2. Экстремум неявно заданной функции
Пусть уравнение F(x;y;z)=0 задает неявно функцию z=f(x;y). Пусть функция дважды непрерывно дифференцируема в . Если (х0;у0) – стационарная точка, то в ней выполнены равенства:
, ,
, .
Очевидно, верно и обратное утверждение. Следовательно, стационарные точки неявной функции могут быть найдены из системы:
Достаточное условие формулируется так же, как в случае явного задания функции.
3. Нахождение наибольших и наименьших значений
Пусть функция z=f(x;y) определена и дифференцируема на ограниченной замкнутой области G. Тогда она на имеет наибольшее и наименьшее значения. Если наибольшее (наименьшее) значение функция f принимает во внутренней точке области , то эта точка является точкой максимума (минимума).
План нахождения наибольшего и наименьшего значений функции
Найти стационарные точки внутри области и значения функции в них.
Найти наибольшее и наименьшее значения на границе области и значения функции в них. Для этого границу области следует задать либо одним уравнением, либо параметрически. Тогда на границе исходная функция будет функцией одного переменного.
Если в области существуют точки, в которых функция не дифференцируема, то надо вычислить в них значения функции.
- Из полученных чисел выбрать наибольшее и наименьшее.
Пример 2. Найти наибольшее и наименьшее значения функции z=f(x;y)=2x2—2y2 в круге х2+у29.
1) , (0;0) – стационарная точка.
z1=f(0;0)=0.
2) Граница области задана уравнением х2+у2=9. Отсюда у2=9-х2. Тогда на границе получаем функцию одной переменной: z=2x2—2(9-х2), z=4х2-18, x[-3;3].
z=8x, z=0 при х=0. Тогда у=3. Значения функции в стационарных точках границы:
Значения функции на концах отрезка [-3;3]: z4=f(3;0)=18, z5=f(-3;0)=18.
3) zнаиб.=f(3;0)=f(-3;0)=18, zнаим.=f(0;3)=f(0;-3)=-18.
34
Иллюстрированный самоучитель по Maple 9 › Вычисление производных [страница — 33] | Самоучители по математическим пакетам
Для вычисления производной в Maple предусмотрена процедура diff(), параметрами которой являются: а) функция, от которой берут производную, и б) переменная, по которой эту производную следует брать. Результатом выполнения процедуры является выражение, задающее искомую производную.
При вычислении производных функций, заданных параметрически, по сравнению с явно заданными функциями, принципиально ничего не меняется. Однако сама процедура вычисления производных (особенно высших порядков) становится несколько сложнее. | Рассмотрим пример.
Очень часто приходится вычислять производные функций, которые заданы в неявном виде. Задаются такие функции, как правило, с помощью уравнений, в которые входит как переменная (или переменные – для функции нескольких переменных), так и сама функция.
Достаточно просто вычисляются и производные высших порядков. Для этого используется все та же процедура diff(). Синтаксис вызова этой процедуры для вычисления производных высших порядков описывается ниже в примерах. | Задача 2.12 | Найти у»(х) и у»(х), если y(x) = f(x2).
Для вычисления пределов используют процедуру limit(). В качестве аргументов указывают выражение и то значение, к которому стремится переменная. Данная процедура имеет также и неактивную форму (та же процедура, но пишется с прописной литеры – Limit()).
Исследование функции на экстремум подразумевает, как известно, нахождение производной и определение точек, в которых эта производная равна нулю. Далее, по знаку второй производной в найденных точках, определяется тип экстремума – максимум или минимум (если вторая производная меньше нуля – максимум, если больше нуля – минимум). | Задача 2.18 | Исследовать на экстремум функцию у(х) = хm (1-х)n.
Для вычисления частных производных применяется процедура diff (). В случае функции нескольких переменных через запятую указываются те из них, по которым берется производная (при этом допускается использование оператора $).
При дифференцировании неявно заданных функций нескольких переменных, как и в случае функции одной переменной, используется процедура implicitdiff(). В данном случае несколько изменяется способ ее вызова, а именно увеличивается число параметров.
Очень часто в выражениях, содержащих производные, приходится переходить к новым переменным. | Внимание! | Если необходимо выполнить замену переменных в дифференциальном выражении, в Maple в пакете PDEtools есть процедура dchange().
Исследование функции нескольких переменных на экстремум отличается от того, что выполняется в случае функции одной переменной. Однако «базовый» принцип все тот же – сначала следует найти точки, в которых производные равны нулю.
Рассмотренные в этой главе задачи достаточно просты, и их решение не вызывает принципиальных сложностей. Решения основываются на использовании базовых, наиболее общих процедур Maple и демонстрируют принципы организации Maple и схемы реализации соответствующих алгоритмов.
Курс по математическому анализу
Вашему вниманию предлагается курс по математическому анализу.
Наверх
1. Предел числовой последовательности.
Последовательность — это функция, заданная на множестве натуральных чисел .
Бесконечно малая последовательность. Последовательность , предел которой равен нулю , называется бесконечно малой.
Бесконечно большая последовательность. Последовательность называется бесконечно большой, если для любого положительного числа , как бы велико оно ни было, существует такой номер , что для всех с номерамисправедливо неравенство , записываем .
Наверх
2.
Методы вычисления пределов последовательностей.Пусть заданы две последовательности и . Если существуют и , то существуют и пределы суммы и произведения последовательностей, а при и предел частного, причем , , . Для правильного применения этих теорем очень важно существование пределов каждой последовательности.
Неопределенности и их раскрытие.
Если и , то может существовать . В этом случае говорят, что имеем неопределенность типа . Также может существовать , в этом случае имеем неопределенность типа . Если и , то может существовать . В этом случае говорят, что имеем неопределенность типа . Поскольку в перечисленных случаях не применимы теоремы о пределе суммы, произведения и частного, используют другие способы вычисления, которые называют методами раскрытия неопределенностей. Это, как правило, алгебраические преобразования, приводящие выражения к виду, при котором можно пользоваться упомянутыми теоремами.
Наверх
3.
Предел функции в точке.
Рассмотрим функцию , определенную в некоторой окрестности точки , , , за исключением, быть может, самой точки . Число называется пределом функции при , стремящемся к , если для любого положительного числа , как бы мало оно ни было, существует такое положительное число , что для всех , удовлетворяющих неравенству , справедливо неравенство . Говорят “предел функции в точке ” и обозначают . Неравенство для всех , эквивалентное неравенствам , , означают, что для любого существует такое , что для график функции расположен на плоскости в прямоугольнике . При вычислениях на компьютере мы имеем дело с дискретными значениями переменных. Поэтому удобнее пользоваться другим, эквивалентным приведенному, определением предела. А именно: , если для любой, сходящейся к последовательности значений аргумента , соответствующая последовательность значений функции сходится к числу . Отсюда следует, в частности, что для любого существует такое , что для любой последовательности , сходящейся к , точки с координатами находятся на плоскости внутри прямоугольника .
Бесконечно большие функции.
Если для любой последовательности значений аргумента соответствующая последовательность значений функции бесконечно большая, то функция называется бесконечно большой в точке . Если бесконечно большая в точке , то для любого положительного числа , как бы велико оно ни было, существует такое число , что для всех , удовлетворяющих неравенству , справедливо неравенство ; обозначают .
Наверх
4. Бесконечно малые функции. Сравнение бесконечно малых функций.
Рассмотрим функцию, определенную в некоторой окрестности точки , , за исключением, быть может, самой точки . Функция называется бесконечно малой при , стремящемся к , если . Если — бесконечно малая в точке , то для любого положительного числа , как бы мало оно ни было, существует такое положительное число , что для всех , удовлетворяющих неравенству , справедливо неравенство . Неравенства для всех , эквивалентные неравенствам , , означают, что для любого существует такое , что для график функции расположен на плоскости в прямоугольнике .
Сравнение бесконечно малых функций.
Пусть и — две функции, бесконечно малые в точке . Если , то говорят, что более высокого порядка малости, чем и обозначают . Если же , то более высокого порядка малости, чем ; обозначают . Бесконечно малые функции и называются бесконечно малыми одного порядка малости, если , обозначают . И, наконец, если не существует, то бесконечно малые функции и несравнимы.
Эквивалентные бесконечно малые функции.
Если , то бесконечно малые функции и называются эквивалентными, обозначают ~ .
Наверх
5. Методы вычисления пределов функций.
Пусть заданы две функции и . Если существуют и , то существуют и пределы суммы и произведения этих функций, а при и предел частного, причем
,
,
.
Для правильного применения этих теорем очень важно существование пределов каждой функции. Не трудно доказать, что предел постоянной функции равен этой постоянной, то есть . Из приведенных формул следует полезное утверждение:
, то есть постоянный множитель можно выносить за знак предела. Если сделать замену переменной , то вычисление предела при всегда можно свести к вычислению предела при . Из определения непрерывной функции следует, что ее предел совпадает со значением функции в этой точке. Доказывают, что все элементарные функции непрерывны в области определения, поэтому, если функция определена, то вычисление предела сводится к применению указанных теорем и подстановке в выражение для функции.
Неопределенности и их раскрытие.
Существуют случаи, когда не применимы теоремы о пределах суммы, произведения, частного, но предел существует и может быть вычислен. Если и , то может существовать . В этом случае говорят, что имеем неопределенность типа . Также может существовать , в этом случае имеем неопределенность типа . Если и , то может существовать . В этом случае говорят, что имеем неопределенность типа . Если и , то может существовать — неопределенность типа . Рассматривают также неопределенности типа , и т. д. Основным признаком неопределенности является невозможность корректного вычисления функции простой подстановкой в выражение для функции. Полезно запомнить замечательные пределы:
(е = 2.71828… — основание натуральных логарифмов) — неопределенность типа .
— неопределенность типа .
Использование эквивалентных бесконечно малых.
Если мы имеем неопределенность типа , то это означает, что мы вычисляем предел отношения двух бесконечно малых функций. Напомним, что функция называется бесконечно малой, если ее предел в точке равен нулю. Пусть, , , — бесконечно малые функции при , причем эквивалентна , т. е. ~ , ~ (напомним, что две бесконечно малых называются эквивалентными, если предел их отношения равен 1). Тогда, т.е. при вычислении пределов отношений бесконечно малых любую из них можно заменять на эквивалентную.
Правило Лопиталя.
Неопределенности типа или удобно раскрывать с помощью правила Лопиталя. Пусть и две бесконечно малые или бесконечно большие функции при и существует предел отношения их производных при . Тогда . Если в результате применения правила Лопиталя снова получится неопределенность, то его можно применить еще раз.
Формула Тейлора.
Пусть функция имеет в точке производные всех порядков до -го включительно. Тогда для справедлива формула Тейлора:
где называется остаточным членом формулы Тейлора.
Наверх
6. Непрерывность функции в точке, на отрезке.
Рассмотрим функцию , определенную на некотором промежутке . Функция непрерывна в точке , если предел функции в точке равен значению функции в этой точке,.
Свойства функций, непрерывных на отрезке.
Функция, непрерывная в каждой точке промежутка , называется непрерывной на промежутке. Для функции, непрерывной на отрезке , справедливы следующие утверждения.
Функция, непрерывная на отрезке , достигает на нем своих наибольшего и наименьшего значений, т.е. на отрезке существуют точки такие, что
.
Если функция непрерывна на отрезке и принимает на концах значения разных знаков, то на интервале существует точка , в которой функция обращается в нуль, т.е. . Это утверждение применяют для отделения корней уравнений с непрерывной левой частью — если найден отрезок, на концах которого функция принимает значения разных знаков, то можно утверждать, что на этом отрезке есть хотя бы один корень уравнения.
Если функция непрерывна на отрезке , дифференцируема хотя бы на интервале , то на интервале существует точка , такая, что . Это свойство называют формулой Лагранжа или формулой конечных приращений.
Наверх
7. Классификация точек разрыва
Рассмотрим функцию , определенную на некотором промежутке . Функция непрерывна в точке , если предел функции в точке равен значению функции в этой точке, .
Односторонние пределы функции в точке.
Функция, непрерывная в каждой точке промежутка , называется непрерывной на промежутке. Если функция определена на промежутке , , то при исследовании поведения функции в окрестности точки имеет смысл говорить о пределе функции в точке справа, а при исследовании в окрестности точки — о пределе функции в точке слева. Число называется пределом справа функции при , стремящемся к , если для любого положительного числа , как бы мало оно ни было, существует такое положительное число , что для всех , удовлетворяющих неравенству , справедливо неравенство . Говорят “предел справа функции в точке ” и обозначают . Аналогично говорят “предел слева функции в точке ” и обозначают , если для любого положительного числа , как бы мало оно ни было, существует такое положительное число , что для всех , удовлетворяющих неравенству , справедливо неравенство . Для существования предела функции в точке, необходимо и достаточно, чтобы существовали и совпадали односторонние пределы функции в этой точке. По той же схеме вводится понятие непрерывности слева и непрерывности справа. Функция, определенная на отрезке , , непрерывна справа в точке , если и непрерывна слева в точке , если. Для того чтобы функция была непрерывна в точке необходимо и достаточно, чтобы односторонние пределы функции в точке совпадали со значением функции в этой точке:. Если хотя бы одно из равенств нарушается, говорят о разрыве в точке .
Классификация разрывов.
Если хотя бы одно из равенств нарушается, говорят о разрыве в точке . Если и односторонние пределы конечны, то разрыв в точке называется устранимым. Если и оба односторонние пределы конечны, то говорят о скачке функции в точке . Устранимый разрыв и скачок называются разрывами первого рода. Если один из односторонних пределов бесконечен или не существует, то разрыв называется разрывом второго рода. Так же, как для предела и непрерывности, говорят о разрыве слева и разрыве справа.
Наверх
8. Производная, ее вычисление, геометрический смысл.
Производная функции в точке — Пусть функция определена на промежутке . Точка — произвольная точка из области определения функции, — приращение функции в точке , вызванное приращением независимой переменной . Производной функции по независимой переменной в точке , называется предел отношения приращения функции к приращению при стремлении к нулю, т.е.
,
— производная функции в точке .
Односторонние производные — Если определена при , то можно определить правую производную функции в точке :
Аналогично, если определена при , определяется левая производная функции в точке :
Функция имеет в точке производную тогда и только тогда, когда в точкесовпадают ее левая и правая производные: .
Секущая графика функции — Пусть — функция, определенная на промежутке . Прямая, проходящая через точки , , , называется секущей графика функции . Угловой коэффициент секущей равен и ее уравнение имеет вид .
Касательная и нормаль к графику функции — Касательной к графику функции в точке называется предельное положение секущей, проходящей через точки , , когда . Угловой коэффициент касательной равен значению производной в точке и ее уравнение имеет вид . Нормалью к графику функции в точке называется прямая , проходящая через эту точку перпендикулярно касательной. Угловой коэффициент нормали равен и ее уравнение имеет вид .
Наверх
9. Производные сложных, обратных функций.
Пусть — функция, дифференцируемая в точке , — функция, дифференцируемая в точке , причем . Тогда — сложная функция независимого переменного , дифференцируема в точке и ее производная в этой точке вычисляется по формуле .
Обычно называют внешней функцией, а — внутренней. При вычислении производной сложной функции сначала дифференцируют внешнюю функцию, не обращая внимания на внутреннюю (ведь она может быть любой), затем умножают на производную конкретной внутренней функции.
Производная обратной функции.
Пусть функция дифференцируема и строго монотонна на . Пусть также в точке производная . Тогда в точке определена дифференцируемая функция , которую называют обратной к , а ее производная вычисляется по формуле .
Наверх
10. Дифференцируемость, дифференциал.
Дифференцируемость функции в точке.
Пусть функция определена в некоторой окрестности точки . Рассмотрим приращение функции в этой точке: . Функция называется дифференцируемой в точке , если ее приращение можно записать в виде , где — приращение независимой переменной, А – постоянная, не зависящая от , — бесконечно малая функция при .
Дифференциал функции.
Дифференциалом функции в точке называется линейная по часть приращения . Дифференциал обозначается , то есть . Рассматривая функцию , нетрудно убедиться, что , если — независимая переменная.
Связь дифференциала и производной.
Воспользуемся определением производной для дифференцируемой функции в точке : . Таким образом, дифференциал функции выражается формулой , то есть для вычисления дифференциала необходимо лишь вычислить производную и умножить ее на . Поэтому часто слова “вычисление производной” и “дифференцирование” считают синонимами. Для того, чтобы функция была дифференцируема в точке, необходимо и достаточно, чтобы в этой точке существовала конечная производная.
Наверх
11. Производные и дифференциалы высших порядков.
Производные высших порядков.
Рассмотрим функцию , определенную на некотором промежутке . Вычислим производную , которая также является функцией на . Производной второго порядка от функции называется производная от ее производной: . Аналогично определяют производную любого порядка: .
Дифференциалы высших порядков.
Рассмотрим дифференциал функции в произвольной точке промежутка : . Здесь — приращение независимой переменной, которое является числом и не зависит от . Сам же дифференциал есть функция от , и можно вычислить дифференциал от этой функции: При этот дифференциал от дифференциала называется дифференциалом второго порядка и вычисляется по формуле Аналогично вычисляется дифференциал любого порядка .
Понятие инвариантности формы дифференциала.
Рассмотрим дифференциал функции в произвольной точке промежутка : . Здесь — приращение независимой переменной, которое является числом и не зависит от . Пусть теперь — функция независимого переменного , определенная на промежутке . Тогда — сложная функция переменного . Вычислим ее дифференциал, используя формулу для производной сложной функции: . Заметим, что и выражение для дифференциала принимает ту же форму , хотя здесь уже функция переменного . Это свойство дифференциала первого порядка называется инвариантностью (т.е. неизменностью) его формы. При вычислении дифференциала второго порядка придется учитывать, что — функция переменного . Поэтому и форма второго (а также и всех следующих) дифференциала неинвариантна.
Наверх
12. Исследование функций и построение графиков.
Рассмотрим функцию , определенную на промежутке (возможно, ) . Характер поведения функции в области определения можно исследовать, опираясь на следующие утверждения.
Если , то график функции пересекает ось абсцисс в точке .
Если , то график функции пересекает ось ординат в точке .
Если в точке функция имеет бесконечный разрыв, то график функции имеет вертикальную асимптоту (Если расстояние от точки кривой до некоторой определенной прямой по мере удаления точки в бесконечность стремится к нулю, то эта прямая называется асимптотой кривой. В случае бесконечного разрыва расстояние от кривой до вертикальной асимптоты стремится к нулю при справа, слева или с обеих сторон).
Если , или , существуют и конечны пределы и , то прямая — асимптота графика функции.
Если , то график функции имеет на левой границе области сходимости вертикальную асимптоту ; аналогично, если , то график функции имеет на правой границе области сходимости вертикальную асимптоту .
Если и существует такое число , что для любого , то исследуемая функция периодична с периодом ; в этом случае достаточно построить график функции на промежутке и доопределить его по периодичности на всю числовую ось.
Если , то исследуемая функция четная; этом случае график симметричен относительно оси ординат; достаточно построить график функции на промежутке и отобразить его симметрично относительно оси ординат на .
Если , то исследуемая функция нечетная; этом случае график симметричен относительно начала координат; достаточно построить график функции на промежутке и отобразить его симметрично относительно начала координат на .
Исследование функций с помощью производной.
Если функция дифференцируема на промежутке , за исключением, быть может, конечного числа точек этого промежутка, то можно дополнить изучение поведения функции исследованием на экстремум (точки максимума и точки минимума функции имеют общее название — точки экстремума), используя следующие утверждения.
Для того, чтобы дифференцируемая на функция не убывала (не возрастала) на этом промежутке, необходимо и достаточно, чтобы () на .
Пусть в точке производная или не существует. Если существует окрестность точки , такая, что для из этой окрестности при и при , то функция имеет в точке максимум. Если же при и при , то функция имеет в точке минимум (в этом случае говорят, что “производная меняет знак при переходе через точку ”).
Если непрерывная в точке функция дифференцируема на , при этом на и на , то функция имеет в точке максимум; если же при и при , то функция имеет в точке минимум.
Исследование функций с помощью второй производной.
Если функция дважды дифференцируема на промежутке , за исключением, быть может, конечного числа точек этого промежутка, то исследование поведения функции можно дополнить исследованием выпуклости и вогнутости.
График функции называется выпуклым (выпуклым вниз) на промежутке , если он расположен выше касательной, проведенной в любой точке , . Если же график функции лежит ниже касательной, — то он называется вогнутым (выпуклым вверх).
Если дважды дифференцируемая на промежутке функция имеет на нем положительную вторую производную, то функция выпуклая на . Если же вторая производная отрицательна на промежутке , то функция на нем вогнута.
Если вторая производная равна нулю в точке , а слева и справа от нее имеет значения разных знаков, точка — точка перегиба.
Наверх
13. Кривые на плоскости.
Кривые на плоскости в декартовых координатах.
Кривая на плоскости в прямоугольных (декартовых) координатах — это множество точек, координаты которых связаны соотношениями , , , или ; первые два соотношения задают кривую явно, последнее — неявно. Кривая, заданная уравнением , , называется гладкой, если функция дифференцируема на промежутке . В каждой точкегладкой кривой можно провести касательную , уравнение которой . Уравнение нормали в той же точке имеет вид или . Кривая, заданная неявно уравнением , называется гладкой, если на ней нет особых точек (точка линии называется особой, если в ней одновременно обращаются в нуль обе частные производные функции : ). Уравнения касательной и нормали к такой кривой, проходящих через точку , , имеют соответственно вид и
Кривые, заданные параметрически.
Уравнения , , устанавливающие зависимость декартовых координат точки плоскости от значения параметра , определяют на плоскости кривую, заданную в параметрической форме (говорят еще — заданную параметрически). Поскольку производная функции , заданной параметрически уравнениями , в точке, которая не является особой точкой кривой, вычисляется по формуле , то уравнения касательной и нормали к кривой, проходящих через точку , имеют соответственно вид: .
Кривые в полярных координатах.
Декартовы координаты точки на плоскости связаны с полярными координатамисоотношениями . Многие кривые на плоскости удобно описывать как функции радиуса-вектора и полярного угла — в полярных координатах. Так, уравнение единичной окружности в полярных координатах имеет вид . Уравнение кривой в полярных координатахобычно имеет вид . Угловой коэффициент касательной к графику функции, заданной уравнением , в точке равен , а декартовы координаты точки равны соответственно и .
Наверх
14.
Формула Тейлора.Остаточный член формулы Тейлора — Пусть функция имеет в точке производные всех порядков до -го включительно. Тогда для справедлива формула Тейлора:
,
где , называется остаточным членом формулы Тейлора в форме Пеано; — бесконечно малая более высокого порядка малости, чем . Если отбросить остаточный член, то получится приближенная формула Тейлора
,
правая часть которой называется многочленом Тейлора функции ; его обозначают . Приближенная формула позволяет заменять в различных математических расчетах (аналитических и численных) произвольную функцию ее многочленом Тейлора.
Из формулы Тейлора видно, что чем точка ближе к точке , тем выше точность такой аппроксимации и эта точность растет с ростом степени многочлена. Это означает, в свою очередь, что чем больше производных имеет функция в некоторой окрестности точки , тем выше точность, с которой многочлен Тейлора аппроксимирует функцию в этой окрестности.
Разложение основных элементарных функций — Положив и вычислив соответствующие производные в нуле, получим формулы Тейлора для основных элементарных функций:
Разложение функций с использованием стандартных разложений — Для разложения по формуле Тейлора функции в окрестности произвольной точки необходимо сделать замену переменной , то есть , и воспользоваться одним из приведенных выше разложений основных функций в окрестности точки .
Наверх
15. Неопределенный интеграл, простейшие методы интегрирования.
Первообразная и неопределенный интеграл — Рассмотрим функцию , определенную на промежутке (здесь возможно ). Дифференцируемая на промежутке функция , производная которой в каждой точке равна , называется первообразной функции : . Поскольку , то можно говорить о семействе первообразных — множестве функций вида , . Семейство первообразных функции называется неопределенным интегралом функции и обозначается символом : для всех . Здесь — знак интеграла, — подынтегральное выражение, — подынтегральная функция, — переменная интегрирования, — значение неопределенного интеграла, семейство первообразных функции , . То есть производнаянеопределенного интеграла равна подынтегральной функции. Наоборот, , следовательно, дифференцирование и вычисление неопределенного интеграла, – взаимно обратные операции. Не представляет труда с помощью таблицы производных составить таблицу неопределенных интегралов. Важным свойством неопределенного интеграла является линейность: , здесь — постоянные. Вычисление неопределенного интеграла обычно сводится к преобразованию подынтегрального выражения так, чтобы можно было воспользоваться таблицей интегралов.
Интегрирование заменой переменной — Если — непрерывно дифференцируемая функция, то, полагая , получим формулу интегрирования заменой переменной . Если замена переменной выбрана правильно, то интеграл в правой части должен легко вычисляться. Для некоторых классов функций существуют стандартные замены, сводящие интеграл к табличному.
Интегрирование по частям — Пусть — непрерывно дифференцируемые функции. Тогда справедлива формула интегрирования по частям . Название “по частям” связано с тем, что для записи интеграла в правой части нужно проинтегрировать “часть” подынтегрального выражения в левой части. Метод интегрирования по частям используется для интегралов вида , , , и некоторых других.
Наверх
16.
Интегрирование некоторых классов функций.Интегрирование рациональных функций — Функция называется рациональной, если она вычисляется с помощью четырех арифметических действий, то есть в общем случае является частным от деления двух многочленов: . Если , рациональная дробь называется правильной. Неопределенный интеграл от рациональной функции всегда можно вычислить. Для этого:
Если , выделяем целую часть рациональной дроби с помощью деления многочлена на многочлен. Правильную рациональную дробь (или правильный остаток от деления) раскладываем на простейшие дроби. Вид разложения определяется корнями многочлена , а именно:
Каждому действительному корню кратности 1 в разложении соответствует член .
Каждому действительному корню кратности в разложении соответствует набор из членов .
Каждой паре комплексно сопряженных корней кратности 1 в разложении соответствует член ( — корни уравнения ).
Каждой паре комплексно сопряженных корней кратности в разложении соответствует набор из членов .
В приведенных выражениях — неопределенные коэффициенты, которые можно найти, приводя разложение обратно к общему знаменателю , приравнивая полученные коэффициенты при степенях к соответствующим коэффициентам и решая систему относительно .
Наконец, полученное разложение интегрируем почленно.
Интегрирование тригонометрических функций — Интегралы вида , где — рациональная функция своих аргументов, вычисляются с помощью универсальной замены переменной . При этом . Однако универсальная замена обычно связана с большими вычислениями, поэтому в некоторых случаях можно ее избежать.
Интегралы вида вычисляются с помощью замены . Интегралы вида вычисляются с помощью замены . Интегралы вида , если , то есть четная рациональная функция своих аргументов вычисляются с помощью замены .
Интегралы вида вычисляются с помощью формул понижения степени .
Интегрирование иррациональных функций — Общий принцип интегрирования иррациональных выражений заключается в замене переменной, позволяющей избавиться от корней в подынтегральном выражении. Для некоторых классов функций эта цель достигается с помощью стандартных замен.
Интегралы вида , где — рациональная функция своих аргументов, вычисляются заменой .
Интегралы вида вычисляются заменой или .
Интегралы вида вычисляются заменой или . Интегралы вида вычисляются заменой или .
Наверх
17. Определенный интеграл. Формула Ньютона-Лейбница.
Определенный интеграл, его геометрический смысл.
Рассмотрим функцию , определенную на промежутке . Разобьем промежуток на произвольных частей точками и обозначим , , . На каждом промежутке возьмем произвольную точку и вычислим в ней значение функции. Выражение называется интегральной суммой функции на .Если при существует и конечен предел последовательности частичных сумм , не зависящий ни от способа разбиения промежутка точками , ни от выбора , то этот предел называют определенным интегралом от функции по промежутку , а саму функцию — интегрируемой на . Обозначают .
Из приведенного определения естественно следует геометрический смысл определенного интеграла: если , то равен площади фигуры, ограниченной графиком функции, осью абсцисс и прямыми .
Формула Ньютона-Лейбница.
Значение определенного интеграла может быть вычислено по формуле Ньютона-Лейбница =, здесь символ означает, что из значения при верхнем пределе b нужно вычесть значение при нижнем пределе a , — первообразная функция для . Таким образом, вычисление определенного интеграла сводится к нахождению первообразной, то есть неопределенного интеграла.
Методы вычисления определенного интеграла.
Если — непрерывно дифференцируемая на отрезке функция, , и , когда изменяется на , то, положив , получим формулу замены переменной в определенном интеграле .
Пусть — непрерывно дифференцируемые функции. Тогда справедлива формула интегрирования по частям . Эта формула применяется для тех же классов функций, что и при вычислении неопределенного интеграла.
Наверх
18. Применение определенного интеграла для площадей и длин дуг.
Вычисление площадей и длин дуг кривых в декартовых координатах.
Пусть на плоскости задана область, ограниченная снизу кривой , заданной в декартовых координатах, сверху – кривой , слева – прямой (ее может и не быть, если ), справа – прямой . Исходя из геометрического смысла определенного интеграла, площадь этой области можно вычислить по формуле . Здесь не нужно заботиться, какая из функций и где положительная, а какая отрицательная. Если, например, , то формула сама прибавит нужную площадь. Более сложные области всегда можно разбить так, чтобы выполнялись указанные условия.
Пусть на отрезке уравнением задана плоская кривая. Ее длина вычисляется по формуле
Вычисление площадей и длин дуг при параметрическом задании кривых.
Если область на плоскости снизу ограничена кривой, заданной параметрически, то есть , при этом , а сверху – кривой . Тогда площадь такой плоской фигуры вычисляем по формуле . Эта формула совпадает с формулой вычисления площади в декартовых координатах, если учесть, что .
Пусть кривая на плоскости задана параметрически . Тогда длина этой кривой вычисляется по формуле .
Вычисление площадей и длин дуг кривых в полярных координатах.
Когда кривая, ограничивающая область, задана в полярных координатах , то площадь этой области вычисляем по формуле . Основная трудность в использовании этой формулы заключается в определении пределов интегрирования . Здесь нужно понимать, что кривая определена только, если . Поскольку в формуле присутствует , то она учтет и не существующую площадь, когда . Решив уравнение , найдем пределы интегрирования.
Если кривая, ограничивающая область, задана в полярных координатах , то ее длина вычисляется по формуле . Пределы интегрирования определяются из тех же соображений, что и при вычислении площади.
Наверх
19. Несобственные интегралы.
Интеграл как функция верхнего предела.
Для функции , интегрируемой для всех , значение интеграла зависит от значения верхнего предела ; можно рассмотреть функцию переменной : каждому значению ставится в соответствие число, равное значению интеграла . Таким образом, можно рассматривать определенный интеграл как функцию верхнего предела: ; функция определена в области интегрируемости подынтегральной функции . Если — первообразная для , то значение можно вычислить по формуле Ньютона—Лейбница: . Функцию можно исследовать, не вычисляя первообразной. Для интегрируемой при функции справедливы следующие утверждения: непрерывна на промежутке , причем ; если при , то монотонно возрастает на промежутке ; если непрерывна при , то дифференцируема на промежутке , причем .
Несобственные интегралы по неограниченному промежутку.
Пусть функция интегрируема для всех и . Если существует предел , то этот предел называют несобственным интегралом по неограниченному промежутку и обозначают его . Если предел конечен, то говорят, что несобственный интеграл сходится и его значение вычисляют по формуле . Аналогично определен интеграл для интегрируемой при функции и интеграл для функции , интегрируемой на . Если рассмотренные пределы бесконечны, то говорят, что соответствующий несобственный интеграл расходится.
Несобственные интегралы от неограниченных функций.
Пусть функция интегрируема на любом отрезке, целиком содержащемся в промежутке, и бесконечно большая в точке . Если существует предел , то этот предел называют несобственным интегралом от неограниченной функции по и обозначают его . Если предел конечен, то говорят, что несобственный интеграл сходится и его значение вычисляют по формуле . Аналогично определен интеграл от интегрируемой на любом конечном отрезке, содержащемся в , бесконечно большой в точке функции . Если пределы бесконечны, то говорят, что соответствующий несобственный интеграл расходится.
Исследование несобственных интегралов на сходимость.
Вычисление несобственных интегралов сводится к вычислению первообразной, использованию формулы Ньютона-Лейбница и вычислению предела. Каждый из этапов сам по себе достаточно сложен, и разумно приступать к ним, если есть уверенность, что интеграл сходится, то есть предел конечен. Поэтому, в конечном счете, самым важным в теории несобственных интегралов является исследование их на сходимость: если интеграл расходится, то его и вычислять не надо. Одним из главных инструментов исследования несобственных интегралов на сходимость являются теоремы сравнения.
Рассмотрим две неотрицательные функции и , определенные при . Пусть для всех , начиная с некоторого числа . Тогда, если сходится интеграл от большей функции , то сходится и интеграл от меньшей, то есть. Если расходится интеграл от меньшей функции ,то расходится и интеграл от большей — .
Если , то несобственные интегралы от этих функций или оба сходятся или оба расходятся.
Аналогичные утверждения, которые называют признаками сравнения, имеют место и для интегралов по конечному промежутку от неограниченных функций.
Наверх
20. Числовые ряды.
Числовой ряд. Рассмотрим произвольную числовую последовательность и формально составим сумму ее членов Это выражение называют числовым рядом, или просто рядом. Члены последовательности называют членами ряда. Конечно, невозможно вычислить сумму бесконечного числа слагаемых, но легко вычислить сумму первых n членов ряда . Эта сумма называется n-ой частичной суммой.
Сходимость числового ряда. Ряд называют сходящимся, если существует и конечен предел последовательности частичных сумм ряда. Сам предел при этом называют суммой ряда и обозначают , . Если предел частичных сумм не существует или бесконечен, то ряд расходится. Разность называется остатком ряда. Очевидно, что для сходящегося ряда . Это означает, что сумму сходящегося ряда можно вычислить с любой точностью, заменяя ее частичной суммой соответствующего порядка. Для расходящегося ряда это не так. Поэтому сходимость или расходимость конкретного ряда является основным вопросом для исследования. Если ряд сходится, то (необходимое условие сходимости ряда). Обратное, вообще говоря, неверно. Члены ряда могут стремиться к нулю, но ряд при этом может расходиться.
Суммирование числовых рядов. Если возможно найти общий член последовательности , то по определению можно найти и сумму ряда, вычисляя предел этой последовательности.
Наверх
21. Сходимость знакоположительных рядов.
Теоремы сравнения.
1. Рассмотрим два числовых ряда с неотрицательными членами и , . Если при всех n, начиная с некоторого номера, , то из сходимости ряда следует сходимость ряда. Наоборот, из расходимости ряда следует расходимость ряда.
2. Если для таких же двух рядов , то оба ряда или сходятся или расходятся одновременно. При использовании теорем сравнения нужно иметь ряд-эталон, с которым сравнивать и про сходимость которого известно заранее. В качестве таких рядов чаще всего берут обобщенный гармонический ряд , который сходится при и расходится при , или геометрический ряд , который сходится при и расходится при .
Признаки сходимости. Признаки сходимости Даламбера. Для ряда с положительными членами , вычислим . Если , то ряд сходится, — расходится. При признак Даламбера ответа не дает: ряд может как сходиться, так и расходиться.
Признак сходимости Коши. Для ряда с неотрицательными членами , вычислим . Если , то ряд сходится, — расходится. При признак Коши ответа не дает: ряд может как сходиться, так и расходиться.
Наверх
22. Сходимость знакопеременных рядов.
Абсолютная и условная сходимость. Если в последовательности бесконечно много положительных и отрицательных членов, то ряд называется знакопеременным. Ряд называется знакочередующимся. Знакопеременный ряд называется абсолютно сходящимся, если сходится ряд . Если ряд из модулей расходится, а сам ряд сходится, то его называют условно сходящимся. Исследование знакопеременного ряда начинают с исследования на сходимость ряда из модулей методами для рядов с неотрицательными членами. Если такой ряд сходится, то получен ответ: ряд сходится абсолютно.
Исследование знакочередующихся рядов. Если ряд из модулей расходится, то для знакочередующегося ряда можно применить признак Лейбница: если последовательность стремится к нулю, монотонно убывая, , то ряд сходится, по крайней мере, условно. Для знакочередующегося ряда очень просто оценивается остаток ряда: .
Наверх
23. Функциональные ряды, равномерная сходимость.
Функциональный ряд, его сходимость. Рассмотрим ряд, , членами которого являются функции, определенные на промежутке . При каждом фиксированном имеем числовой ряд, сходимость которого может быть исследована рассмотренными ранее методами. Сумма функционального ряда также является функцией от х: . По определению предела последовательности: если для можно указать номер ( что интересно, для каждого фиксированного — свой номер, т.е. ), такой, что для выполняется неравенство , то это и означает, что функциональный ряд сходится к функции. Множество , для которого это выполняется, называется областью сходимости функционального ряда.
Равномерная сходимость функционального ряда. Пусть , т.е. функциональный ряд сходится. Если для можно указать номер независимо от , такой, что для выполняется неравенство , то говорят, что функциональный ряд сходится равномерно на множестве .
Исследование на равномерную сходимость. Признак Вейерштрасса равномерной сходимости функционального ряда: если существует сходящийся числовой ряд с положительными членами, такой, что для всех , начиная с некоторого номера и всех выполняется неравенство , то функциональный ряд сходится на равномерно. Числовой ряд в этом случае называют мажорантой для функционального ряда.
Наверх
24. Ряд Тейлора.
Степенные ряды. Функциональный ряд , где — числовая последовательность, называется степенным рядом. Степенной ряд сходится на интервале с центром в точке . Число — радиус сходимости степенного ряда может быть вычислено по формулам , или . Степенной ряд сходится равномерно на любом отрезке, целиком лежащем внутри интервала сходимости. Сходимость степенного ряда на границах интервала сходимости необходимо исследовать специально для конкретного ряда.
Разложение функций в ряд Тейлора. При исследовании свойств бесконечно дифференцируемых функций изучают их степенные ряды ряды Тейлора. Пусть функция определена в некоторой окрестности точки и имеет в этой точке производные всех порядков. Ряд
называется рядом Тейлора для функции в точке . При такой ряд называют также рядом Маклорена: . Функция может быть разложена в степенной ряд на интервале , если существует степенной ряд, сходящийся к на этом интервале. Если функция раскладывается в степенной ряд в некоторой окрестности точки , то это ряд Тейлора. Пусть функция бесконечно дифференцируема на интервале и все ее производные ограничены в совокупности на этом интервале, то есть существует число , такое, что для всех и для всех справедливо неравенство . Тогда ряд Тейлора сходится к для всех . Приведем разложения в ряд Тейлора для основных элементарных функций.
Наверх
25. Ряд Фурье.
Ряд Фурье, его сходимость. Пусть функция абсолютно интегрируема на отрезке , то есть существует . Тогда ей можно поставить в соответствие ее тригонометрический ряд Фурье: . Коэффициенты тригонометрического ряда Фурье называют коэффициентами Фурье и вычисляют по формулам Эйлера-Фурье: . Если функция кусочно-гладкая на отрезке , то ее тригонометрический ряд Фурье сходится в каждой точке этого отрезка. При этом, если — сумма ряда Фурье, то для любого . То есть, если непрерывна в точке , то . Если в точке у разрыв первого рода, то ряд Фурье сходится к среднеарифметическому левого и правого пределов функции в точке .
Разложение в ряд Фурье на произвольном отрезке. Для кусочно-гладкой на отрезке функции задача о разложении в ряд Фурье на этом отрезке линейной заменой сводится к задаче о разложении функции на отрезке : , .
Наверх
26. Сходимость ряда Фурье.
Сходимость ряда Фурье, явление Гиббса. Если функция кусочно-гладкая на отрезке , то ее тригонометрический ряд Фурье сходится в каждой точке этого отрезка. При этом, если — сумма ряда Фурье, то для любого . То есть, если непрерывна в точке , то . Если в точке у разрыв первого рода, то ряд Фурье сходится к среднеарифметическому левого и правого пределов функции в точке . В окрестности точек непрерывности функции разность между значением функции в точке и значением частичной суммы ряда в этой точке стремится к нулю при , что полностью соответствует теории, поскольку в этом случае . В окрестности точек разрыва частичные суммы ряда Фурье ведут себя иначе. Эта особенность поведения частичных сумм Фурье в окрестности точек разрыва называется явлением Гиббса. Оно состоит в том, что для некоторых функций в точке ее скачка существуют такие значения , что
Это не противоречит теории, поскольку у Гиббса рассмотрен предел , а в теории v .
Приближение функций, минимальное свойство коэффициентов Фурье. Функция , где — произвольные числа, называется тригонометрическим многочленом. Тригонометрическим многочленом наилучшего приближения n-ой степени для функции на отрезке называется такой многочлен , среднеквадратичное отклонение которого от функции минимально: . Для любой ограниченной интегрируемой на функции частичная сумма ее ряда Фурье является тригонометрическим многочленом наилучшего приближения n-ой степени.
Зависимость скорости сходимости от гладкости функций. Скорость сходимости ряда Фурье функции зависит от ее гладкости (количества непрерывных производных). Если непрерывно дифференцируема r раз на отрезке , то справедливо неравенство , где . Для среднеквадратичного отклонения справедлива оценка , где .
Наверх
27. Функции многих переменных.
Функция двух переменных. Переменная (с областью изменения ) называется функцией независимых переменных в множестве , если каждой паре их значений из по некоторому правилу или закону ставится в соответствие одно определенное значение из множества . Множество v область определения функции, множество v область ее значений. Функциональная зависимость от обозначается так: и т.п. Выберем в пространстве систему координат , изобразим на плоскости множество ; в каждой точке этого множества восстановим перпендикуляр к плоскости и отложим на нем значение . Геометрическое место полученных таким образом точек и является пространственным графиком функции двух переменных.
Линии и поверхности уровня. Линией уровня функции двух переменных называется геометрическое место точек на плоскости , в которых функция принимает одно и то же значение. Линии уровня функции определяются уравнением , где . Изучая линии уровня функции, можно исследовать характер ее изменения, не прибегая к пространственному графику. Поверхностью уровня функции трех переменных называется геометрическое место точек в пространстве, в которых функция принимает одно и то же значение. Уравнение поверхностей уровня имеет вид: . Поскольку график функции трех переменных нам недоступен, поверхности уровня являются единственным средством изучения таких функций.
Локальные экстремумы. Точка называется точкой локального минимума (максимума) функции , определенной в области , если существует окрестность этой точки, такая, что для всех точек этой окрестности, отличных от . Такие экстремумы (максимумы и минимумы) называются нестрогими. Строгие экстремумы имеют место в случае, когда выполнены строгие неравенства.
Наверх
28. Частные производные, градиент.
Частные производные. Пусть — функция двух переменных, определенная в некоторой окрестности точки . Если существует конечный предел , то говорят, что функция имеет в точке частную производную по переменной . Аналогично определяется частная производная по . Обозначают:
.
Пусть — функция n переменных, определенная в области n-мерного пространства. Частной производной функции по переменной называется предел
.
Из определения частной производной следует правило: при вычислении производной по одной из переменных все остальные переменные считаем постоянными, учитывая, что производная постоянной равна нулю и постоянную можно выносить за знак производной.
Производная по направлению. Если в n-мерном пространстве задан единичный вектор , то изменение дифференцируемой функции в направлении этого вектора характеризуется производной по направлению: . В частности, для функции трех переменных , — направляющие косинусы вектора .
Градиент. Производная по направлению представляет собой скалярное произведение вектора и вектора с координатами , который называется градиентом функции и обозначается . Поскольку , где — угол между и , то вектор указывает направление скорейшего возрастания функции , а его модуль равен производной по этому направлению.
Полный дифференцал. Для приращения дифференцируемой функции справедливо равенство . Линейная по приращениям аргументов часть приращения функции называется полным дифференциалом функции и обозначается .
Производные и дифференциалы высших порядков. Дифференцируя частную производную как функцию нескольких переменных по одной из переменных, получим производные второго порядка. Например, для функции двух переменных: . Если смешанные производные и непрерывны, то они равны, то есть не зависят от порядка дифференцирования. Аналогично определяются, например, . Если при вычислении полного дифференциала от дифференциала первого порядка учесть, что приращения аргументов есть числа и оставить их неизменными, то получим дифференциал второго порядка. Например, для функции двух переменных: . Здесь учтено равенство смешанных производных второго порядка и принято . При этих допущениях формулу дифференциала любого порядка можно получить из символического выражения: .
Наверх
29. Неявные функции.
Неявная функция одной переменной. Пусть в некоторой области плоскости задана функция , и пусть линия уровня этой функции , определяемая уравнением , является графиком некоторой функции , определяемой уравнением . В этом случае говорят, что функция задана неявно уравнением . Для существования неявной функции требуется выполнение следующих условий: функция и ее частная производная по непрерывны в , . Тогда в некоторой окрестности точки существует единственная непрерывная функция , задаваемая уравнением , так, что в этой окрестности .
Неявная функция многих переменных. Аналогично рассматривают функции многих переменных, заданные неявно. Например, при выполнении соответствующих условий, уравнение задает неявно функцию . Это же уравнение может задавать неявно функцию или .
Производная неявной функции. При вычислении производной неявной функции воспользуемся правилом дифференцирования сложной функции. Продифференцируем уравнение : . Отсюда получим формулу для производной функции , заданной неявно: . Таким же способом нетрудно получить формулы для частных производных функции нескольких переменных, заданной неявно, например, уравнением : , .
Наверх
30. Формула Тейлора для многих переменных.
Формулы Тейлора и Маклорена. Если функция имеет в некоторой окрестности точки непрерывные частные производные до (n+1)-го порядка включительно, то для любой точки из этой окрестности справедлива формула Тейлора n-го порядка: , где ,
,
и т.д. Формула Тейлора, записанная в окрестности точки (0,0) называется формулой Маклорена. Например, для функции двух переменных при n=2: .
Аппроксимация функции многочленом. Выражение
называется многочленом Тейлора n-го порядка. Поскольку , то в окрестности точки функцию можно приближенно заменить, или, как говорят, аппроксимировать, ее многочленом Тейлора, т.е. . Чем ближе точка к точке , тем выше точность такой аппроксимации; кроме того, точность возрастает с ростом n. Это означает, что, чем больше непрерывных производных имеет функция , тем точнее представляет ее многочлен Тейлора.
Наверх
31. Исследование на экстремум.
Локальные экстремумы. Точка называется точкой локального минимума (максимума) функции , определенной в области , если существует окрестность этой точки, такая, что для всех точек этой окрестности, отличных от . Такие экстремумы (максимумы и минимумы) называются нестрогими. Строгие экстремумы имеют место в случае, когда выполнены строгие неравенства.
Исследование на экстремум функции двух переменных. Обозначим через приращение функции в точке . Если — точка локального минимума функции , то существует окрестность , в которой (обратное неравенство в случае максимума). Из формулы Тейлора первого порядка следует, что приращение дважды непрерывно дифференцируемой функции может сохранять знак, если главная линейная часть приращения функции в точке экстремума (максимума или минимума) равна нулю, т.е. выполнено необходимое условие экстремума: если точка — точка экстремума, то . Такая точка называется стационарной точкой функции. Приращение функции в стационарной точке имеет вид . Обозначим . Справедливо следующее достаточное условие экстремума. Пусть функция дважды непрерывно дифференцируема в окрестности точки и . Если , то в точке функция достигает экстремума. Если при этом , то этот экстремум v минимум, при — максимум. Если же , то в точке экстремума нет. Геометрически достаточное условие означает, что в окрестности экстремума график функции близок к поверхности . Если , то для определения знака приращения необходимо изучить члены формулы Тейлора более высокого порядка.
Наверх
32. Условный экстремум.
Условные экстремумы. Пусть функция определена в некоторой области и в этой области задана кривая уравнением . Условным экстремумом функции двух переменных называют ее экстремум при условии, что точки берутся на заданной кривой. Если из уравнения кривой можно, например, выразить , то задача о нахождении условного экстремума сводится к исследованию на экстремум функции одной переменной .
Метод множителей Лагранжа. Если уравнение не разрешимо ни относительно , ни относительно , то рассматривают функцию Лагранжа. Необходимым условием существования условного экстремума функции при условии является равенство нулю всех частных производных функции Лагранжа: .
Наибольшее и наименьшее значение функции в области. Поскольку функция , непрерывная в ограниченной замкнутой области достигает в ней своего наибольшего и наименьшего значений, задача об их нахождении разделяется на две части: найти экстремумы функции двух переменных внутри области, найти ее условные экстремумы на границе области, при условии, что граница задана уравнением .
Наверх
33. Двойной и тройной интегралы.
Двойной интеграл в декартовых координатах. Пусть ограниченная замкнутая область плоскости с кусочно-гладкой границей и пусть функция определена и ограничена на . Посредством сетки кусочно-гладких кривых разобьем на конечное число элементарных областей с площадями (разбиение ). Пусть — наибольший из диаметров областей , получающийся при разбиении . В каждой из элементарных областей выберем произвольную точку . Число называется интегральной суммой и ставится в соответствие каждому разбиению и каждому выбору точек . Если существует и он не зависит от выбора разбиения и точек , то функция называется интегрируемой по Риману в области , а сам предел называется двойным интегралом от функции по области и обозначается или . Двойной интеграл существует, если непрерывна на . Допустимы точки разрыва первого рода, лежащие на конечном числе гладких кривых в .
Свойства двойного интеграла. Свойства двойного интеграла аналогичны свойствам определенного интеграла:
Линейность:
. Аддитивность:
, если S1 и S2 две области без общих внутренних точек.
Если для каждой точки выполнено неравенство , то .
Если интегрируема на , то функция также интегрируема, причем .
Если и наименьшее и наибольшее значения функции в области, а ее площадь, то .
Теорема о среднем значении: если непрерывна в связной области , то существует, по крайней мере, одна точка такая, что .
Вычисление двойного интеграла.
Если , где — непрерывные на функции, то двойной интеграл может быть вычислен двумя последовательными интегрированиями: . Аналогично, если , то .
Тройной интеграл и его свойства. Пусть — ограниченная замкнутая пространственная область, границей которой является кусочно-гладкая поверхность, и пусть функция определена и ограничена в . Посредством сетки кусочно-гладких поверхностей разобьем на конечное число элементарных областей с объемами (разбиение). Пусть . наибольший из диаметров областей , получающийся при разбиении . В каждой из элементарных областей выберем произвольную точку . Число ставится в соответствие каждому разбиению и каждому выбору точек и называется интегральной суммой. Если существует и он не зависит от выбора разбиения и точек, то функция называется интегрируемой по Риману в области , а сам предел называется тройным интегралом от функции по области и обозначается . Свойства тройных интегралов такие же, как и у двойных интегралов.
Вычисление тройного интеграла в декартовых координатах. Пусть является цилиндрическим телом, проекция которого на плоскость есть область и которое ограничено снизу поверхностью , а сверху v поверхностью , где — непрерывные функции в . Тогда , то есть интегрированием по z тройной интеграл сводится к двойному интегралу по области . Для областей более сложной формы вычисление двойных и тройных интегралов производится разбиением областей на конечное число простых областей с уже рассмотренными свойствами.
Наверх
34. Замена переменных в кратных интегралах.
Замена переменных в двойном интеграле. Пусть функции взаимно однозначно отображают открытое множество, содержащее область плоскости на открытое множество, содержащее область , и пусть является образом . Если и их частные производные непрерывны, а определитель , то . Выражение называется элементом площади в криволинейных координатах, функциональный определитель — якобианом.
Вычисление площади.
Замена переменных в тройном интеграле. Пусть посредством функций производится взаимно однозначное отображение открытого множества, содержащего область пространства на открытое множество, содержащее область пространства и есть образ . Если эти три функции непрерывны вместе со своими первыми частными производными в области и якобиан, то . Выражение называется элементом объема в криволинейных координатах .
Вычисление объема.
Двойной интеграл в полярных координатах. Введем на плоскости полярные координаты. Пусть — область, полученная взаимно однозначным отображением области плоскости , определяемым функциями . Тогда , а двойной интеграл в полярных координатах вычисляется по формуле: .Элемент площади в полярных координатах есть .
Наверх
35. Сферические и цилиндрические координаты.
Тройной интеграл в цилиндрических координатах. Введем в пространстве цилиндрические координаты. Для этого на плоскости используем полярные координаты, а третья координата произвольной точки остается . Учитывая связь полярных координат с декартовыми, получим выражение декартовых координат через цилиндрические: . Тогда и тройной интеграл в цилиндрических координатах вычисляется по формуле: . Элемент объема в цилиндрической системе координат есть .
Тройной интеграл в сферических координатах. Введем в пространстве сферическую систему координат. Для этого рассмотрим произвольную точку в декартовой системе координат. Спроектируем ее на плоскость , получив точку . Положение точки в пространстве будем характеризовать ее расстоянием от начала координат , углом между отрезком и положительной полуосью , углом между отрезком и положительной полуосью . Декартовы координаты точки выражаются через сферические по формулам: . В этом случае . Тогда тройной интеграл в сферических координатах вычисляется по формуле:
.
Элемент объема в сферической системе координат есть .
Наверх
36. Поверхностный интеграл по площади поверхности.
Площадь гладкой поверхности. Рассмотрим кусок поверхности , заданной уравнением . Пусть выполняется условие , что означает, что в каждой точке поверхности существует нормаль с направляющим вектором . Разобьем поверхность сеткой гладких кривых на элементарные области ( разбиение ). Пусть — наибольший из диаметров элементарных областей. Если независимо от разбиения существует , то он и называется площадью данной поверхности. Пусть однозначно проектируется на плоскость и — эта проекция. Элементу площади области на плоскости соответствует элемент площади поверхности , равный , где — угол между нормалью к поверхности и осью . Поэтому вычисление площади поверхности сводится к вычислению двойного интеграла по проекции поверхности на плоскость. Если поверхность задана уравнением , то и площадь поверхности вычисляется по формуле , здесь — проекция поверхности на плоскость . Если поверхность однозначно проектируется на другие координатные плоскости, то соответственно изменится формула вычисления площади поверхности.
Поверхностный интеграл 1-го рода. Пусть некоторая функция определена и ограничена на гладкой поверхности . Выберем разбиение поверхности и точки на каждой элементарной области и составим интегральную сумму . Если независимо от выбора разбиения и точек существует , то он называется поверхностным интегралом по площади поверхности (1-го рода) от функции и обозначается .
Свойства и вычисление поверхностного интеграла по площади поверхности. Если поверхность задана уравнением и однозначно проектируется на плоскость , то поверхностный интеграл 1-го рода вычисляется по формуле . Нетрудно получить аналогичные формулы, если поверхность однозначно проектируется на другие координатные плоскости. Поскольку вычисление поверхностного интеграла сводится к двойному интегралу, то, естественно, все свойства поверхностного интеграла 1-го рода такие же, как и у двойного.
Наверх
37. Криволинейный интеграл по длине дуги.
Криволинейный интеграл 1-го рода. Пусть — отрезок кусочно-гладкой кривой с началом в точке и концом в точке и — ограниченная функция, определенная в некоторой области, содержащей кривую . Выберем на кривой произвольные точки , разбивая ее на элементарные отрезки (разбиение ), длина каждого . Обозначим . Пусть — произвольная точка на элементарном отрезке . Составим интегральную сумму . Если независимо от разбиения и выбора точек существует , то он называется криволинейным интегралом по длине кривой (1-го рода) и обозначается . Аналогично определяется криволинейный интеграл 1-го рода от функции трех переменных по отрезку пространственной кривой.
Свойства и вычисление криволинейного интеграла по длине дуги. Криволинейный интеграл 1-го рода не зависит от направления движения по кривой , то есть. Это единственное свойство, которое не совпадает с обычными свойствами интегралов, определеямых через предел интегральной суммы. Если — отрезок кусочно-гладкой кривой, заданной параметрически:
, то криволинейный интеграл вычисляется по формуле:
. Если плоская кривая задана в явном виде, то криволинейный интеграл вычисляется по формуле: .
Наверх
38. Скалярное поле.
Скалярное поле. Если каждой точке пространства ставится в соответствие скалярная величина , то возникает скалярное поле (например, поле температуры, поле электрического потенциала). Если введены декартовы координаты, то обозначают также
или . Поле может быть плоским, если , центральным (сферическим), если , цилиндрическим, если .
Поверхности и линии уровня. Свойства скалярных полей можно наглядно изучать с помощью поверхностей уровня. Это поверхности в пространстве, на которых принимает постоянное значение. Их уравнение: . В плоском скалярном поле линиями уровня называют кривые, на которых поле принимает постоянное значение: . В отдельных случаях линии уровня могут вырождаться в точки, а поверхности уровня в точки и кривые.
Производная по направлению и градиент скалярного поля. Пусть — единичный вектор с координатами , — скалярное поле. Производная по направлению характеризует изменение поля в данном направлении и вычисляется по формуле . Производная по направлению представляет собой скалярное произведение вектора и вектора с координатами , который называется градиентом функции и обозначается . Поскольку , где — угол между и , то вектор указывает направление скорейшего возрастания поля , а его модуль равен производной по этому направлению. Так как компоненты градиента являются частными производными, нетрудно получить следующие свойства градиента:
Наверх
39. Векторное поле.
Векторное поле. Если каждой точке пространства ставится в соответствие вектор , то говорят, что задано векторное поле (поле скоростей частиц движущейся жидкости, силовое поле, поле электрической напряженности). В декартовой системе координат векторное поле можно записать в виде: . Скалярные функции однозначно определяют векторное поле. Векторное поле может быть плоским, если , сферическим, когда , , цилиндрическим, когда , .
Векторные линии (линии тока). Для наглядного представления векторных полей используют векторные линии (линии тока). Это кривые, в каждой точке которых вектор является касательным вектором. Через каждую точку проходит одна линия тока. За исключением точек, где поле не определено или , линии тока никогда не пересекаются. В декартовых координатах дифференциальные уравнения линий тока имеют вид:
Наверх
40. Поток векторного поля.
Поток векторного поля. Рассмотрим кусок поверхности , заданной уравнением . Пусть выполняется условие , что означает, что в каждой точке поверхности существует нормаль с направляющим вектором . Выберем одну из сторон поверхности следующим образом: построим на поверхности достаточно малый замкнутый контур, на котором задано направление обхода. Построим вектор нормали в точке поверхности, лежащей внутри контура. Если из конца вектора нормали обход контура кажется происходящим против часовой стрелки, то будем называть сторону поверхности, обращенную к вектору нормали положительной стороной. Таким образом, будем рассматривать ориентированную двухстороннюю поверхность, а односторонние поверхности лист Мебиуса, бутылку Клейна оставим в покое. Потоком векторного поля через ориентированную поверхность называется поверхностный интеграл по площади поверхности (1-го рода) , где — единичный вектор нормали, направленный в положительную сторону. Выбор положительной стороны обычно диктуется физическими условиями задачи.
Непосредственное вычисление потока. Поскольку поток векторного поля определен с помощью поверхностного интеграла, вычисление потока сводится к вычислению такого интеграла от функции , где — компоненты векторного поля, — направляющие косинусы вектора нормали.
Наверх
41. Формула Остроградского.
Поток векторного поля через замкнутую поверхность. Рассмотрим кусочно-гладкую двухстороннюю замкнутую ориентированную поверхность . Поток векторного поля через замкнутую поверхность является важной характеристикой поля и позволяет судить о наличии источников и стоков поля. При непосредственном вычислении потока через замкнутую поверхность приходится разбивать ее на части, однозначно проектируемые на координатные плоскости.
Формула Остроградского. Пусть замкнутая поверхность ограничивает некоторый объем . Тогда в декартовых координатах справедлива формула Остроградского: , где — компоненты векторного поля.
Дивергенция векторного поля. Дивергенцией векторного поля называется . Точка находится внутри замкнутой поверхности , ограничивающей объем , который при вычислении предела стягивается в эту точку. является скалярной величиной и служит мерой источников поля. Если в некоторой области поля , то источников поля в этой области нет. Такое поле называют соленоидальным. Используя формулу Остроградского, нетрудно получить выражение для вычисления дивергенции в декартовых координатах: . Из свойств частных производных следуют свойства дивергенции векторного поля:
Наверх
42. Криволинейный интеграл в векторном поле.
Криволинейный интеграл в векторном поле. Пусть заданы некоторое векторное поле и кривая АВ (А — начальная точка, В — конечная). Криволинейный интеграл в векторном поле есть скаляр, полученный следующим образом:
Разобьем кривую точками А=А0, А1, А2-Аn=В на n частей, приближенно изображаемых векторами (разбиение ).
Обозначим .
На границе или внутри каждой элементарной дуги Аi-1Ai выберем точку, которой соответствует радиус-вектор и составим интегральную сумму .
Если существует и он не зависит от разбиения и выбора точек, то этот предел называется криволинейным интегралом в векторном поле. В декартовой системе координат:, где — компоненты векторного поля.
Если кривая задана в параметрической форме:
, то вычисление криволинейного интеграла сводится к определенному интегралу:
. Используя определение и формулу для вычисления нетрудно получить свойства криволинейного интеграла:
Подчеркнем, что, в отличие от криволинейного интеграла по длине дуги, криволинейный интеграл в векторном поле меняет знак при изменении направления интегрирования.
Если векторное поле, описывающее физическое силовое поле, то криволинейный интеграл выражает работу, которую совершает сила при переносе материальной точки из пункта А в пункт В вдоль кривой АВ.
Циркуляция векторного поля. Важной характеристикой векторного поля является циркуляция векторного поля, которая равна криволинейному интегралу по замкнутой кривой в области поля, или, как говорят, по замкнутому контуру: . Циркуляция векторного поля является скалярной величиной и характеризует вихревые свойства поля. Если в некоторой области поля циркуляция равна нулю, то поле называют безвихревым.
Наверх
43. Формула Стокса.
Формула Стокса. Рассмотрим в пространстве кусок двухсторонней кусочно-гладкой поверхности , край которой образуется кусочно-гладкой кривой . Выберем положительную сторону поверхности (из конца единичного вектора нормали обход границы представляется против часовой стрелки). Для циркуляции векторного поля вдоль контура границы имеет место формула Стокса: , где — компоненты векторного поля, — направляющие косинусы вектора нормали.
Ротор векторного поля. Рассмотрим в пространстве замкнутый контур с выбранным направлением обхода, лежащий в ориентированной плоскости на ее положительной стороне (из конца единичного вектора нормали обход контура представляется против часовой стрелки). Ротором (или вихрем) векторного поля в точке называется вектор, проекция которого на направление вектора нормали есть . Точка лежит на плоскости внутри контура , который стягивается в эту точку при вычислении предела. Поскольку ротор поля определяется через циркуляцию, то он тоже является мерой завихренности поля. Найдем компоненты ротора в декартовой системе координат, воспользовавшись формулой Стокса. Для этого выберем сначала координатную плоскость y0z с нормальным вектором , затем x0z, , затем x0y, . Применяя каждый раз теорему о среднем для интеграла, получим:
Теперь теорема Стокса может быть сформулирована следующим образом: циркуляция векторного поля вдоль контура равна потоку ротора поля через поверхность, натянутую на этот контур. Выражение для ротора поля проще запомнить, если записать его в виде определителя:. Используя свойства частных производных и определителей, получим следующие свойства ротора векторного поля:
Наверх
44. Потенциальное поле.
Потенциальное поле. Если векторное поле , то оно называется потенциальным, а скалярное поле , соответственно, его потенциалом. Самым известным примером такого соответствия является электрическое поле, напряженность которого , где — потенциал электрического поля. Минус в формуле связан с историческим выбором направления вектора напряженности от плюса к минусу, когда уже умели тереть шерсть об янтарь, но не знали, как это описывать математически.
Условие потенциальности поля. Пусть задано скалярное поле , причем данная функция дважды непрерывно дифференцируема. Напомним, что в этом случае смешанные частные производные второго порядка не зависят от порядка дифференцирования. Вычислим .
Нетрудно видеть, что при этих условиях получается тождественный ноль. То есть, если поле потенциальное, то его .
Вычисление потенциала векторного поля. Если мы убедились, что поле является потенциальным, то есть его ротор равен нулю, то представляет интерес вычислить потенциал этого поля. Для этого рассмотрим криволинейный интеграл в данном векторном поле: , где точки А и В — начальная и конечная точки кривой. Поскольку , то скалярное произведение векторов и является полным дифференциалом функции : . Поэтому из свойств криволинейного интеграла следует, что . Смысл полученной формулы состоит в том, что работа поля по перемещению материальной точки из А в В не зависит от пути интегрирования, а только от конечной и начальной точек, точнее, от разности потенциалов в этих точках. Понятие разности потенциалов хорошо известно из физики. Для вычисления потенциала поля в произвольной точке В выберем начальную точку А, от которой начнем отсчет (в физике часто это — бесконечно удаленная точка). Тогда . Поскольку интеграл не зависит от пути интегрирования, то выберем его так, как нам удобно: сначала параллельно оси 0х, потом параллельно 0у, наконец, параллельно 0z. Обозначая , получим:
.
Здесь — компоненты векторного поля . Поскольку выбор начальной точки произволен, потенциал поля определяется с точностью до произвольной постоянной, которая определяется физическими соображениями.
Найти экстремумы функции | Онлайн калькулятор
Данный калькулятор предназначен для нахождения экстремумов функции.
Следует различать понятия точек экстремума и экстремумов функции. Точки экстремума – точки максимума и минимума функции, это значения на оси Ox. Точка x0 является точкой максимума функции y=f(x), если для всех x из ее окрестности выполняется неравенство f(x0)≥f(x). Точка x0 является точкой минимума функции y=f(x), если из ее окрестности для всех x выполняется неравенство f(x0)≤f(x). Значения функции, которые соответствуют точкам экстремума, называются экстремумами функции, это значения на оси Oy.
Для того чтобы найти экстремумы функции можно использовать любой из трех условий экстремума, если функция удовлетворяет эти условиям.
Первым достаточным условием экстремума являются следующие утверждения: если в точке x0 функция непрерывна, и в ней производная меняет знак с плюса на минус, то точка x0 является точкой максимума, а если в данной точке производная меняет знак с минуса на плюс, то x0 – точка минимума.
Вторым признаком экстремума является следующее утверждение: если производная второго порядка от x0 больше нуля, то x0 – точка минимума; если меньше нуля, то x0 – точка максимума. Третье достаточное условие экстремума функции заключается в следующем. Пусть функция y=f(x) имеет производные до n-ого порядка в окрестности точки x0 и производные до n+1-ого порядка в самой точке x0; пусть f’(x0)= f’’(x0)= f’’’(x0)=…=f(n)( x0)=0 и f(n+1)( x0)≠0. Тогда, если n – нечетное, то x0 – точка экстремума. Если f(n+1)( x0)>0, то x0 – точка минимума, а, если f(n+1)( x0)0 – точка максимума. Для того чтобы найти экстремумы функции, введите эту функцию в ячейку. Основные примеры ввода функций для данного калькулятора указаны ниже. Для получения полного хода решения нажимаем в ответе Step-by-step.
% PDF-1.5 % 3153 0 объект > эндобдж xref 3153 86 0000000016 00000 н. 0000018807 00000 п. 0000018932 00000 п. 0000019603 00000 п. 0000019745 00000 п. 0000019833 00000 п. 0000020010 00000 н. 0000021206 00000 п. 0000021319 00000 п. 0000022512 00000 п. 0000023704 00000 п. 0000024891 00000 п. 0000025006 00000 п. 0000025513 00000 п. 0000025782 00000 п. 0000027604 00000 п. 0000029384 00000 п. 0000029500 00000 н. 0000029529 00000 п. 0000029995 00000 н. 0000031519 00000 п. 0000033304 00000 п. 0000033460 00000 п. 0000034654 00000 п. 0000035849 00000 п. 0000036118 00000 п. 0000036284 00000 п. 0000036434 00000 п. 0000036602 00000 п. 0000036771 00000 п. 0000036942 00000 п. 0000037436 00000 п. 0000037520 00000 п. 0000039297 00000 п. 0000039569 00000 п. 0000039794 00000 п. 0000041574 00000 п. 0000043353 00000 п. 0000043472 00000 п. 0000045027 00000 п. 0000046720 00000 н. 0000048623 00000 п. 0000048760 00000 п. 0000050690 00000 п. 0000052502 00000 п. 0000054471 00000 п. 0000054542 00000 п. 0000057898 00000 п. 0000058175 00000 п. 0000061407 00000 п. 0000061478 00000 п. 0000080086 00000 п. 0000135467 00000 н. 0000135739 00000 н. 0000218562 00000 н. 0000218871 00000 н. 0000223971 00000 н. 0000239248 00000 н. 0000239330 00000 н. 0000239412 00000 н. 0000256863 00000 н. 0000262214 00000 н. 0000280123 00000 н. 0000291678 00000 н. 0000292132 00000 н. 0000292161 00000 п. 0000292574 00000 н. 0000292879 00000 п. 0000294239 00000 п. 0000294468 00000 н. 0000295855 00000 н. 0000296063 00000 н. 0000297454 00000 н. 0000297617 00000 н. 0000379366 00000 н. 0000381147 00000 н. 0000382522 00000 н. 0000382619 00000 н. 0000383952 00000 н. 0000384180 00000 п. 0000385565 00000 н. 0000385761 00000 н. 0000385853 00000 п. 0000385952 00000 н. 0000404485 00000 н. 0000002016 00000 н. трейлер ] / Назад 8215513 >> startxref 0 %% EOF 3238 0 объект > поток h ެ i \ S א 20 («C0Q» & ZTiE @ jZkvk [-8l_ = ςy w >> ay @@ c3Ā% wB «»; Bw; час JA StwBaRQ8! `» FШB (DA (\ 7tBs GBp7W 2ĵereQLy, yrE! Lhθ [5z_b {‘w ޢ S1J * Vj> 7W Yx42ef (= T / zh5 + NypS} ybY # 3 | ݛ qo | uf * sT {{0 «@W.UAq7 = S _% + ou̥)? [R9j- | nSy = Ĥ’uwoZX & 7mx = xuŮҒkR & 3;% Ey, Ufb.) \ _ MaGe ~ I ܮ tutP
Калькулятор функцийэкстремальных значений (минимум / максимум)
Поиск инструмента
Экстремум функции
Инструмент для вычисления экстремумов функции. Экстремальное значение функции — это минимальное или максимальное значение, которое может принимать функция.
Результаты
Экстремум функции — dCode
Тег (и): Функции
Поделиться
dCode и другие
dCode является бесплатным, а его инструменты являются ценным подспорьем в играх, математике, геокэшинге, головоломках и задачах, которые нужно решать каждый день!
Предложение? обратная связь? Жук ? идея ? Запись в dCode !
Калькулятор абсолютного экстремума
Калькулятор локального / относительного максимума
Калькулятор локального / относительного минимума
Ответы на вопросы (FAQ)
Как рассчитать экстремум?
Чтобы найти крайние значения функции (самые высокие или самые низкие точки на интервале, где функция определена), сначала вычислите производную функции и изучите знак.2 $, определенный над $ \ mathbb {R} $: функция имеет минимум в $ x = 0 $ и $ f (x)> = 0 $ в области определения $ \ mathbb {R} $.
Максимум функции $ M $ (верхний регистр M) существует, когда для всех $ x $, $ f (x)
В чем разница между относительным / локальным экстремумом и абсолютным / глобальным экстремумом?
Экстремум функции обязательно определяется на интервале. Если интервал — это вся область определения функции, то это глобальный / абсолютный экстремум , в противном случае это локальный / относительный экстремум .2 $ имеет локальный минимум $ 1 $ в $ x = 0 $
Что означают экстремумы?
Extrema — это множественное число от extremum (от латинского, что означает крайность).
Задайте новый вопросИсходный код
dCode сохраняет право собственности на исходный код онлайн-инструмента «Экстремум функции». За исключением явной лицензии с открытым исходным кодом (обозначенной CC / Creative Commons / free), любой алгоритм, апплет или фрагмент «Экстремума функции» (конвертер, решатель, шифрование / дешифрование, кодирование / декодирование, шифрование / дешифрование, переводчик) или любой другой » Экстремум функции функции (вычислить, преобразовать, решить, расшифровать / зашифровать, расшифровать / зашифровать, декодировать / закодировать, перевести), написанную на любом информационном языке (Python, Java, PHP, C #, Javascript, Matlab и т. Д.)), и никакая загрузка данных, скрипт, копирование и доступ к API для «Экстремума функции» не будут бесплатными, то же самое для автономного использования на ПК, планшете, iPhone или Android! dCode распространяется бесплатно и онлайн.
Нужна помощь?
Пожалуйста, посетите наше сообщество dCode Discord для получения помощи!
NB: для зашифрованных сообщений проверьте наш автоматический идентификатор шифра!
Вопросы / комментарии
Сводка
Похожие страницы
Поддержка
Форум / Справка
Ключевые слова
экстремум, функция, производная, вычислитель, максимум, минимум, полином
Ссылки
Источник: https: // www.dcode.fr/extremum-function
© 2021 dCode — Идеальный «инструментарий» для решения любых игр / загадок / геокэшинга / CTF.Ошибка разрыва связи
MATH E-23a (15176)
Перейти к содержанию Приборная панельАвторизоваться
Приборная панель
Календарь
Входящие
История
Помощь
- Мой Dashboard
- MATH E-23a (15176)
- Home
- Syllabus
- Modules
- Quizzes
- Extension School: Lecture Video
- Sections
- Assignments
- Collaborations
- Pages
К сожалению, вы обнаружили неработающую ссылку!
Бизнес-расчет
В теории и приложениях мы часто хотим максимизировать или минимизировать какое-то количество.Инженер может захотеть максимизировать скорость нового компьютера или минимизировать тепло, выделяемое устройством. Производитель может захотеть максимизировать прибыль и долю рынка или минимизировать отходы. Учащийся может захотеть максимизировать оценку по математике или свести к минимуму часы обучения, необходимые для получения определенной оценки.
Без исчисления мы знаем только, как найти оптимальные точки на нескольких конкретных примерах (например, мы знаем, как найти вершину параболы). Но что, если нам нужно оптимизировать незнакомую функцию?
Лучший способ без исчисления — это изучить график функции, возможно, используя технологию.Но наш вид зависит от выбранного окна просмотра — мы можем упустить что-то важное. Кроме того, таким образом мы, вероятно, получим только приблизительное значение. (В некоторых случаях этого будет достаточно.)
Calculus предоставляет способы резко сократить количество точек, которые нам нужно изучить, чтобы найти точное местоположение максимумов и минимумов, и в то же время убедиться, что мы не пропустили ничего важного.
Для просмотра этого видео включите JavaScript и рассмотрите возможность обновления до веб-браузера, который поддерживает видео HTML5
Локальные максимумы и минимумы
Прежде чем мы исследуем, как исчисление может помочь нам найти максимумы и минимумы, нам нужно определить концепции, которые мы будем развивать и использовать.
Определения (локальные максимумы и минимумы)
\ (f (x) \) имеет локальный максимум в \ (x = a \), если \ (f (a) \ geq f (x) \) для всех \ (x \) рядом с \ (a \ ).
\ (f (x) \) имеет локальный минимум в \ (x = a \), если \ (f (a) \ leq f (x) \) для всех \ (x \) вблизи \ (a \ ).
\ (f (x) \) имеет локальный максимум в точке \ (x = a \), если \ (f (a) \) является локальным максимумом или минимумом .
Множественное число из них — максимумы и минимумы.Мы часто просто говорим «макс» или «мин»; это экономит много слогов.
В некоторых книгах написано «родственник» вместо «местный».
Процесс поиска максимумов или минимумов называется оптимизацией .
Точка является локальным максимумом (или минимумом), если она выше (ниже), чем все соседних точек . Эти точки исходят из формы графика.
Определения (глобальные максимумы и минимумы)
\ (f (x) \) имеет глобальный максимум в \ (x = a \), если \ (f (a) \ geq f (x) \) для всех \ (x \) в области \ (е (х) \).
\ (f (x) \) имеет глобальный минимум в \ (x = a \), если \ (f (a) \ leq f (x) \) для всех \ (x \) в области \ (е (х) \).
\ (f (x) \) имеет глобальный экстремум в \ (x = a \), если \ (f (a) \) является глобальным максимумом или минимумом .
В некоторых книгах говорится «абсолютный» вместо «глобальный».
Точка — это глобальный максимум (или минимум), если он выше (ниже) каждой точки на графике. Эти точки происходят от формы графика и окна, через которое мы просматриваем график.
Обозначены локальные и глобальные крайние значения функции на Рисунке 1. Вы должны заметить, что каждая глобальная крайность также является локальной, но есть локальные крайности, которые не являются глобальными крайностями.
Рисунок 1Если \ (h (x) \) — высота земли над уровнем моря в точке \ (x \), то глобальный максимум \ (h \) равен \ (h \) (вершина горы. Эверест) = 29 028 футов. Локальный максимум \ (h \) для Соединенных Штатов составляет \ (h \) (вершина горы Мак-Кинли) = 20 320 футов.Локальный минимум \ (h \) для Соединенных Штатов составляет \ (h \) (Долина Смерти) = -282 фута.
Пример 1
В таблице показано годовое количество зачисленных в крупный университет. В какие годы была максимальная или минимальная численность учащихся по математике? Каковы были максимальные и минимальные зачисления на математический факультет в мире?
Год | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
Запись | 1257 | 1324 | 1378 | 1336 | 1389 | 1450 | 1523 | 1582 | 1567 | 1545 | 1571 |
В 2002 и 2007 годах были локальные максимумы; в 2007 году мировой максимум составлял 1582 студента.В 2003 и 2009 гг. Были локальные минимумы; в 2000 г. глобальный минимум составлял 1257 студентов. Мы предпочитаем не думать о 2000 г. как о локальном минимуме или о 2010 г. как о локальном максимуме; однако некоторые книги будут включать конечные точки. Нам разрешено иметь глобальный максимум или глобальный минимум в конечной точке.
Для просмотра этого видео включите JavaScript и рассмотрите возможность обновления до веб-браузера, который поддерживает видео HTML5
Нахождение максимумов и минимумов функции
Как должна выглядеть касательная линия при локальном максимуме или минимуме? Посмотрите на эти два графика еще раз — вы увидите, что во всех крайних точках касательная горизонтальна (так что \ (f ‘= 0 \)).На синем графике есть один куспид — там касательная вертикальна (поэтому \ (f ‘\) не определено).
Это дает нам ключ к пониманию того, как находить экстремальные значения.
Определения
Критическое число для функции \ (f \) — это значение \ (x = a \) в области \ (f \), где либо \ (f ‘(a) = 0 \), либо \ (f ‘(a) \) не определено.
Критическая точка для функции f — это точка (a, f (a)), где a — критическое число f.2 — 4x + 3) = 3 (x — 1) (x — 3) \] Итак, \ (f ‘(x) = 0 \) при \ (x = 1 \) и \ (x = 3 \) (и никаких других значений \ (x \)). Нет мест, где \ (f ‘\) не определено.
Критические числа: \ (x = 1 \) и \ (x = 3 \). Итак, критические точки — это (1, 6) и (3, 2).
Это единственные возможные места локальных крайностей \ (f \). Мы еще не обсуждали, как определить, является ли какая-либо из этих точек на самом деле локальной крайностью \ (f \) или какой она может быть. Но мы можем быть уверены, что никакая другая точка не является локальной крайностью.3 \) не имеет локальных крайностей.
Помните этот пример! Недостаточно найти критические точки — мы можем только сказать, что \ (f \) может иметь локальный экстремум в критических точках.
Первые и вторые производные тесты
Эта критическая точка является максимумом или минимумом (или ни тем, ни другим)?
После того, как мы нашли критические точки \ (f \), у нас все еще есть проблема определения, являются ли эти точки максимумом, минимумом или ни одним из них.
Все графики на рисунке ниже имеют критическую точку в (2, 3). Из графиков видно, что точка (2,3) является локальным максимумом в (a) и (d), (2,3) является локальным минимумом в (b) и (e), и (2,3) ) не является локальным экстремумом в (c) и (f).
Критические числа дают только возможных точек крайностей, а некоторые критические числа не являются точками крайностей. Критические числа — это кандидатов, для положений максимумов и минимумов.
\ (f ‘\) и экстремальные значения \ (f \)
Здесь показаны четыре возможных формы графиков — на каждом графике точка, отмеченная стрелкой, является критической точкой, где \ (f ‘(x) = 0 \). Что происходит с производной вблизи критической точки?
При локальном максимуме, например на графике слева, функция увеличивается слева от локального максимума, а затем уменьшается справа. Производная сначала положительна, затем отрицательна при локальном максимуме. При локальном min функция уменьшается влево и увеличивается вправо, поэтому производная сначала отрицательна, а затем положительна.Когда нет локального экстремума, функция продолжает увеличиваться (или уменьшаться) сразу после критической точки — производная не меняет знак.
Тест первой производной на экстремумы
Найдите критические точки f.
Для каждого критического числа c проверьте знак f ’слева и справа от c. Что происходит со знаком, когда вы двигаетесь слева направо?
- Если \ (f ‘(x) \) изменяется с положительного на отрицательный при \ (x = c \), то \ (f \) имеет локальный максимум при \ ((c, f (c) ) \).
- Если \ (f ‘(x) \) изменяется с отрицательного на положительный при \ (x = c \), то \ (f \) имеет локальный минимум при \ ((c, f (c)) \).
- Если \ (f ‘(x) \) не меняет знак в \ (x = c \), то \ ((c, f (c)) \) не является ни ни локальным максимумом, ни локальным минимумом .
Для просмотра этого видео включите JavaScript и рассмотрите возможность обновления до веб-браузера, который поддерживает видео HTML5
Пример 4
Найдите критические точки \ (f (x) = x ^ 3 — 6x ^ 2 + 9x + 2 \) и классифицируйте их как локальный максимум, локальный минимум или ни то, ни другое.2 — 4x + 3) = 3 (x — 1) (x — 3) \). Здесь проще всего работать с факторизованной формой, так что давайте воспользуемся ею.
В (1, 6) мы могли бы выбрать число немного меньше 1, чтобы подставить его в формулу для \ (f ‘\) — возможно, используйте \ (x = 0 \) или \ (x = 0.9 \). Тогда мы могли бы изучить его знак. Но нас не волнует числовое значение, все, что нас интересует, — это его знак. И для этого нам не нужно ничего подключать:
- Если \ (x \) немного меньше 1, то \ (x-1 \) отрицательно, а \ (x-3 \) отрицательно.Итак, \ (f ‘= 3 (x — 1) (x — 3) \) будет pos (neg) (neg) = положительным.
- Для \ (x \) немного больше 1, мы можем вычислить \ (f ‘\) с числом больше 1 (но меньше 3, мы не хотим проходить следующую критическую точку!) — возможно \ (х = 2 \). Или мы можем сделать быстрый аргумент со знаком, как то, что мы сделали выше: для \ (x \) немного больше 1, \ (f ‘= 3 (x — 1) (x — 3) \) будет pos (pos) (neg) = отрицательный.
Итак, \ (f ‘\) изменяется с положительного на отрицательное, что означает, что существует локальный максимум в (1, 6).
В качестве другого подхода мы могли бы провести числовую линию и отметить критические числа:
Мы уже знаем, что производная равна нулю или не определена в критических числах. На каждом интервале между этими значениями производная останется с тем же знаком. Чтобы определить знак, мы могли бы выбрать тестовое значение в каждом интервале и оценить производную в этих точках (или использовать знаковый подход, использованный выше).
At (3, 2) \ (f ‘\) изменяется с отрицательного на положительный, поэтому существует локальный min в (3, 2).Это подтверждает то, что мы видели ранее на графике.
Для просмотра этого видео включите JavaScript и рассмотрите возможность обновления до веб-браузера, который поддерживает видео HTML5
Для просмотра этого видео включите JavaScript и рассмотрите возможность обновления до веб-браузера, который поддерживает видео HTML5
\ (f » \) и экстремальные значения \ (f \)
Вогнутость функции также может помочь нам определить, является ли критическая точка максимумом или минимумом или нет.Например, если точка находится внизу функции вогнутого вверх, то точка является минимумом.
Тест второй производной на экстремумы
Найдите все критические точки \ (f \). Для тех критических точек, где \ (f ‘(c) = 0 \), найдите \ (f’ ‘(c) \).
- Если \ (f » (c) \ lt 0 \) (отрицательный), то \ (f \) вогнутая вниз и имеет локальный максимум в точке \ (x = c \).
- Если \ (f » (c) \ gt 0 \) (положительный), то \ (f \) вогнутая вверх и имеет локальный минимум в точке \ (x = c \).2 — 30х + 24 \\
f » (x) = & 12x — 30
\ конец {выравнивание *} \]
Тогда нам просто нужно вычислить \ (f » \) для каждого критического числа:
\ (x = 1 \): \ (f » (1) = 12 (1) -30 \ lt 0 \), поэтому существует локальный максимум в \ (x = 1 \).
\ (x = 4 \): \ (f » (4) = 12 (4) -30 \ gt 0 \), поэтому существует локальный минимум в \ (x = 4 \).
Для просмотра этого видео включите JavaScript и рассмотрите возможность обновления до веб-браузера, который поддерживает видео HTML5
Многим студентам нравится Второй производный тест.Второй производный тест часто бывает проще использовать, чем первый производный тест. Вам нужно только найти знак одного числа для каждого критического числа, а не двух. И если ваша функция является полиномом, ее вторая производная, вероятно, будет более простой функцией, чем производная.
Однако, если вам нужно правило продукта, правило частного или цепное правило, чтобы найти первую производную, поиск второй производной может потребовать много работы. Кроме того, даже если вторая производная проста, проверка второй производной не всегда дает ответ.Первый производный тест всегда даст вам ответ.
Используйте любой тест, который хотите. Но помните — вы должны провести некоторый тест, чтобы убедиться, что ваша критическая точка на самом деле является локальным максимумом или минимумом.
Для просмотра этого видео включите JavaScript и рассмотрите возможность обновления до веб-браузера, который поддерживает видео HTML5
Для просмотра этого видео включите JavaScript и рассмотрите возможность обновления до веб-браузера, который поддерживает видео HTML5
Глобальные максимумы и минимумы
В приложениях мы часто хотим найти глобальную крайность; недостаточно знать, что критическая точка является локальной крайностью.
Например, если мы хотим получить наибольшую прибыль, мы хотим получить наибольшую прибыль из всех. Как мы находим глобальные максимумы и минимумы?
Есть еще несколько вещей, о которых стоит подумать.
Крайние точки конечной точки
Локальные экстремумы функции возникают в критических точках — это точки в функции, которые мы можем найти, подумав о форме (и используя производную, чтобы помочь нам). Но если мы смотрим на функцию на закрытом интервале, конечные точки могут быть крайними.Эти крайние значения конечных точек не связаны с формой функции; они связаны с интервалом, окном, через которое мы просматриваем функцию.
На графике выше видно, что есть три критических точки — одна локальная минимальная, одна локальная максимальная и одна, которая не является ни одной из них. Но глобальный максимум, самая высокая точка из всех, находится в левой конечной точке. Глобальный минимум, самая низкая точка из всех, находится в правой конечной точке.
Как определить, являются ли конечные точки максимальными или минимальными? Это проще, чем вы ожидали — просто подключите конечные точки вместе со всеми критическими числами и сравните \ (y \) — значения.2 — 6x — 9 = 3 (x + 1) (x — 3) \). Нам нужно найти критические точки, и нам нужно проверить конечные точки.
\ (f ‘(x) = 3 (x + 1) (x — 3) = 0 \), когда \ (x = -1 \) и \ (x = 3 \). Конечные точки интервала — \ (x = -2 \) и \ (x = 6 \).
Теперь мы просто сравниваем значения \ (f \) при этих четырех значениях \ (x \):
\ (х \) \ (е (х) \) -2 3 -1 10 3 -22 6 59 Глобальный минимум \ (f \) на \ ([-2, 6] \) равен -22, когда \ (x = 3 \), и глобальный максимум \ (f \) на \ ([ -2, 6] \) равно 59, когда \ (x = 6 \).
Для просмотра этого видео включите JavaScript и рассмотрите возможность обновления до веб-браузера, который поддерживает видео HTML5
Если есть только одна критическая точка
Если функция имеет только одну критическую точку и это локальный максимум (или минимум), тогда это должен быть глобальный максимум (или минимум). Чтобы убедиться в этом, подумайте о геометрии. Посмотрите на график слева — есть локальный максимум, и график идет вниз по обе стороны от критической точки. Допустим, была какая-то другая точка, которая была выше — тогда график должен был бы развернуться.Но этот поворотный момент стал бы еще одним критическим моментом. Если есть только одна критическая точка, график никогда не развернется.
Если сомневаетесь, нарисуйте это и посмотрите.
Если вы пытаетесь найти глобальный максимум или минимум на открытом интервале (или на всей реальной линии) и имеется более одной критической точки, то вам нужно посмотреть на график, чтобы решить, существует ли глобальный максимум или мин. Убедитесь, что все ваши критические точки показаны на вашем графике, и что вы график за ними — это скажет вам то, что вы хотите знать.2 + 9х + 2 \).
Ранее мы обнаружили, что (1, 6) — локальный максимум, а (3, 2) — локальный минимум. Это не замкнутый интервал, и есть две критические точки, поэтому мы должны обратиться к графику функции, чтобы найти глобальные max и min.
График \ (f \) показывает, что точки слева от \ (x = 4 \) имеют \ (y \) — значения больше 6, поэтому (1, 6) не является глобальным максимумом. Аналогично, если \ (x \) отрицательно, \ (y \) меньше 2, поэтому (3, 2) не является глобальным min. Конечных точек нет, поэтому мы исчерпали все возможности.Эта функция не имеет глобального максимума или минимума.
Чтобы найти глобальные крайности
Единственные места, где функция может иметь глобальный экстремум, — это критические точки или конечные точки.
- Если функция имеет только одну критическую точку, и это локальный экстремум, то это также глобальный экстремум.
- Если есть конечные точки, найдите глобальные экстремумы, сравнивая \ (y \) — значения во всех критических точках и на конечных точках.
- В случае сомнений нарисуйте функцию, чтобы быть уверенным.(Однако, если проблема явно не говорит вам об обратном, недостаточно, чтобы просто использовать график для получения ответа.)
AC Производные функций, заданных неявно
До сих пор во всех наших исследованиях с производными мы работали с функциями, формула которых задана явно в терминах \ (x \ text {.} \). Но есть много интересных кривых, уравнения которых с участием \ (x \) и \ (y \) невозможно решить для \ (y \) в терминах \ (x \ text {.3 = 6xy \ text {.} \)
Пожалуй, самыми простыми и естественными из всех таких кривых являются окружности. Из-за симметрии круга для каждого значения \ (x \) строго между конечными точками горизонтального диаметра есть два соответствующих значения \ (y \). Например, на рисунке 2.7.1 мы обозначили \ (A = (-3, \ sqrt {7}) \) и \ (B = (-3, — \ sqrt {7}) \ text {,} \ ), и эти точки демонстрируют, что круг не проходит проверку вертикальной линии. Следовательно, невозможно представить круг с помощью одной функции вида \ (y = f (x) \ text {.} \) Но части круга могут быть явно представлены как функция от \ (x \ text {,} \), например, выделенная дуга, которая увеличена в центре рисунка 2. 2 = 16 \) неявно определяет \ (y \) как функцию от \ (x \ text {.2} \ text {.} \) Уравнение для круга определяет две неявные функции из \ (x \ text {.} \)
Правая кривая на рисунке 2.7.1 называется лемнискатой и является лишь одной из многих интересных возможностей для неявно заданных кривых.
Как мы можем найти уравнение для \ (\ frac {dy} {dx} \) без явной формулы для \ (y \) в терминах \ (x \ text {?} \). Следующее действие предварительного просмотра напоминает нам о некоторые способы вычисления производных функций в условиях, когда формула функции неизвестна.2 = 16 \ text {.} \) Как найти формулу для \ (\ frac {dy} {dx} \ text {?} \)
Рассматривая \ (y \) как неявную функцию от \ (x \ text {,} \), мы думаем о \ (y \) как о некоторой функции, формула которой \ (f (x) \) неизвестна, но которые мы можем различать. Как \ (y \) представляет неизвестную формулу, так и ее производная по отношению к \ (x \ text {,} \) \ (\ frac {dy} {dx} \ text {,} \) будет (при по крайней мере временно) неизвестно.
Итак, мы рассматриваем \ (y \) как неизвестную дифференцируемую функцию от \ (x \) и дифференцируем обе части уравнения относительно \ (x \ text {.1 \ frac {dy} {dx} \ text {.} \) Теперь у нас есть
\ begin {уравнение *} 2x + 2y \ frac {dy} {dx} = 0 \ text {.} \ end {уравнение *}
Мы решаем это уравнение для \ (\ frac {dy} {dx} \) путем вычитания \ (2x \) с обеих сторон и деления на \ (2y \ text {.} \)
\ begin {уравнение *} \ frac {dy} {dx} = — \ frac {2x} {2y} = — \ frac {x} {y} \ text {.} \ end {уравнение *}
Есть несколько важных моментов, которые следует отметить в отношении результата, заключающегося в том, что \ (\ frac {dy} {dx} = — \ frac {x} {y} \ text {.} \) Во-первых, это выражение для производной включает оба \ ( х \) и \ (у \ текст {.} \) Это имеет смысл, потому что есть две соответствующие точки на окружности для каждого значения \ (x \) между \ (- 4 \) и \ (4 \ text {,} \), а наклон касательной линии равен разные в каждой из этих точек.
Во-вторых, эта формула полностью соответствует нашему пониманию кругов. Наклон радиуса от начала координат до точки \ ((a, b) \) равен \ (m_r = \ frac {b} {a} \ text {.} \) Касательная линия к окружности в точке \ (( a, b) \) перпендикулярно радиусу и, следовательно, имеет наклон \ (m_t = — \ frac {a} {b} \ text {,} \), как показано на рисунке 2.2} {2 (1) -2 (-1)} = — \ frac14 \ text {.} \ end {уравнение *}
Это значение соответствует нашей визуальной оценке наклона касательной, показанной на рисунке 2.7.4.
Пример 2.7.3 показывает, что при неявном дифференцировании возможно наличие нескольких терминов, включающих \ (\ frac {dy} {dx} \ text {.} \). Мы используем сложение и вычитание, чтобы собрать все термины, включающие \ (\ frac { dy} {dx} \) на одной стороне уравнения, затем множители, чтобы получить один член \ (\ frac {dy} {dx} \ text {.} \). Наконец, мы делим, чтобы решить для \ (\ frac {dy} {dx} \ text {.3 + 4г \ текст {.} \)
Естественно спросить, где касательная линия к кривой вертикальна или горизонтальна. Наклон горизонтальной касательной должен быть равен нулю, а наклон вертикальной касательной не определен. Часто формула для \ (\ frac {dy} {dx} \) выражается как отношение функций от \ (x \) и \ (y \ text {,} \), скажем,
\ begin {уравнение *} \ frac {dy} {dx} = \ frac {p (x, y)} {q (x, y)} \ text {.} \ end {уравнение *}
Касательная прямая горизонтальна именно тогда, когда числитель равен нулю, а знаменатель отличен от нуля, что делает наклон касательной нулевой.Если мы можем решить уравнение \ (p (x, y) = 0 \) для \ (x \) и \ (y \) в терминах другого, мы можем подставить это выражение в исходное уравнение для кривой. Это дает уравнение с одной переменной, и если мы сможем решить это уравнение, мы сможем найти точку (точки) на кривой, где \ (p (x, y) = 0 \ text {.} \) В этих точках касательная горизонтальна.
Точно так же касательная линия вертикальна, если \ (q (x, y) = 0 \) и \ (p (x, y) \ ne 0 \ text {,} \), что делает угол наклона неопределенным.
Мероприятие 2.2-1)} \ текст {.} \ end {уравнение *}
Используйте этот факт, чтобы ответить на каждый из следующих вопросов.
Определите все точки \ ((x, y) \), в которых касательная линия к кривой горизонтальна. (Используйте технологию соответствующим образом, чтобы найти необходимые нули соответствующей полиномиальной функции.)
Определите все точки \ ((x, y) \), в которых касательная линия вертикальна. (Используйте технологию соответствующим образом, чтобы найти необходимые нули соответствующей полиномиальной функции.)
Найдите уравнение касательной к кривой в одной из точек, где \ (x = 1 \ text {.2 \ text {,} \) \ ((0.619061,1) \)
Wolfram | Примеры альфа: производные
Производные
Дифференцировать выражение по заданной переменной.
Вычислить производную функции:
Другие примеры
Производные высшего порядка
Вычислить производные высшего порядка.
Вычислить производные высшего порядка:
Другие примеры
Неявная дифференциация
Дифференцируйте функции, неявно определяемые уравнениями.
Продифференцируйте уравнение:
Вычислить производную, используя неявное дифференцирование:
Другие примеры
Частные производные
Найдите частную производную по одной переменной или вычислите смешанные частные производные.
Вычислить частные производные:
Вычислить частные производные высшего порядка:
Другие примеры
Направленные производные
Вычислить производную многомерной функции в заданном направлении.
Вычислить производную по направлению:
Другие примеры
Производные абстрактных функций
Найдите производную произвольной функции.
Вычислить производные с использованием абстрактных функций:
Вычислить частные производные абстрактных функций:
Другие примеры
Дифференцируемость
Проверить, дифференцируемы ли функции над полем действительных чисел.
Проверить дифференцируемость функции:
Другие примеры
Производные приложения
Изучите множество приложений деривативов.
Найдите интервалы монотонности:
Изучите примечательные точки кривых:
Вычислить экстремальные значения одномерных и многомерных функций:
Вычислить касательную к уравнению в заданной точке:
Другие примеры
Максимум / Минимум проблем
Многие прикладные задачи в исчислении связаны с функциями, для которых вы хотите найти максимальные или минимальные значения.Ограничения, указанные или подразумеваемые для таких функций, будут определять домен, из которого вы должны работать. Функция вместе с ее доменом предложит, какой метод подходит для определения максимального или минимального значения — теорема об экстремальном значении, тест первой производной или второй тест производной.Пример 1: Прямоугольная коробка с квадратным основанием без верха должна иметь объем 108 кубических дюймов. Найдите размеры коробки, требующие наименьшего количества материала.
Функция, которая должна быть минимизирована, — это площадь поверхности ( S ), в то время как объем ( V ) остается фиксированным на уровне 108 кубических дюймов (Рисунок 1).
Рисунок 1 Коробка с открытым верхом для Примера 1.
Положив x = длину квадратного основания и h = высоту коробки, вы обнаружите, что
с областью f (x) = (0, + ∞), потому что x представляет длину.
, следовательно, критическая точка возникает, когда x = 6. Использование теста второй производной:
и f имеет локальный минимум x = 6; следовательно, размеры коробки, требующие наименьшего количества материала, составляют 6 дюймов в длину и ширину и 3 дюйма в высоту.
Пример 2: Правый круговой цилиндр вписан в правый круговой конус, так что центральные линии цилиндра и конуса совпадают.Конус имеет 8 см и радиус 6 см. Найдите максимально возможный объем вписанного цилиндра.
Функция, которая должна быть максимизирована, — это объем ( V ) цилиндра, вписанного в конус высотой 8 см и радиусом 6 см (рисунок).
Рисунок 2 Поперечное сечение конуса и цилиндра для примера 2.
Положив r = радиус цилиндра и h = высоту цилиндра и применив аналогичные треугольники, вы обнаружите, что
Поскольку В = π r 2 h и h = 8 — (4/3) r , вы обнаружите, что
с областью f (r) = [0,6], потому что r представляет радиус цилиндра, который не может быть больше, чем радиус конуса.