно, чтобы «вырастить» колонию бактерий от 1 до -3?
Это невозможно! Нельзя получить отрицательное число бактерий, не так ли? Вы можете получить максимум (эээ. .. минимум) нуль, но вам никак не получить отрицательное число этих маленьких тварей. В отрицательном числе бактерий просто нет смысла.
- ln(отрицательное число) = неопределено
«Неопределено» означает, что нет такого промежутка времени, который надо было бы прождать, чтобы получить отрицательное значение.
Логарифмическое умножение — просто умора
Сколько времени займёт четырёхкратный рост? Конечно, можно просто взять ln(4). Но это слишком просто, мы пойдём другим путём.
Можно представить четырёхкратный рост как удвоение (требующее ln(2) единиц времени) и затем снова удвоение (требующее ещё ln(2) единиц времени):
- Время на 4х рост = ln(4) = Время на удвоится и затем ещё раз удвоится = ln(2) + ln(2)
Интересно. Любой показатель роста, скажем, 20, можно рассматривать как удвоение сразу после 10-кратного увеличения. Или роста в 4 раза, и затем в 5 раз. Либо же утроение и затем увеличение в 6.666 раз. Видите закономерность?
- ln(a*b) = ln(a) + ln(b)
Логарифм от A, умноженного на B, есть log(A) + log(B). Это отношение сразу обретает смысл, если оперировать в терминах роста.
Если вас интересует 30-кратный рост, вы можете подождать ln(30) за один присест, либо же подождать ln(3) Для утроения, и затем ещё ln(10) для удесятирения. Конечный результат тот же самый, так что конечно время должно оставаться постоянным (и остаётся).
Что на счёт деления? В частности, ln(5/3) означает: сколько времени понадобится для того, чтобы вырасти в 5 раз, и затем получить 1/3 от этого?
Отлично, рост в 5 раз есть ln(5). Рост в 1/3 раза займёт -ln(3) единиц времени. Итак,
- ln(5/3) = ln(5) – ln(3)
Сие означает: дайте вырасти в 5 раз, и затем «вернитесь во времени» к той отметке, где останется всего треть от того количества, так что у вас получится 5/3 рост. В общем получается
- ln(a/b) = ln(a) – ln(b)
Я надеюсь, что странная арифметика логарифмов начинает обретать для вас смысл: умножение показателей роста становится сложением единиц времени роста, а деление превращается в вычитание единиц времени. Не надо запоминать правила, попробуйте осознать их.
Использование натурального логарифма при произвольном росте
Ну конечно, — скажете вы, — это всё хорошо, если рост 100%-ный, а что в случае 5%, которые я получаю?»
Нет проблем. «Время», которое мы рассчитываем с помощью ln(), на самом деле является комбинацией процентной ставки и времени, тот самый Х из уравнения e x . Мы всего лишь решили задать процент как 100% для простоты, но мы вольны использовать любые числа.
Допустим, мы хотим достичь 30-кратного роста: берём ln(30) и получаем 3.4 Это означает:
- e x = рост
- e 3.4 = 30
Очевидно, это уравнение означает «100%-ная доходность на протяжении 3.4 лет даёт рост в 30 раз». Мы можем записать это уравнение в таком виде:
- e x = e ставка*время
- e 100% * 3.4 года = 30
Мы можем менять значения «ставки» и «времени», лишь бы ставка * время оставалось 3.4. Например, если нас интересует 30-кратный рост — сколько нам придётся ждать при процентной ставке 5%?
- ln(30) = 3. 4
- ставка * время = 3.4
- 0.05 * время = 3.4
- время = 3.4 / 0.05 = 68 лет
Я рассуждаю так: «ln(30) = 3.4, значит, при 100%-ном росте это займёт 3.4 года. Если я удвою скорость роста, необходимое время уменьшится вдвое».
- 100% за 3.4 года = 1.0 * 3.4 = 3.4
- 200% за 1.7 года = 2.0 * 1.7 = 3.4
- 50% за 6.8 года = 0.5 * 6.8 = 3.4
- 5% за 68 года = .05 * 68 = 3.4 .
Здорово, правда? Натуральный логарифм может использоваться с любыми значениями процентной ставки и времени, поскольку их произведение остаётся постоянным. Можете перемещать значения переменных сколько душе угодно.
Отпадный пример: Правило семидесяти двух
Правило семидесяти двух — математический приём, позволяющий оценить, сколько времени понадобится, чтобы ваши деньги удвоились. Сейчас мы его выведем (да!), и более того, мы попробуем уяснить его суть.
Сколько времени понадобится, чтобы удвоить ваши деньги при 100% ставке, нарастающей ежегодно?
Оп-па. Мы использовали натуральный логарифм для случая с непрерывным ростом, а теперь ты ведёшь речь о ежегодном начислении? Не станет ли это формула непригодной для такого случая? Да, станет, однако для реальных процентных ставок вроде 5%, 6% или даже 15%, разница между ежегодным начислением процентов и непрерывным ростом будет невелика. Так что грубая оценка работает, мм, грубо, так что мы сделаем вид, что у нас полностью непрерывное начисление.
Теперь вопрос прост: Как быстро можно удвоиться при 100%-ном росте? ln(2) = 0.693. Нужно 0.693 единиц времени (лет — в нашем случае), чтобы удвоить нашу сумму с непрерывным ростом 100%.
Так, а что если процентная ставка — не 100%, а скажем, 5% или 10%?
Легко! Поскольку ставка * время = 0.693, мы удвоим сумму:
- ставка * время = 0.693
- время = 0.693 / ставка
Получается, если рост 10%-ный, это займёт 0.693 / 0.10 = 6.93 лет на удвоение.
Чтобы упростить вычисления, давайте домножим обе части на 100, тогда можно будет говорить «10», а не «0. 10″:
- время на удвоение = 69.3 / ставка, где ставка выражена в процентах.
Теперь черёд удваиваться при ставке 5%, 69.3 / 5 = 13.86 лет. Однако 69.3 — не самое удобное делимое. Давайте выберем близкое число, 72, которое удобно делить на 2, 3, 4, 6, 8 и другие числа.
- время на удвоение = 72 / ставка
что и является правилом семидесяти двух. Всё шито-крыто.
Если вам нужно найти время для утроения, можете использовать ln(3) ~ 109.8 и получить
- время на утроение = 110 / ставка
Что является ещё одним полезным правилом. «Правило 72» применимо росту по процентным ставкам, росту населения, культур бактерий, и всего, что растёт экспоненциально.
Что дальше?
Надеюсь, натуральный логарифм теперь приобрёл для вас смысл — он показывает время, необходимое для роста любого числа при экспоненциальном росте. Я думаю, натуральным он называется потому, что e — универсальная мера роста, так что ln можно считать универсальным способом определения, сколько времени нужно для роста.
Каждый раз, когда вы видите ln(x), вспоминайте «время, нужное, чтобы вырасти в Х раз». В предстоящей статье я опишу e и ln в связке, так что свежий аромат математики заполнит воздух.
Дополнение: Натуральный логарифм от e
Быстрая викторина: сколько будет ln(e)?
- математический робот скажет: поскольку они определены как инверсия одна другой, очевидно, что ln(e) = 1.
- понимающий человек: ln(e) это число времени, чтобы вырасти в «е» раз (около 2.718). Однако число e само по себе является мерой роста в 1 раз, так что ln(e) = 1.
Мыслите ясно.
9 сентября 2013
нередко берут цифру е = 2,718281828 . Логарифмы по данному основанию именуют натуральным . При проведении вычислений с натуральными логарифмами общепринято оперировать знаком l n , а не log ; при этом число 2,718281828 , определяющие основание, не указывают.
Другими словами формулировка будет иметь вид: натуральный логарифм числа х — это показатель степени , в которую нужно возвести число e , чтобы получить x .
Так, ln(7,389…) = 2, так как e 2 =7,389… . Натуральный логарифм самого числа e = 1, потому что e 1 =e , а натуральный логарифм единицы равен нулю, так как e 0 = 1.
Само число е определяет предел монотонной ограниченной последовательности
вычислено, что е = 2,7182818284… .
Весьма часто для фиксации в памяти какого либо числа, цифры необходимого числа ассоциируют с какой-нибудь выдающейся датой. Скорость запоминания первых девяти знаков числа е после запятой возрастет, если заметить, что 1828 — это год рождения Льва Толстого!
На сегодняшний день существуют достаточно полные таблицы натуральных логарифмов.
График натурального логарифма (функции y = ln x ) является следствием графика экспоненты зеркальным отражением относительно прямой у = х и имеет вид:
Натуральный логарифм может быть найден для каждого положительного вещественного числа a как площадь под кривой y = 1/x от 1 до a .
Элементарность этой формулировку, которая состыковывается со многими другими формулами, в которых задействован натуральный логарифм, явилось причиной образования названия «натуральный».
Если анализировать натуральный логарифм , как вещественную функцию действительной переменной, то она выступает обратной функцией к экспоненциальной функции, что сводится к тождествам:
e ln(a) =a (a>0)
ln(e a) =a
По аналогии со всеми логарифмами, натуральный логарифм преобразует умножение в сложение, деление в вычитание:
ln (xy ) = ln (x ) + ln (y )
ln (х/у)= lnx — lny
Логарифм может быть найден для каждого положительного основания, которое не равно единице, а не только для e , но логарифмы для других оснований отличаются от натурального логарифма только постоянным множителем, и, обычно, определяются в терминах натурального логарифма.
Проанализировав график натурального логарифма, получаем, что он существует при положительных значениях переменной x . Он монотонно возрастает на своей области определения.
При x → 0 пределом натурального логарифма выступает минус бесконечность ( -∞ ).При x → +∞ пределом натурального логарифма выступает плюс бесконечность ( + ∞ ). При больших x логарифм возрастает довольно медленно. Любая степенная функция x a с положительным показателем степени a возрастает быстрее логарифма. Натуральный логарифм является монотонно возрастающей функцией, поэтому экстремумы у него отсутствуют.
Использование натуральных логарифмов весьма рационально при прохождении высшей математики. Так, использование логарифма удобно для нахождения ответа уравнений, в которых неизвестные фигурируют в качестве показателя степени. Применение в расчетах натуральных логарифмом дает возможность изрядно облегчить большое количество математических формул. Логарифмы по основанию е присутствуют при решении значительного числа физических задач и естественным образом входят в математическое описание отдельных химических, биологических и прочих процессов. Так, логарифмы употребляются для расчета постоянной распада для известного периода полураспада, или для вычисления времени распада в решении проблем радиоактивности. Они выступают в главной роли во многих разделах математики и практических наук, к ним прибегают в сфере финансов для решения большого числа задач, в том числе и в расчете сложных процентов.
Как известно, при перемножении выражений со степенями их показатели всегда складываются (a b *a c = a b+c). Этот математический закон был выведен Архимедом, а позже, в VIII веке, математик Вирасен создал таблицу целых показателей. Именно они послужили для дальнейшего открытия логарифмов. Примеры использования этой функции можно встретить практически везде, где требуется упростить громоздкое умножение на простое сложение. Если вы потратите минут 10 на прочтение этой статьи, мы вам объясним, что такое логарифмы и как с ними работать. Простым и доступным языком.
Определение в математике
Логарифмом называется выражение следующего вида: log a b=c, то есть логарифмом любого неотрицательного числа (то есть любого положительного) «b» по его основанию «a» считается степень «c», в которую необходимо возвести основание «a», чтобы в итоге получить значение «b». Разберем логарифм на примерах, допустим, есть выражение log 2 8. Как найти ответ? Очень просто, нужно найти такую степень, чтобы из 2 в искомой степени получить 8. Проделав в уме некоторые расчеты, получаем число 3! И верно, ведь 2 в степени 3 дает в ответе число 8.
Разновидности логарифмов
Для многих учеников и студентов эта тема кажется сложной и непонятной, однако на самом деле логарифмы не так страшны, главное — понять общий их смысл и запомнить их свойста и некоторые правила. Существует три отдельных вида логарифмических выражений:
- Натуральный логарифм ln a, где основанием является число Эйлера (e = 2,7).
- Десятичный a, где основанием служит число 10.
- Логарифм любого числа b по основанию a>1.
Каждый из них решается стандартным способом, включающим в себя упрощение, сокращение и последующее приведение к одному логарифму с помощью логарифмических теорем. Для получения верных значений логарифмов следует запомнить их свойства и очередность действий при их решениях.
Правила и некоторые ограничения
В математике существует несколько правил-ограничений, которые принимаются как аксиома, то есть не подлежат обсуждению и являются истиной. Например, нельзя числа делить на ноль, а еще невозможно извлечь корень четной степени из отрицательных чисел. Логарифмы также имеют свои правила, следуя которым можно с легкостью научиться работать даже с длинными и емкими логарифмическими выражениями:
- основание «a» всегда должно быть больше нуля, и при этом не быть равным 1, иначе выражение потеряет свой смысл, ведь «1» и «0» в любой степени всегда равны своим значениям;
- если а > 0, то и а b >0, получается, что и «с» должно быть больше нуля.
Как решать логарифмы?
К примеру, дано задание найти ответ уравнения 10 х = 100. Это очень легко, нужно подобрать такую степень, возведя в которую число десять, мы получим 100. Это, конечно же, 10 2 =100.
А теперь давайте представим данное выражение в виде логарифмического. Получим log 10 100 = 2. При решении логарифмов все действия практически сходятся к тому, чтобы найти ту степень, в которую необходимо ввести основание логарифма, чтобы получить заданное число.
Для безошибочного определения значенияя неизвестной степени необходимо научиться работать с таблицей степеней. Выглядит она следующим образом:
Как видите, некоторые показатели степени можно угадать интуитивно, если имеется технический склад ума и знание таблицы умножения. Однако для больших значений потребуется таблица степеней. Ею могут пользоваться даже те, кто совсем ничего не смыслит в сложных математических темах. В левом столбце указаны числа (основание a), верхний ряд чисел — это значение степени c, в которую возводится число a. На пересечении в ячейках определены значения чисел, являющиеся ответом (a c =b). Возьмем, к примеру, самую первую ячейку с числом 10 и возведем ее в квадрат, получим значение 100, которое указано на пересечении двух наших ячеек. Все так просто и легко, что поймет даже самый настоящий гуманитарий!
Уравнения и неравенства
Получается, что при определенных условиях показатель степени — это и есть логарифм. Следовательно, любые математические численные выражения можно записать в виде логарифмического равенства. Например, 3 4 =81 можно записать в виде логарифма числа 81 по основанию 3, равному четырем (log 3 81 = 4). Для отрицательных степеней правила такие же: 2 -5 = 1/32 запишем в виде логарифма, получим log 2 (1/32) = -5. Одной из самых увлекательных разделов математики является тема «логарифмы». Примеры и решения уравнений мы рассмотрим чуть ниже, сразу же после изучения их свойств. А сейчас давайте разберем, как выглядят неравенства и как их отличить от уравнений.
Дано выражение следующего вида: log 2 (x-1) > 3 — оно является логарифмическим неравенством, так как неизвестное значение «х» находится под знаком логарифма. А также в выражении сравниваются две величины: логарифм искомого числа по основанию два больше, чем число три.
Самое главное отличие между логарифмическими уравнениями и неравенствами заключается в том, что уравнения с логарифмами (пример — логарифм 2 x = √9) подразумевают в ответе одно или несколько определенных числовых значений, тогда как при решении неравенства определяются как область допустимых значений, так и точки разрыва этой функции. Как следствие, в ответе получается не простое множество отдельных чисел как в ответе уравнения, а а непрерывный ряд или набор чисел.
Основные теоремы о логарифмах
При решении примитивных заданий по нахождению значений логарифма, его свойства можно и не знать. Однако когда речь заходит о логарифмических уравнениях или неравенствах, в первую очередь, необходимо четко понимать и применять на практике все основные свойства логарифмов. С примерами уравнений мы познакомимся позже, давайте сначала разберем каждое свойство более подробно.
- Основное тождество выглядит так: а logaB =B. Оно применяется только при условии, когда а больше 0, не равно единице и B больше нуля.
- Логарифм произведения можно представить в следующей формуле: log d (s 1 *s 2) = log d s 1 + log d s 2. При этом обязательным условием является: d, s 1 и s 2 > 0; а≠1. Можно привести доказательство для этой формулы логарифмов, с примерами и решением. Пусть log a s 1 = f 1 и log a s 2 = f 2 , тогда a f1 = s 1 , a f2 = s 2. Получаем, что s 1 *s 2 = a f1 *a f2 = a f1+f2 (свойства степеней), а далее по определению: log a (s 1 *s 2)= f 1 + f 2 = log a s1 + log a s 2, что и требовалось доказать.
- Логарифм частного выглядит так: log a (s 1/ s 2) = log a s 1 — log a s 2.
- Теорема в виде формулы приобретает следующий вид: log a q b n = n/q log a b.
Называется эта формула «свойством степени логарифма». Она напоминает собой свойства обычных степеней, и неудивительно, ведь вся математика держится на закономерных постулатах. Давайте посмотрим на доказательство.
Пусть log a b = t, получается a t =b. Если возвести обе части в степень m: a tn = b n ;
но так как a tn = (a q) nt/q = b n , следовательно log a q b n = (n*t)/t, тогда log a q b n = n/q log a b. Теорема доказана.
Примеры задач и неравенств
Самые распространенные типы задач на тему логарифмов — примеры уравнений и неравенств. Они встречаются практически во всех задачниках, а также входят в обязательную часть экзаменов по математике. Для поступления в университет или сдачи вступительных испытаний по математике необходимо знать, как правильно решать подобные задания.
К сожалению, единого плана или схемы по решению и определению неизвестного значения логарифма не существует, однако к каждому математическому неравенству или логарифмическому уравнению можно применить определенные правила. Прежде всего следует выяснить, можно ли упростить выражение или привести к общему виду. Упрощать длинные логарифмические выражения можно, если правильно использовать их свойства. Давайте скорее с ними познакомимся.
При решении же логарифмических уравнений, следует определить, какой перед нами вид логарифма: пример выражения может содержать натуральный логарифм или же десятичный.
Вот примеры ln100, ln1026. Их решение сводится к тому, что нужно определить ту степень, в которой основание 10 будет равно 100 и 1026 соответственно. Для решений же натуральных логарифмов нужно применить логарифмические тождества или же их свойства. Давайте на примерах рассмотрим решение логарифмических задач разного типа.
Как использовать формулы логарифмов: с примерами и решениями
Итак, рассмотрим примеры использования основных теорем о логарифмах.
- Свойство логарифма произведения можно применять в заданиях, где необходимо разложить большое значение числа b на более простые сомножители. Например, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Ответ равен 9.
- log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 — как видите, применяя четвертое свойство степени логарифма, удалось решить на первый взгляд сложное и нерешаемое выражение. Необходимо всего лишь разложить основание на множители и затем вынести значения степени из знака логарифма.
Задания из ЕГЭ
Логарифмы часто встречаются на вступительных экзаменах, особенно много логарифмических задач в ЕГЭ (государственный экзамен для всех выпускников школ). Обычно эти задания присутствуют не только в части А (самая легкая тестовая часть экзамена), но и в части С (самые сложные и объемные задания). Экзамен подразумевает точное и идеальное знание темы «Натуральные логарифмы».
Примеры и решения задач взяты из официальных вариантов ЕГЭ. Давайте посмотрим, как решаются такие задания.
Дано log 2 (2x-1) = 4. Решение:
перепишем выражение, немного его упростив log 2 (2x-1) = 2 2 , по определению логарифма получим, что 2x-1 = 2 4 , следовательно 2x = 17; x = 8,5.
- Все логарифмы лучше всего приводить к одному основанию, чтобы решение не было громоздким и запутанным.
- Все выражение, стоящие под знаком логарифма, указываются как положительные, поэтому при вынесении множителем показателя степени выражения, который стоит под знаком логарифма и в качестве его основания, остающееся под логарифмом выражение должно быть положительно.
Натуральный логарифм
График функции натурального логарифма. Функция медленно приближается к положительной бесконечности при увеличении x и быстро приближается к отрицательной бесконечности, когда x стремится к 0 («медленно» и «быстро» по сравнению с любой степенной функцией от x ).
Натуральный логарифм — это логарифм по основанию , где e — иррациональная константа, равная приблизительно 2,718281 828 . Натуральный логарифм обычно обозначают как ln(x ), log e (x ) или иногда просто log(x ), если основание e подразумевается.
Натуральный логарифм числа x (записывается как ln(x) ) — это показатель степени , в которую нужно возвести число e , чтобы получить x . Например, ln(7,389…) равен 2, потому что e 2 =7,389… . Натуральный логарифм самого числа e (ln(e) ) равен 1, потому что e 1 = e , а натуральный логарифм 1 (ln(1) ) равен 0, поскольку e 0 = 1.
Натуральный логарифм может быть определён для любого положительного вещественного числа a как площадь под кривой y = 1/x от 1 до a . Простота этого определения, которое согласуется со многими другими формулами, в которых применяется натуральный логарифм, привела к появлению названия «натуральный». Это определение можно расширить на комплексные числа , о чём будет сказано ниже.
Если рассматривать натуральный логарифм как вещественную функцию действительной переменной, то она является обратной функцией к экспоненциальной функции, что приводит к тождествам:
Подобно всем логарифмам, натуральный логарифм отображает умножение в сложение:
Таким образом, логарифмическая функция представляет собой изоморфизм группы положительных действительных чисел относительно умножения на группу вещественных чисел по сложению, который можно представить в виде функции :
Логарифм может быть определён для любого положительного основания, отличного от 1, а не только для e , но логарифмы для других оснований отличаются от натурального логарифма только постоянным множителем, и, как правило, определяются в терминах натурального логарифма. Логарифмы полезны для решения уравнений, в которых неизвестные присутствуют в качестве показателя степени. Например, логарифмы используются для нахождения постоянной распада для известного периода полураспада, или для нахождения времени распада в решении проблем радиоактивности . Они играют важную роль во многих областях математики и прикладных наук, применяются в сфере финансов для решения многих задач, включая нахождение сложных процентов.
История
Первое упоминание натурального логарифма сделал Николас Меркатор в работе Logarithmotechnia , опубликованной в 1668 году , хотя учитель математики Джон Спайделл ещё в 1619 году составил таблицу натуральных логарифмов. Ранее его называли гиперболическим логарифмом, поскольку он соответствует площади под гиперболой. Иногда его называют логарифмом Непера, хотя первоначальный смысл этого термина был несколько другой.
Конвенции об обозначениях
Натуральный логарифм принято обозначать через «ln(x )», логарифм по основанию 10 — через «lg(x )», а прочие основания принято указывать явно при символе «log».
Во многих работах по дискретной математике, кибернетике, информатике авторы используют обозначение «log(x )» для логарифмов по основанию 2, но это соглашение не является общепринятым и требует разъяснения либо в списке использованных обозначений, либо (при отсутствии такого списка) сноской или комментарием при первом использовании.
Скобки вокруг аргумента логарифмов (если это не приводит к ошибочному чтению формулы) обычно опускают, а при возведении логарифма в степень показатель приписывают непосредственно к знаку логарифма: ln 2 ln 3 4x 5 = [ ln( 3 )] 2 .
Англо-американская система
Математики, статистики и часть инженеров обычно используют для обозначения натурального логарифма либо «log(x )», либо «ln(x )» , а для обозначения логарифма по основанию 10 — «log 10 (x )».
Некоторые инженеры, биологи и другие специалисты всегда пишут «ln(x )» (или изредка «log e (x )»), когда они имеют в виду натуральный логарифм, а запись «log(x )» у них означает log 10 (x ).
log e является «натуральным» логарифмом, поскольку он возникает автоматически и появляется в математике очень часто. Например, рассмотрим проблему производной логарифмической функции:
Если основание b равно e , то производная равна просто 1/x , а при x = 1 эта производная равна 1. Другим обоснованием, по которому основание e логарифма является наиболее натуральным, является то, что он может быть довольно просто определён в терминах простого интеграла или ряда Тейлора , чего нельзя сказать о других логарифмах.
Дальнейшие обоснования натуральности не связаны со счислением. Так, например, есть несколько простых рядов с натуральными логарифмами. Пьетро Менголи и Николай Меркатор называли их логарифмус натуралис несколько десятилетий до тех пор, пока Ньютон и Лейбниц не разработали дифференциальное и интегральное исчисление.
Определение
Формально ln(a ) может быть определён как площадь под кривой графика 1/x от 1 до a , т. е. как интеграл :
Это действительно логарифм, поскольку он удовлетворяет фундаментальному свойству логарифма:
Это можно продемонстрировать, допуская следующим образом:
Численное значение
Для расчета численного значения натурального логарифма числа можно использовать разложение его в ряд Тейлора в виде:
Чтобы получить лучшую скорость сходимости, можно воспользоваться следующим тождеством:
при условии, что y = (x −1)/(x +1) и x > 0.
Для ln(x ), где x > 1, чем ближе значение x к 1, тем быстрее скорость сходимости. Тождества, связанные с логарифмом, можно использовать для достижения цели:
Эти методы применялись ещё до появления калькуляторов, для чего использовались числовые таблицы и выполнялись манипуляции, аналогичные вышеописанным.
Высокая точность
Для вычисления натурального логарифма с большим количеством цифр точности ряд Тейлора не является эффективным, поскольку его сходимость медленная. Альтернативой является использование метода Ньютона , чтобы инвертировать в экспоненциальную функцию, ряд которой сходится быстрее.
Альтернативой для очень высокой точности расчёта является формула:
где M обозначает арифметико-геометрическое среднее 1 и 4/s, и
m выбрано так, что p знаков точности достигается. (В большинстве случаев значение 8 для m вполне достаточно.) В самом деле, если используется этот метод, может быть применена инверсия Ньютона натурального логарифма для эффективного вычисления экспоненциальной функции. (Константы ln 2 и пи могут быть предварительно вычислены до желаемой точности, используя любой из известных быстро сходящихся рядов.)
Вычислительная сложность
Вычислительная сложность натуральных логарифмов (с помощью арифметико-геометрического среднего) равна O(M (n ) ln n ). Здесь n — число цифр точности, для которой натуральный логарифм должен быть оценен, а M (n ) — вычислительная сложность умножения двух n -значных чисел.
Непрерывные дроби
Хотя для представления логарифма отсутствуют простые непрерывные дроби , но можно использовать несколько обобщённых непрерывных дробей, в том числе:
Комплексные логарифмы
Экспоненциальная функция может быть расширена до функции, которая даёт комплексное число вида e x для любого произвольного комплексного числа x , при этом используется бесконечный ряд с комплексным x . Эта показательная функция может быть инвертирована с образованием комплексного логарифма, который будет обладать большей частью свойств обычных логарифмов. Есть, однако, две трудности: не существует x , для которого e x = 0, и оказывается, что e 2πi = 1 = e 0 . Поскольку свойство мультипликативности действительно для комплексной экспоненциальной функции, то e z = e z +2nπi для всех комплексных z и целых n .
Логарифм не может быть определён на всей комплексной плоскости , и даже при этом он является многозначным — любой комплексный логарифм может быть заменён на «эквивалентный» логарифм, добавив любое целое число, кратное 2πi . Комплексный логарифм может быть однозначным только на срезе комплексной плоскости. Например, ln i = 1/2 πi или 5/2 πi или −3/2 πi , и т.д., и хотя i 4 = 1, 4 log i может быть определена как 2πi , или 10πi или −6 πi , и так далее.
См. также
- Джон Непер — изобретатель логарифмов
Примечания
- Mathematics for physical chemistry . — 3rd. — Academic Press, 2005. — P. 9. — ISBN 0-125-08347-5 , Extract of page 9
- J J O»Connor and E F Robertson The number e . The MacTutor History of Mathematics archive (сентябрь 2001). Архивировано
- Cajori Florian A History of Mathematics, 5th ed . — AMS Bookstore, 1991. — P. 152. — ISBN 0821821024
- Flashman, Martin Estimating Integrals using Polynomials . Архивировано из первоисточника 12 февраля 2012.
E в степени натуральный логарифм. Разбираемся с натуральным логарифмом
Приведены основные свойства натурального логарифма, график, область определения, множество значений, основные формулы, производная, интеграл, разложение в степенной ряд и представление функции ln x посредством комплексных чисел.
Определение
Натуральный логарифм — это функция y = ln x , обратная к экспоненте , x = e y , и являющаяся логарифмом по основанию числа е : ln x = log e x .
Натуральный логарифм широко используется в математике, поскольку его производная имеет наиболее простой вид: (ln x)′ = 1/ x .
Исходя из определения , основанием натурального логарифма является число е :
е
≅ 2,718281828459045…
;
.
График функции y = ln x .
График натурального логарифма (функции y = ln x ) получается из графика экспоненты зеркальным отражением относительно прямой y = x .
Натуральный логарифм определен при положительных значениях переменной x . Он монотонно возрастает на своей области определения.
При x → 0 пределом натурального логарифма является минус бесконечность ( — ∞ ).
При x → + ∞ пределом натурального логарифма является плюс бесконечность ( + ∞ ). При больших x логарифм возрастает довольно медленно. Любая степенная функция x a с положительным показателем степени a растет быстрее логарифма.
Свойства натурального логарифма
Область определения, множество значений, экстремумы, возрастание, убывание
Натуральный логарифм является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные свойства натурального логарифма представлены в таблице.
Значения ln x
ln 1 = 0
Основные формулы натуральных логарифмов
Формулы, вытекающие из определения обратной функции:
Основное свойство логарифмов и его следствия
Формула замены основания
Любой логарифм можно выразить через натуральные логарифмы с помощью формулы замены основания:
Доказательства этих формул представлены в разделе «Логарифм» .
Обратная функция
Обратной для натурального логарифма является экспонента .
Если , то
Если , то .
Производная ln x
Производная натурального логарифма:
.
Производная натурального логарифма от модуля x
:
.
Производная n-го порядка:
.
Вывод формул > > >
Интеграл
Интеграл вычисляется интегрированием по частям :
.
Итак,
Выражения через комплексные числа
Рассмотрим функцию комплексной переменной z
:
.
Выразим комплексную переменную z через модуль r и аргумент φ :
.
Используя свойства логарифма, имеем:
.
Или
.
Аргумент φ
определен не однозначно. Если положить
,
где n — целое,
то будет одним и тем же числом при различных n
.
Поэтому натуральный логарифм, как функция от комплексного переменного, является не однозначной функцией.
Разложение в степенной ряд
При имеет место разложение:
Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Логарифмом положительного числа b по основанию a (a>0, a не равно 1) называют такое число с, что a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       
Обратите внимание: логарифм от неположительного числа не определен. Кроме того, в основании логарифма должно быть положительное число, не равное 1. Например, если мы возведем -2 в квадрат, получим число 4, но это не означает, что логарифм по основанию -2 от 4 равен 2.
Основное логарифмическое тождествоa log a b = b (a > 0, a ≠ 1) (2)
Важно, что области определения правой и левой частей этой формулы отличаются. Левая часть определена только при b>0, a>0 и a ≠ 1. Правая часть определена при любом b, а от a вообще не зависит. Таким образом, применение основного логарифмического «тождества» при решении уравнений и неравенств может привести к изменению ОДЗ.
Два очевидных следствия определения логарифма log
a
a = 1
(a > 0, a ≠ 1)
(3)
log
a
1 = 0
(a > 0, a ≠ 1)
(4)
Действительно, при возведении числа a в первую степень мы получим то же самое число, а при возведении в нулевую степень — единицу.
Логарифм произведения и логарифм частногоlog a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)
Log
a
b
c
=
log
a
b −
log
a
c
(a > 0, a ≠ 1, b > 0, c > 0)
(6)
Хотелось бы предостеречь школьников от бездумного применения данных формул при решении логарифмических уравнений и неравенств. При их использовании «слева направо» происходит сужение ОДЗ, а при переходе от суммы или разности логарифмов к логарифму произведения или частного — расширение ОДЗ.
Действительно, выражение log a (f (x) g (x)) определено в двух случаях: когда обе функции строго положительны либо когда f(x) и g(x) обе меньше нуля.
Преобразуя данное выражение в сумму log a f (x) + log a g (x) , мы вынуждены ограничиваться только случаем, когда f(x)>0 и g(x)>0. Налицо сужение области допустимых значений, а это категорически недопустимо, т. к. может привести к потере решений. Аналогичная проблема существует и для формулы (6).
Степень можно выносить за знак логарифмаlog a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)
И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:
Log a (f (x) 2 = 2 log a f (x)
Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть — только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.
Формула перехода к новому основаниюlog a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)
Тот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной.
Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8):
Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)
Несколько простых примеров с логарифмамиПример 1. Вычислите: lg2 + lg50.
Решение. lg2 + lg50 = lg100 = 2. Мы воспользовались формулой суммы логарифмов (5) и определением десятичного логарифма.
Пример 2. Вычислите: lg125/lg5.
Решение. lg125/lg5 = log 5 125 = 3. Мы использовали формулу перехода к новому основанию (8).
a log a b = b (a > 0, a ≠ 1) |
log a a = 1 (a > 0, a ≠ 1) |
log a 1 = 0 (a > 0, a ≠ 1) |
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) |
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) |
log a b p = p log a b (a > 0, a ≠ 1, b > 0) |
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) |
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) |
Это может быть, например, калькулятор из базового набора программ операционной системы Windows. Ссылка на его запуск упрятана довольно в главное меню ОС — раскройте его щелчком по кнопке «Пуск», затем откройте его раздел «Программы», перейдите в подраздел «Стандартные», а затем в секцию «Служебные» и, наконец, щелкните пункт «Калькулятор». Можно вместо мыши и перемещений по меню использовать клавиатуру и диалог запуска программ — нажмите сочетание клавиш WIN + R, наберите calc (это имя исполняемого файла калькулятора) и нажмите клавишу Enter.
Переключите интерфейс калькулятора в расширенный режим, позволяющий осуществлять . По умолчанию он открывается в «обычном» виде, а вам нужен «инженерный» или « » (в зависимости от версии используемой ОС). Раскройте в меню раздел «Вид» и выберите соответствующую строку.
Введите аргумент, натуральный которого нужно вычислить. Это можно сделать как с клавиатуры, так и щелкая мышкой соответствующие кнопки в интерфейсе калькулятора на экране.
Кликните кнопку с надписью ln — программа рассчитает логарифма по основанию e и покажет результат.
Воспользуйтесь каким-либо из -калькуляторов в качестве альтернативного вычисления значения натурального логарифма. Например, тем, который размещен по адресу http://calc.org.ua . Его интерфейс предельно прост — есть единственное поле ввода, куда вам надо впечатать значение числа, логарифм от которого надо вычислить. Среди кнопок найдите и щелкните ту, на которой написано ln. Скрипт этого калькулятора не требует отправки данных на сервер и ответа, поэтому результат вычисления вы получите практически мгновенно. Единственная особенность, которую следует учитывать — разделителем между дробной и целой частью вводимого числа здесь обязательно должна быть точка, а не .
Термин «логарифм » произошел от двух греческих слов, одно из которых обозначает «число», а другое — «отношение». Им обозначают математическую операцию вычисления переменной величины (показателя степени), в которую надо возвести постоянное значение (основание), чтобы получить число, указанное под знаком логарифм а. Если основание равно математической константе, называемое числом «e», то логарифм называют «натуральным».
Вам понадобится
- Доступ в интернет, Microsoft Office Excel или калькулятор.
Инструкция
Воспользуйтесь во множестве представленными в интернете -калькуляторами — это, пожалуй, и простой способ вычисления натурального а. Поиском соответствующего сервиса вам заниматься не придется, так как многие поисковые системы и сами имеют встроенные калькуляторы, вполне пригодные для работы с логарифм ами. Например, перейдите на главную страницу самого крупного сетевого поисковика — Google. Никаких кнопок для ввода значений и выбора функций здесь не потребуется, просто наберите в поле ввода запроса нужное математическое действие. Скажем, для вычисления логарифм а числа 457 по основанию «e» введите ln 457 — этого будет вполне достаточно, чтобы Google отобразил с точностью до восьми знаков после запятой (6,12468339) даже без нажатия кнопки отправки запроса на сервер.
Используйте соответствующую встроенную функцию, если необходимость вычисления значения натурального логарифм а возникает при работе с данными в популярном табличном редакторе Microsoft Office Excel. Эта функция здесь вызывается с использованием общепринятого обозначения такого логарифм а в верхнем регистре — LN. Выделите ячейку, в которой должен быть отображен результат вычисления, и введите знак равенства — так в этом табличном редакторе должны начинаться записи в ячейках, содержащих в подразделе «Стандартные» раздела «Все программы» главного меню. Переключите калькулятор в более функциональный режим, нажав сочетание клавиш Alt + 2. Затем введите значение, натуральный логарифм которого требуется вычислить, и кликните в интерфейсе программы кнопку, обозначенную символами ln. Приложение произведет вычисление и отобразит результат.
Видео по теме
нередко берут цифру е = 2,718281828 . Логарифмы по данному основанию именуют натуральным . При проведении вычислений с натуральными логарифмами общепринято оперировать знаком l n , а не log ; при этом число 2,718281828 , определяющие основание, не указывают.
Другими словами формулировка будет иметь вид: натуральный логарифм числа х — это показатель степени , в которую нужно возвести число e , чтобы получить x .
Так, ln(7,389…) = 2, так как e 2 =7,389… . Натуральный логарифм самого числа e = 1, потому что e 1 =e , а натуральный логарифм единицы равен нулю, так как e 0 = 1.
Само число е определяет предел монотонной ограниченной последовательности
вычислено, что е = 2,7182818284… .
Весьма часто для фиксации в памяти какого либо числа, цифры необходимого числа ассоциируют с какой-нибудь выдающейся датой. Скорость запоминания первых девяти знаков числа е после запятой возрастет, если заметить, что 1828 — это год рождения Льва Толстого!
На сегодняшний день существуют достаточно полные таблицы натуральных логарифмов.
График натурального логарифма (функции y = ln x ) является следствием графика экспоненты зеркальным отражением относительно прямой у = х и имеет вид:
Натуральный логарифм может быть найден для каждого положительного вещественного числа a как площадь под кривой y = 1/x от 1 до a .
Элементарность этой формулировку, которая состыковывается со многими другими формулами, в которых задействован натуральный логарифм, явилось причиной образования названия «натуральный».
Если анализировать натуральный логарифм , как вещественную функцию действительной переменной, то она выступает обратной функцией к экспоненциальной функции, что сводится к тождествам:
e ln(a) =a (a>0)
ln(e a) =a
По аналогии со всеми логарифмами, натуральный логарифм преобразует умножение в сложение, деление в вычитание:
ln (xy ) = ln (x ) + ln (y )
ln (х/у)= lnx — lny
Логарифм может быть найден для каждого положительного основания, которое не равно единице, а не только для e , но логарифмы для других оснований отличаются от натурального логарифма только постоянным множителем, и, обычно, определяются в терминах натурального логарифма.
Проанализировав график натурального логарифма, получаем, что он существует при положительных значениях переменной x . Он монотонно возрастает на своей области определения.
При x → 0 пределом натурального логарифма выступает минус бесконечность ( -∞ ).При x → +∞ пределом натурального логарифма выступает плюс бесконечность ( + ∞ ). При больших x логарифм возрастает довольно медленно. Любая степенная функция x a с положительным показателем степени a возрастает быстрее логарифма. Натуральный логарифм является монотонно возрастающей функцией, поэтому экстремумы у него отсутствуют.
Использование натуральных логарифмов весьма рационально при прохождении высшей математики. Так, использование логарифма удобно для нахождения ответа уравнений, в которых неизвестные фигурируют в качестве показателя степени. Применение в расчетах натуральных логарифмом дает возможность изрядно облегчить большое количество математических формул. Логарифмы по основанию е присутствуют при решении значительного числа физических задач и естественным образом входят в математическое описание отдельных химических, биологических и прочих процессов. Так, логарифмы употребляются для расчета постоянной распада для известного периода полураспада, или для вычисления времени распада в решении проблем радиоактивности. Они выступают в главной роли во многих разделах математики и практических наук, к ним прибегают в сфере финансов для решения большого числа задач, в том числе и в расчете сложных процентов.
Логарифмом числа b по основанию а называется показатель степени, в который нужно возвести число а чтобы получить число b.
Если , то .
Логарифм — крайне важная математическая величина , поскольку логарифмическое исчисление позволяет не только решать показательные уравнения, но и оперировать с показателями, дифференцировать показательные и логарифмические функции, интегрировать их и приводить к более приемлемому виду, подлежащему расчету.
Вконтакте
Все свойства логарифмов связаны напрямую со свойствами показательных функций. Например, тот факт, что означает, что:
Следует заметить, что при решении конкретных задач, свойства логарифмов могут оказаться более важными и полезными, чем правила работы со степенями.
Приведем некоторые тождества:
Приведем основные алгебраические выражения:
;
.
Внимание! может существовать только при x>0, x≠1, y>0.
Постараемся разобраться с вопросом, что такое натуральные логарифмы. Отдельный интерес в математике представляют два вида — первый имеет в основании число «10», и носит название «десятичный логарифм». Второй называется натуральным. Основание натурального логарифма — число «е». Именно о нем мы и будем детально говорить в этой статье.
Обозначения:
- lg x — десятичный;
- ln x — натуральный.
Используя тождество можно увидеть, что ln e = 1, как и то, что lg 10=1.
График натурального логарифмаПостроим график натурального логарифма стандартным классическим способом по точкам. При желании, проверить правильно ли мы строим функцию, можно при помощи исследования функции. Однако, есть смысл научится строить его «вручную», чтобы знать, как правильно посчитать логарифм.
Функция: y = ln x. Запишем таблицу точек, через которые пройдет график:
Поясним, почему мы выбрали именно такие значения аргумента х. Всё дело в тождестве: . Для натурального логарифма это тождество будет выглядеть таким образом:
Для удобства мы можем взять пять опорных точек:
;
;
.
;
.
Таким образом, подсчет натуральных логарифмов — довольно несложное занятие, более того, он упрощает подсчеты операций со степенями, превращая их в обычное умножение.
Построив по точкам график, получаем приблизительный график:
Область определения натурального логарифма (т.е. все допустимые значения аргумента Х) — все числа больше нуля.
Внимание! В область определения натурального логарифма входят только положительные числа! В область определения не входит х=0. Это невозможно исходя из условий существования логарифма .
Область значений (т.е. все допустимые значения функции y = ln x) — все числа в интервале .
Предел натурального logИзучая график, возникает вопрос — как ведет себя функция при y
Очевидно, что график функции стремится пересечь ось у, но не сможет этого сделать, поскольку натуральный логарифм при х
Предел натурального log можно записать таким образом:
Формула замены основания логарифмаИметь дело с натуральным логарифмом намного проще, чем с логарифмом, имеющим произвольное основание. Именно поэтому попробуем научиться приводить любой логарифм к натуральному, либо выражать его по произвольному основанию через натуральные логарифмы.
Начнем с логарифмического тождества:
Тогда любое число, либо переменную у можно представить в виде:
где х — любое число (положительное согласно свойствам логарифма).
Данное выражение можно прологарифмировать с обеих сторон. Произведем это при помощи произвольного основания z:
Воспользуемся свойством (только вместо «с» у нас выражение):
Отсюда получаем универсальную формулу:
.
В частности, если z=e, то тогда:
.
Нам удалось представить логарифм по произвольному основанию через отношение двух натуральных логарифмов.
Решаем задачиДля того чтобы лучше ориентироваться в натуральных логарифмах, рассмотрим примеры нескольких задач.
Задача 1 . Необходимо решить уравнение ln x = 3.
Решение: Используя определение логарифма: если , то , получаем:
Задача 2 . Решите уравнение (5 + 3 * ln (x — 3)) = 3.
Решение: Используя определение логарифма: если , то , получаем:
.
Еще раз применим определение логарифма:
.
Таким образом:
.
Можно приближенно вычислить ответ, а можно оставить его и в таком виде.
Задача 3. Решите уравнение .
Решение: Произведем подстановку: t = ln x. Тогда уравнение примет следующий вид:
.
Перед нами квадратное уравнение. Найдем его дискриминант:
Первый корень уравнения:
.
Второй корень уравнения:
.
Вспоминая о том, что мы производили подстановку t = ln x, получаем:
В статистике и теории вероятности логарифмические величины встречаются очень часто. Это неудивительно, ведь число е — зачастую отражает темп роста экспоненциальных величин.
В информатике, программировании и теории вычислительных машин, логарифмы встречаются довольно часто, например для того чтобы сохранить в памяти N понадобится битов.
В теориях фракталов и размерностях логарифмы используются постоянно, поскольку размерности фракталов определяются только с их помощью.
В механике и физике нет такого раздела, где не использовались логарифмы. Барометрическое распределение, все принципы статистической термодинамики, уравнение Циолковского и прочее — процессы, которые математически можно описать только при помощи логарифмирования.
В химии логарифмирование используют в уравнениях Нернста, описаниях окислительно-восстановительных процессов.
Поразительно, но даже в музыке, с целью узнать количество частей октавы, используют логарифмы.
Натуральный логарифм Функция y=ln x ее свойства
Доказательство основного свойства натурального логарифма
Графики Логарифмические функции: примеры (стр. 3 из 3)
Этот график будет похож к графу log 2 ( x ), но он будет сдвинут боком. Так как «+
3» находится внутри
log, сдвиг графика не может быть ни вверх, ни вниз. Это означает, что
сдвиг должен быть влево или вправо. Но каким образом? Вы можете
отслеживать направление сдвига, глядя на основную точку
(1, 0)
(«базовый», потому что он аккуратный и легко запоминается). Журнал будет
быть 0
когда аргумент, х + 3 равно 1.
Когда х + 3 равно 1?
Когда х = 2. Тогда основное
логарифмическая точка (1,
0) будет сдвинут
до Поскольку журнал не может иметь
аргумент ноль или меньше, то у меня должно быть x + 3 > 0, это
говорит мне, что для этого графика x всегда должно быть больше 3. График основных функция журнала y = журнал 2 ( x ) пополз вверх по положительной стороне y -оси добраться до x — ось, с линией, никогда не уходящей влево от ограничения, которое составляет x должно быть больше нуля. Чтобы напомнить себе о подобном ограничении этого журнала (где x всегда должно быть больше 3), Я вставлю пунктирную линию размером x . = 3: Такая линия, которая отмечает территорию, куда не должен идти график, называется «вертикальной асимптота», или просто «асимптота». Мне не нужно добавлять это на график, но это может быть очень полезно, и может убедить классника, что я знаю, что делаю. После того, как я проскочу по асимптоте, Я рисую несколько точек: 2 0 = 1, поэтому log 2 (1)
= 0; х + 3 = 1 для x = 2: (2, 0) Затем, работая в другое направление: Авторское право Элизабет Стапель 2002-2011 Все права защищены 2 1 = 0,5, поэтому log 2 (0,5)
= 1; Обратите внимание, что для нахождения каждого из этих точек я не начал со значения x а затем озадачить мой путь к г -значение; это было бы слишком сложно, а я слишком ленив. Вместо этого я начал с простой экспоненциальный оператор, переключил его на соответствующий логарифмическое утверждение, а затем вычисляется для этого показателя (который также мое значение и ), какое значение x нужно быть. Этот метод, на мой взгляд, намного проще для работы. эти проблемы.
Если вы отметите это в своем калькулятор, во-первых, не забудьте поставить « x + 3″ внутри круглых скобок, или ваш калькулятор подумает, что вы имеете в виду « log 2 ( x ) + 3″, и вы получить неверный ответ; во-вторых, помните, что ваш калькулятор может следовать только его программа не может думать, поэтому график, который он отображает, скорее всего, будет быть неверным, даже если вы правильно вводите функцию.
Теперь ты прекрасно знаешь что бревно не просто «заканчивается» там слева, бесполезно висит в космосе. Почему калькулятор ошибается? Потому что это всего лишь машина, и делает все возможное. Калькулятор рисует примерно так же как вы это делаете: он выбирает x значений, вычисляет г -значения, рисует точки и соединяет точки. Но, поскольку вы знаете, что логарифмический график продолжает нисходить вечно, приближаясь к бесконечно малому значению ось и (или какая там вертикальная асимптота), калькулятор только знает, что он попробовал одно значение x в своем списке получил «ОШИБКА» для ответа, попробовал следующее значение x в своем списке и получил действительный y -значение. Поскольку у него нет других точек перед первой, , и потому что он не может подумайте , он начинает график с этой первой точки. Это другой экземпляр «студент умный, калькулятор глупый». Не предполагайте, только потому, что калькулятор отображает график определенным образом, вот что такое график на самом деле выглядит. Используй голову! Для ознакомления: ниже приведены некоторые различные вариации одной и той же базовой логарифмической функции с связанный график под каждым уравнением. Обратите внимание, что даже если график перемещается влево или вправо, вверх или вниз или переворачивается вверх дном, он по-прежнему отображает ту же кривую:
|
|
|
12.5 — Логарифмические графы
12.5 — Логарифмические графы12.5 — Логарифмические графы
В разделе 6.1 мы узнали о декартовой плоскости, прямоугольных координатах, графиках и как идентифицировать точки на графиках. Прежде чем читать этот раздел, вы, возможно, захотите просмотрите этот раздел.В дальнейшем графы, описанные в разделе 6.1 , будем называть линейными графами . В этом разделе мы узнаем, как отображать количества на графике нового типа, называемом графиком. логарифмический график . Мы увидим, как это может облегчить определение функциональная связь между некоторыми величинами.
Мотивируем логарифмические графы двумя примерами.
Пример 1: Пусть t представляет время и пусть i представляют электрический ток течет в какой-то электрической цепи. Данные, показанные в таблице, были собраны для t и i . (Для дальнейшего использования был взят натуральный логарифм записей в столбце 2 и в столбце 3.)
Найдите уравнение, связывающее i и t .
Решение: Сначала мы попробуем построить график i против t . Но это дает только кривую, показанную справа, и по этой кривой трудно найти уравнение.
Затем мы пытаемся построить график ln ( i ) в зависимости от t . Этот делает прямой линией, как показано справа. и мы знаем, как найти уравнение прямой линии.
Чтобы найти уравнение этой линии, мы представим на мгновение что оси помечены y и x . Тогда эта линия должна иметь уравнение y = м x + b , где m и b еще предстоит определить. В конце концов мы вернем правильный ярлык ln ( i ) для y и т для х .
Чтобы определить m и b , мы будем использовать метод исключения, описанный в раздел 6.2. Давайте воспользуемся этими двумя точками, лежащими на прямой:
( х = 2,00, у = 0,94) а также ( х = 8,00, и = -1,05).Подставляя первую точку в уравнение прямой, y = м x + b , дает уравнение
0,94 = 2 м + б .Подставляя вторую точку в уравнение прямой, y = м x + b , дает уравнение
−1,05 = 8 м + б .Эта пара уравнений,
0,94 = 2 м + бпредставляет собой систему двух уравнений для двух неизвестных m и b . Мы можем решить их путем исключения. Вычитание первого уравнения из второго уравнения исключается b и получается:
−1,05 = 8 м + б
−1,99 = 6 м м = −0,33Обратная замена этого значения м в, скажем, первое уравнение, 0,94 = 2 м + б , тогда дает 0,94 = (2) (-0,33) + b , что дает b = 1,6. Итак, уравнение прямой
y = −0,33 x + 1,6.Теперь замените обратно y на ln( i ) и x на t :
ln ( i ) = −0,33 t + 1,6.Антилогирование этого уравнения дает уравнение
i = e −0,33 t + 1,6 ,или упрощение,
i = 5 e −0,33 t .
Ключевой урок, извлеченный из этого примера , заключается в том, что график любой экспоненциальной функции у = а е б х представляет собой прямую линию, когда мы строим ln ( y ) в зависимости от x . |
Пример 2: Кривая справа может быть графиком y = x 2 , y = x 3 или y = x 4 . По графику х против х трудно сказать, что это такое.
Но если мы построим график ln ( y ) в зависимости от ln ( x ), то эти три функции стать прямыми линиями. Эти функции называются степенными функциями потому что переменная x возводится в некоторую степень.
Ключевой урок, извлеченный из этого примера , состоит в том, что график любой степенной функции y = a x b — прямая линия, когда мы строим ln ( y ) по сравнению с ln ( x ). |
Полулогарифмическая и логарифмическая миллиметровая бумага
На рисунке выше показана логарифмическая шкала, используемая на логарифмической миллиметровой бумаге. Это не линейная шкала, потому что большим числам отводится меньше места, чем меньшим числам. Нижняя часть рисунка показывает логарифмическую шкалу более подробно. Числа вдоль оси располагаются там, где их логарифмы располагались бы на линейном графике. бумага. Это означает, что мы можем построить x на логарифмической миллиметровой бумаге, а не на графике log ( x ) на линейной миллиметровой бумаге. Мы избегаем логарифмирования на калькуляторе. Обратите внимание, что перемещение влево по логарифмической оси только уменьшает числа. и меньше. Ноль расположен на бесконечном расстоянии левее и отрицательные числа не существует. Диапазон от одной степени числа 10 до следующей называется циклом .
Полезны два типа логарифмических графиков:
полулогарифмический график , имеющий логарифмическую вертикальную шкалу и линейный горизонтальный масштаб, как показано ниже. логарифмический график , который имеет логарифмическую вертикальную шкалу и логарифмическая горизонтальная шкала, как показано ниже.
Уравнения прямых на логарифмической миллиметровке
Одна из целей логарифмической миллиметровки — просто поместить широкий диапазон данных на один график. Другая цель — быстро проверить, подчиняется ли функция экспоненциальному закону или степенному закону. закон. Мы видели один пример, показывающий, что график ln ( y ) по сравнению с ln ( x ) вызванные степенные функции вида у = а х б стать прямыми линиями. И мы видели еще один пример, показывающий, что построение графика п ( y ) по сравнению с x вызвали экспоненциальную функцию вида у = а е б х стать прямой линией. Из этих двух примеров мы заключаем следующее:
|
Пример: Найдите уравнение прямой на графике справа.
Решение: Прямая линия на логарифмическом графике Q по сравнению с T представляет функция степенного закона
Q = a T b .Мы должны найти значения a и b . Для этого мы будем использовать разновидность метода, описанного в разделе 6.2.
Возьмите две точки, показанные на графике, и подставьте их по одной в уравнение Q = a T b . Это дает два уравнения с двумя неизвестными константами a и b :
Вот вариант: сначала возьмем натуральные логарифмы обоих уравнений а затем вычесть два уравнения. Это исключает ln ( и ). Затем найдите b :. Обратите внимание, что b — это мощность степенной функции, которую часто называют «наклон логарифмического графика» и это уравнение часто используется как упрощение для его вычисления.Обратная подстановка b в любое из предыдущих уравнений дает ln ( a ) = 0,7120, а антилогирование дает a = 2,04. Константу a часто называют «перехватом», хотя она встречается в T = 1, а не T = 0. (Помните, что 0 не существует в логарифмической шкале.)
Итак, до 3 знаков. инжир уравнение, описывающее линию,
Q = 2,04 t 0,558 .
Пример: Найдите уравнение прямой на графике справа.
Решение: Прямая линия на полулогарифмическом графике P против т представляет экспоненциальная функция
P = a e b t .Мы должны найти значения a и b . Для этого мы будем использовать разновидность метода, описанного в разделе 6.2.
Возьмите две точки, показанные на графике, и подставьте их по одной в уравнение P = a e b t . Это дает два уравнения с двумя неизвестными константами а и б :
Вот вариант: сначала возьмем натуральные логарифмы обоих уравнений а затем вычесть два уравнения. Это исключает ln ( a ). Затем найдите b :. Обратите внимание, что b — это скорость экспоненциальной функции, которую часто называют «наклон полулогарифмического графика» и это уравнение часто используется как упрощение для его вычисления.Обратная подстановка b в любое из предыдущих уравнений дает ln ( a ) = 4,377, а антилогирование дает a = 79,6. Обратите внимание, что константа a — это «пересечение y ». Итак, до 3 сиг. инжир уравнение, описывающее линию,
P = 79,6 e −0,461 t .
Упражнения для тренера по алгебре |
Если вы нашли эту страницу в веб-поиске, вы не увидите
Оглавление в рамке слева.
Щелкните здесь, чтобы отобразить его.
Как построить график логарифмических функций и их преобразований — Криста Кинг Математика
Восприятие экспоненциальной и логарифмической функций как обратных друг другу
Ранее мы говорили о том, что экспоненциальные и логарифмические функции обратны друг другу. Это подразумевается общим правилом журнала, 9x=y\quad\text{подразумевается}\quad\log_e{(y)}=x???
И в самом последнем разделе мы только что говорили о графиках экспоненциальных функций, в том числе о том, как строить графики преобразований экспоненциальных функций.
Поскольку экспоненциальные и логарифмические функции являются обратными друг другу, если у нас есть график экспоненциальной функции, мы можем найти соответствующую логарифмическую функцию, просто отразив график по линии ???y=x???, или переворачивание значений ???x???- и ???y???- во всех точках координат. 9ты??? и ???x=\log_3{y}??? являются обратными друг другу. Давайте покажем как экспоненциальное, так и логарифмическое выражение обеих функций, а также то, как они обратны другим, отраженным над ???y=x???.
Давайте рассмотрим пару примеров построения графиков логарифмических функций, помня о том, что мы всегда можем использовать общее правило логарифма, чтобы преобразовать их в экспоненциальную форму, а затем изобразить их в экспоненциальной форме, используя шаги, которые мы использовали в предыдущем разделе. .
Как строить графики логарифмических функций и преобразования логарифмических функций (сдвиги, отражения и т.
д.)Пройти курс
Хотите узнать больше об Алгебре 2? У меня есть пошаговый курс для этого. 🙂
Учить больше
Пошаговое построение преобразованной логарифмической функции
Пример 9y???, мы получаем ???x=1???.
Давайте заполним остальную часть диаграммы несколькими другими легко вычисляемыми значениями. Неважно, какие значения мы выбираем, потому что мы просто пытаемся получить несколько точек, которые мы можем нанести на график логарифмической функции.
С ???5??? точки, которые удовлетворяют уравнению, мы должны быть в состоянии довольно легко нарисовать график.
Так же, как экспоненциальные функции в предыдущем разделе, мы также можем графически отображать преобразования логарифмических функций.
Поскольку экспоненциальная и логарифмическая функции обратны друг другу, если у нас есть график экспоненциальной функции, мы можем найти соответствующую логарифмическую функцию, просто отразив график по линии y=x.
Пример
График ???y=\log_3{x}??? дано. Используйте график, чтобы нарисовать график для ???y=-\log_3{(x-1)}???.
Обе функции основаны на стандарте ???y=\log_3{x}??? функция. Функция ???y=-\log_3{(x-1)}??? просто претерпел пару трансформаций. Мы хотим разбить преобразования, чтобы показать каждое преобразование на отдельном этапе.
[1] ???y=\log_3{x}???
[2] ???y=\log_3{(x-1)}???
[3] ???y=-\log_3{(x-1)}???
Нам дали граф [1] ???y=\log_3{x}???.
Если мы изменим ???x??? в ???x-1???, это означает, что мы сдвигаем график на одну единицу вправо. Если вы не уверены в этом, попробуйте подставить несколько точек в ???y=\log_3{(x-1)}???. Если мы построим [2] ???y=\log_3{(x-1)}??? на том же наборе осей получаем
Умножение на ???-1??? означает, что каждое значение ???y=\log_3{(x-1)}??? умножается на ???-1???, что означает, что значение будет перевернуто по оси ???y???.
Подводя итог, мы начали с ???y=\log_3{x}??? и его граф, и могли выполнять одно преобразование за раз,
[1] ???y=\log_3{x}???
[2] ???y=\log_3{(x-1)}???
[3] ???y=-\log_3{(x-1)}???
, чтобы в конечном итоге получить график ???y=-\log_3{(x-1)}???.
Получите доступ к полному курсу Алгебра 2
Начать
Изучение математикиКриста Кинг