Операции над векторами: теория и примеры решений
- Линейные операции над геометрическими векторами
- Проекция вектора на ось
- Операции над векторами, заданными в координатной форме
- n— мерные векторы и операции над ними
Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.
На этом уроке освоим самые простые операции над векторами, достаточные для вхождения в изучение векторной алгебры. Предварительно желательно ознакомиться с материалом о том, что такое вообще векторы.
Прежде чем Вы узнаете всё об операциях над векторами, настройтесь на решение несложной задачи. Есть вектор Вашей предприимчивости и вектор Ваших инновационных способностей. Вектор предприимчивости ведёт Вас к Цели 1, а вектор инновационных способностей — к Цели 2. Правила игры таковы, что Вы не можете двигаться сразу по направлениям двух этих векторов и достигнуть сразу двух целей.
А теперь скажите: результатом какой операции над векторами «Предприимчивость» и «Инновационные способности» является вектор «Результат»? Если не можете сказать сразу, не унывайте. По мере изучения этого урока Вы сможете ответить на этот вопрос.
Умножение вектора на число
Произведением вектора на число называется вектор, получающийся из вектора растяжением (при ) или сжатием (при ) в раз, причём направление вектора сохраняется, если , и меняется на противоположное, если . (Рис. 2)
Из определения следует, что векторы и = всегда расположены на одной или на параллельных прямых. Такие векторы называются коллинеарными. (Можно говорить также, что эти векторы параллельны, однако в векторной алгебре принято говорить «коллинеарны».
) Справедливо и обратное утверждение: если векторы и коллинеарны, то они связаны отношением. (1)
Следовательно, равенство (1) выражает условие коллинеарности двух векторов.
Сложение и вычитание векторов
При сложении векторов нужно знать, что суммой векторов и называется вектор , начало которого совпадает с началом вектора , а конец — с концом вектора , при условии, что начало вектора приложено к концу вектора . (Рис. 3)
Это определение может быть распределено на любое конечное число векторов. Пусть в пространстве даны n свободных векторов . При сложении нескольких векторов за их сумму принимают замыкающий вектор, начало которого совпадает с началом первого вектора, а конец — с концом последнего вектора. То есть, если к концу вектора приложить начало вектора , а к концу вектора — начало вектора и т.д. и, наконец, к концу вектора — начало вектора , то суммой этих векторов служит замыкающий вектор , начало которого совпадает с началом первого вектора , а конец — с концом последнего вектора .
Слагаемые называются составляющими вектора , а сформулированное правило — правилом многоугольника. Этот многоугольник может и не быть плоским.
При умножении вектора на число -1 получается противоположный вектор . Векторы и имеют одинаковые длины и противоположные направления. Их сумма даёт нулевой вектор, длина которого равна нулю. Направление нулевого вектора не определено.
В векторной алгебре нет необходимости рассматривать отдельно операцию вычитания: вычесть из вектора вектор означает прибавить к вектору противоположный вектор , т.е.
Пример 1. Упростить выражение:
.
Решение:
,
то есть, векторы можно складывать и умножать на числа так же, как и многочлены (в частности, также задачи на упрощение выражений). Обычно необходимость упрощать линейно подобные выражения с векторами возникает перед вычислением произведений векторов.
Пример 2. Векторы и служат диагоналями параллелограмма ABCD (рис. 4а). Выразить через и векторы , , и , являющиеся сторонами этого параллелограмма.
Решение. Точка пересечения диагоналей параллелограмма делит каждую диагональ пополам. Длины требуемых в условии задачи векторов находим либо как половины сумм векторов, образующих с искомыми треугольник, либо как половины разностей (в зависимости от направления вектора, служащего диагональю), либо, как в последнем случае, половины суммы, взятой со знаком минус. Результат — требуемые в условии задачи векторы:
Есть все основания полагать, что теперь Вы правильно ответили на вопрос о векторах «Предприимчивость» и «Инновационные способности» в начале этого урока. Правильный ответ: над этими векторами производится операция сложения.
Решить задачи на векторы самостоятельно, а затем посмотреть решения
Пример 3. Даны векторы
и
. Построить на
чертеже векторы
1) ,
2) ,
3) ,
4) .
Правильное решение.
Пример 4. Даны векторы
и
. Построить на
чертеже векторы
1) ,
2) ,
3) ,
4) .
Правильное решение.
Как найти длину суммы векторов?Эта задача занимает особое место в операциях с векторами, так как предполагает использование тригонометрических свойств. Допустим, Вам попалась задача вроде следующей:
Даны длины векторов и длина суммы этих векторов . Найти длину разности этих векторов .
Решения этой и других подобных задач и объяснения, как их решать — в уроке «Сложение векторов: длина суммы векторов и теорема косинусов«.
А проверить решение таких задач можно на Калькуляторе онлайн «Неизвестная сторона треугольника (сложение векторов и теорема косинусов)».
А где произведения векторов?
Произведения вектора на вектор не являются линейными операциями и рассматриваются отдельно. И у нас есть уроки «Скалярное произведение векторов» и «Векторное и смешанное произведения векторов».
Проекция вектора на ось равна произведению длины проектируемого вектора на косинус угла между вектором и осью:
Как известно, проекцией точки A на прямую (плоскость) служит основание перпендикуляра , опущенного из этой точки на прямую (плоскость).
Пусть — произвольный вектор (Рис. 5), а и — проекции его начала (точки A) и конца (точки B) на ось l. (Для построения проекции точки A) на прямую проводим через точку A плоскость, перпендикулярную прямой. Пересечение прямой и плоскости определит требуемую проекцию.
Составляющей вектора на оси l называется такой вектор , лежащий на этой оси, начало которого совпадает с проекцией начала, а конец — с проекцией конца вектора .
Проекцией вектора на ось l называется число
,
равное длине составляющего вектора на этой оси, взятое со знаком плюс, если направление составляюшей совпадает с направлением оси l, и со знаком минус, если эти направления противоположны.
Основные свойства проекций вектора на ось:
1. Проекции равных векторов на одну и ту же ось равны между собой.
2. При умножении вектора на число его проекция умножается на это же число.
3. Проекция суммы векторов на какую-либо ось равна сумме проекций на эту же ось слагаемых векторов.
4. Проекция вектора на ось равна произведению длины проектируемого вектора на косинус угла между вектором и осью:
- Пригодится: тригонометрическая таблица (синусы, косинусы, тангенсы и котангенсы распространенных углов)
Пример 5.
.
Решение. Спроектируем векторы на ось l как определено в теоретической справке выше. Из рис.5а очевидно, что проекция суммы векторов равна сумме проекций векторов. Вычисляем эти проекции:
Находим окончательную проекцию суммы векторов:
.
Нет времени вникать в решение? Можно заказать работу!
К началу страницы
Пройти тест по теме Векторы
Перед решением задач этого параграфа желательно ознакомиться с материалом о координатах вектора.
Пусть даны два вектора и , заданные своими проекциями:
или
или
Укажем действия над этими векторами.
1.Сложение:или, что то же
(при сложении двух векторов одноимённые координаты складываются).
2.Вычитание:
или, что то же
,
(при вычитании двух векторов одноимённые координаты вычитаются).
3.Умножение вектора на число:
или, что то же
,
(при умножении вектора на число все координаты умножаются на это число).
Пример 6. Даны два вектора, заданные координатами:
.
Найти заданный координатами вектор, являющийся суммой этих векторов: .
Решение:
.
Пример 7. Даны четыре вектора:
, , , .
Найти координаты векторов и .
Решение.
.
.
Решить задачи на векторы самостоятельно, а затем посмотреть решение
Пример 8. На плоскости даны векторы и . Найти координаты векторов , и .
Правильное решение и ответ.
Пример 9. Точка конца вектора — точка . Найти точку начала этого вектора.
Правильное решение и ответ
Нет времени вникать в решение? Можно заказать работу!
К началу страницы
Пройти тест по теме Векторы
При изучении многих вопросов, в частности, экономических, оказалось удобным обобщить рассмотренные приёмы установления соответствия между числами и точками двумерного и трёхмерного пространства и рассматривать последовательности n действительных чисел как «точки» некоторого абстрактного «n-мерного пространства», а сами числа — как «координаты» этих точек. За составляющие n-мерного вектора можно принимать такие данные, как урожайность различных культур, объёмы продаж товаров, технические коэффициенты, номенклатура товаров на складах и т. д.
n-мерным вектором называется упорядоченный набор из n действительных чисел, записываемых в виде
,
где — i – й элемент (или i – я координата) вектора x.
Возможна и другая запись вектора – в виде столбца координат:
Размерность вектора определяется числом его координат и является его отличительной характеристикой. Например, (2; 5) – двухмерный вектор, (2; -3; 0) – трёхмерный, (1; 3; -2; -4; 7) – пятимерный,
—
n – мерный вектор.
Нулевым вектором называется вектор, все координаты которого равны нулю:
0 = (0; 0; …; 0).
Введём операции над n-мерными векторами.
Произведением вектора
на действительное число называется вектор
(при умножении вектора на число каждая его координата умножается на это число).
Зная вектор
можно получить противоположный вектор
Суммой векторов
и
называется вектор
,
(при сложении векторов одной и той же размерности их соответствующие координаты почленно складываются).
Если в плане продаж сети торговых предприятий продажи товаров определить как положительные уровни товаров, а затраты на продажи – как отрицательные, то получим вектор затрат-продаж
,
где
—
продажи (затраты) k – м предприятием товара i, а k = 1, 2, 3,…, m .
Суммарный вектор затрат-продаж y определяется суммированием векторов затрат-продаж всех m предприятий сети:
Сумма противоположных векторов даёт нулевой вектор:
При вычитании двух векторов одной и той же размерности их соответствующие координаты почленно вычитаются:
Операции над n-мерными векторами удовлетворяют следующим свойствам.
Свойство 1.
Свойство 2.
Свойство 3.
Свойство 4.
Свойство 5.
Свойство 6.
Назад | Листать | Вперёд>>> |
Нет времени вникать в решение? Можно заказать работу!
К началу страницы
Пройти тест по теме Векторы
Поделиться с друзьями
Весь блок «Аналитическая геометрия»
- Векторы
- Понятие вектора, операции над векторами
- Сложение векторов: длина суммы векторов и теорема косинусов
- Скалярное произведение векторов, угол между двумя векторами
- Линейная зависимость векторов
- Базис системы векторов. Аффинные координаты
- Векторное произведение векторов, смешанное произведение векторов
- Плоскость
- Уравнения плоскости, взаимное расположение плоскостей
- Прямая на плоскости
- Уравнение прямой с угловым коэффициентом
- Общее уравнение прямой на плоскости
- Уравнение прямой в отрезках
- Каноническое уравнение прямой на плоскости
- Параметрические уравнения прямой на плоскости
- Нормальное уравнение прямой на плоскости, расстояние от точки до прямой
Часть 14 — Нестандартное введение в динамику твердого тела / Хабр
- Что такое тензор и для чего он нужен?
- Векторные и тензорные операции. Ранги тензоров
- Криволинейные координаты
- Динамика точки в тензорном изложении
- Действия над тензорами и некоторые другие теоретические вопросы
- Кинематика свободного твердого тела. Природа угловой скорости
- Конечный поворот твердого тела. Свойства тензора поворота и способ его вычисления
- О свертках тензора Леви-Чивиты
- Вывод тензора угловой скорости через параметры конечного поворота. Применяем голову и Maxima
- Получаем вектор угловой скорости. Работаем над недочетами
- Ускорение точки тела при свободном движении. Угловое ускорение твердого тела
- Параметры Родрига-Гамильтона в кинематике твердого тела
- СКА Maxima в задачах преобразования тензорных выражений. Угловые скорость и ускорения в параметрах Родрига-Гамильтона
- Нестандартное введение в динамику твердого тела
- Движение несвободного твердого тела
- Свойства тензора инерции твердого тела
- Зарисовка о гайке Джанибекова
- Математическое моделирование эффекта Джанибекова
Динамика твердого тела — раздел механики, который в своё время задал четкий вектор развития этой науки. Это один из самых сложных разделов динамики, и задача интегрирования уравнения сферического движения для произвольного случая распределения массы тела не решена до сих пор.
В этой статье мы начнем рассматривать динамику твердого тела, применяя аппарат тензорной алгебры. Эта пилотная статья о динамике ответит на ряд фундаментальных вопросов, касающихся, например, такого важного понятия как центр масс тела. Что такое центр масс, что отличает его от остальных точек тела, почему уравнения движения тела составляют в основном относительно этой точки? Ответ на эти, и некоторые другие вопросы находится под катом.
Интегрирование уравнений движения этой детской игрушки — одна из до сих пор не решенных задач механики…
Для начала рассмотрим движение материальной точки. Непосредственно из аксиом вытекает основное уравнение динамики точки
ускорение помноженное на массу есть векторная сумма приложенных к точке сил. И о силах, которые приложены к точке надо поговорить подробнее. В разделе механики, называемом аналитической механикой, силы, прикладываемые к точкам механической системе подлежат строгой классификации.
Силы, стоящие в правой части (1) разделяются на две группы
- Активные силы. Этой группе сил можно дать следующее определение
Активными называют силы, величину которых можно определить из условия задачи
Говоря формальным языком, активная сила определяется вектор функциейгде — обобщенная координата точки; — обобщенная скорость точки. Из данного выражения видно, что начиная решать задачу о движении и имея начальные условия (момент времени, положение и скорость) можно сразу рассчитать активную силу.
Сила тяжести, упругости, Кулоновская сила взаимодействия заряда с электрическим полем, сила Ампера и сила Лоренца, сила вязкого трения и аэродинамического сопротивления — всё это примеры активных сил. Выражения для их расчета известны и эти силы можно посчитать, зная положение и скорость точки.
- Реакции связей. Самые неприятные силы, которые только можно придумать. Напомню одну из аксиом статики, именуемую аксиомой о связях
Связи приложенные к телу можно отбросить, заменив их действие силой, или системой сил
Изображенная на рисунке точка — не свободная точка. Её движение ограничено связью, условно представленной в виде некой поверхности, в пределах которых располагается траектория движения. Приведенная выше аксиома дает возможность убрать поверхность, приложив к точке силу , действие которой эквивалентно наличию поверхности. При этом данная сила не является известной заранее — её величина удовлетворяет ограничениям на положение, скорость и ускорение, накладываемыми связью, ну и, разумеется вектор реакции зависит от приложенных активных сил. Реакции связей подлежат определению в процессе решения задачи. К реакциям связей относится так же и сухое трение, наличие которого даже в простой задаче существенно осложняет процесс её решения.
Исходя из данной классификации, уравнение движения точки (1) переписывают в виде
где — равнодействующая активных сил, приложенных к точке; — равнодействующая реакций, наложенных на точку связей.
А теперь проделаем простейший фокус — ускорение с массой перенесем в другую часть уравнения (2)
и введем обозначение
Тогда, уравнение (2) превращается в
Сила, представляемая вектором (3) называется силой инерции Даламбера. А уравнение (4) выражает принцип Даламбера для материальной точки
Материальная точка находится в равновесии под действием приложенных к ней активных сил, реакций связей и сил инерции
Позвольте, о каком равновесии может идти речь, если точка движется с ускорением? Но ведь уравнение (4) есть уравнение равновесия, и приложив к точке силу (3) мы можем заменить движение точки её равновесием.
Достаточно распространен спор о том, являются ли силы инерции (3) физическими силами. В инженерной практике используется понятие центробежной силы, которая есть сила инерции, связанная с центростремительным (или осестремительным) ускорением, искривляющим траекторию точки. Моё личное мнение таково, что силы инерции есть математический фокус, продемонстрированный выше, позволяющий перейти к рассмотрению равновесия вместо движения с ускорением. Сила инерции (3) определяется ускорением точки, но оно, в свою очередь определяется действием на точку приложенных к ней сил, и в соответствии аксиоматикой Ньютона сила первична. Поэтому ни о какой «физичности» сил инерции говорить не приходится. Природа не знает активных сил, зависящих от ускорения.
Теперь распространим уравнение (4) на случай движения твердого тела. В механике его рассматривают как неизменяемую механическую систему, состоящую из множества точек, расстояние между которыми в каждый момент времени остается неизменным. Все точки тела движутся по различным траекториям, но уравнение движения каждой точки соответствует (2)
Силы, действующие на конкретную точку можно разделить на внешние активные , реакции внешних связей , и внутренние силы , представляющие собой силы взаимодействия рассматриваемой точки с остальными точками тела (по сути — внутренние реакции). Все упомянутые силы есть равнодействующие соответствующей группы сил, приложенных к точке. Применим к этому уравнению Принцип Даламбера
где — сила инерции, приложенная к данной точке тела.
Теперь, когда все точки тела находятся в равновесии, мы можем воспользоваться условием равновесия твердого тела, которое дает нам статика
Твердое тело находится в равновесии под действием приложенной к нему системы сил, если главный вектор и главный момент этой системы сил, относительно выбранного центра O, раны нулю
Главный вектор системы сил — это векторная сумма всех сил, приложенных к телу. Сумма сил, приложенных к каждой точке тела определяется последним уравнением, поэтому складывая уравнения для всех точек, в левой его части получим главный вектор
При этом, сумма внутренних сил равна нулю, как следствие из третьего закона Ньютона. Аналогично вычисляем сумму моментов всех сил относительно выбранного произвольного центра O, что дает нам равный нулю главный момент системы сил
причем, как показывается в классическом курсе динамики, сумма моментов внутренних сил, приложенных к системе материальных точек, равна нулю, то есть . Уравнения (5) и (6) уже выражают принцип Даламбера применительно к твердому телу, но лишь с одной необходимой поправкой.
Число активных сил и реакций связей в уравнениях (5) и (6) конечно. Большинство слагаемых в соответствующих суммах равны нулю, ибо активные внешние силы и реакции внешних связей, вообще говоря, приложены лишь в некоторых точках тела. Чего нельзя сказать о силах инерции — силы инерции приложены к каждой точке тела. То есть сумма сил инерции, и сумма их моментов относительно выбранного центра есть суммы интегральные. Систему сил инерции принято сводить к главному вектору и главному моменту и мы можем написать, что
главный вектор и главный момент сил инерции, приложенных к твердому телу. Интегралы (7) и (8) берутся по всему объему тела, а — радиус вектор точки тела относительно выбранного центра O.
Исходя из данного соображения мы можем переписать (5) и (6) в окончательном виде
Уравнения (10) и (11) выражают принцип Даламбера для твердого тела
Теврдое тело находится в равновесии под действием приложенных к нему внешних сил, реакций связей, главного вектора и главного момента сил инерции.
По сути (10) и (11) есть форма записи дифференциальных уравнений движения твердого тела. Они довольно часто применяются в инженерной практике, однако с точки зрения механики, такая форма записи уравнений движения не является самой удобной. Ведь интегралы (7) и (8) можно вычислить в общем виде и придти к более удобным уравнениям движения. В этой связи (10) и (11) следует рассматривать как теоретическую основу построения аналитической механики.
Вернемся к нашим тензорам и с их помощью вычислим интегралы (7) и (8) для общего случая движения твердого тела. В качестве центра приведения выберем точку O1. Эта точка выбрана в качестве полюса и в ней определен локальный базис связанной с телом системы координат. В одной из прошлых статей мы определили тензорное соотношение для ускорения точки тела в таком движении
Умножив (12) на массу точки со знаком минус, мы получим силу инерции, приложенную к элементу объема твердого тела
Выражение (13) — ковариантное представление вектора силы инерции. Двойное векторное произведение в (12) перепишем в более удобной форме, используя тензор Леви-Чивиты и псевдовекторы угловой скорости и углового ускорения
Подставляем (14) в (13) и берем тройной интеграл по всему объему тела, учитывая, что угловая скорость и угловое ускорение одинаковы в каждой точке этого объема, то есть их можно вынести за знак интеграла
Интеграл в первом слагаемом — это масса тела. Интеграл во втором слагаемом более интересная штука. Вспомним одну из формул курса теоретической механики:
где — контравариантные компоненты радиус-вектора центра масс рассматриваемого тела. Не в даваясь в смысл понятия центра масс просто заменим интегралы в (15) в соответствии с формулой (16), учтя, что во втором слагаемом (15) используются ковариантные компоненты.
Ага, выражение (17) тоже нам знакомо, представим его в более привычной векторной форме
Первое слагаемое в (18) — сила инерции, связанная с поступательным движением тела вместе с полюсом. Второе слагаемое — центробежная сила инерции, связанная с осествемительным ускорением центра масс тела при его движении вокруг полюса. Третье слагаемое — вращательная составляющая главного вектора сил инерции, связанная с вращательным ускорением центра масс вокруг полюса. В общем-то всё находится в соответствии с классическими соотношениями теормеха.
Пытливый читатель скажет: «зачем применять тензоры для получения этого выражения, если в векторном виде оно было бы получено не менее очевидным способом?». В ответ я скажу, что получение формул (17) и (18) — это была разминка. Теперь мы получим выражение главного момента сил инерции относительно выбранного полюса, и тут тензорный подход проявляет себя во всей красе.
Возьмем уравнение (13) и умножим его векторно слева на радиус вектор точки тела относительно полюса. Тем самым мы получим момент силы инерции, приложенной к элементарному объему тела
Снова выполним подстановку (14) в (19), но не станем торопится брать интеграл
Не знаю как у вас, а у меня рябит в глазах, даже при моей привычности к таким формулам. Слагаемые расположены в более естественном порядке — переставлены местами вращательная и центробежная составляющие. Кроме того, от первого слагаемого ко второму возрастает сложность преобразующих выкладок. Будем упрощать их по очереди, сначала упростим первое, сразу взяв интеграл
Тут снова появился радиус вектор центра масс. Здесь ничего сложного — ускорение полюса у нас одно и мы вынесли его за знак интеграла. Интерпретацией займемся чуть позже, а пока преобразуем второе слагаемое (20). В нем мы можем выполнить свертку произведения тензоров Леви-Чивиты по немому индексу k
Здесь мы воспользовались свойством дельты Кронекера заменять свободный индекс вектора/ковектора при выполнении свертки. Теперь возьмет интеграл, учтя, что угловое ускорение постоянно для всего объема тела
Во как! Малопонятный «крокодил», путем формальных тензорных преобразований схлопнулся в компактную формулу. Я лукавлю, мы ввели новое обозначение:
Но это не просто абстрактная формула. По структуре выражения (24) видно, что оно отражает распределение массы тела вокруг полюса и называется оно — тензор инерции твердого тела. Эта величина имеет поистине фундаментальное значение для механики, и о ней мы поговорим подробнее, пока лишь скажу, что (24) — тензор второго ранга, компонентами которого являются осевые и центробежные моменты инерции тела в выбранной системе координат. Он характеризует инертность твердого тела при вращении. Обращаю внимание читателя и на то, как быстро мы получили выражение для тензора инерции, по сути действуя формальным способом. С векторными соотношения без ломки мозгов не обойтись, в этом я убедился на личном опыте.
Ну и наконец обратимся к последнему слагаемому (20). При взятии интеграла в нём тоже должен получится тензор инерции, и мы будем преобразовывать его таким образом, чтобы достичь этой цели. В этой части выражения (20) должно фигурировать соотношение между тензором инерции и угловой скоростью тела. Приступим, для начало свернув произведение тензоров Леви-Чивиты
Налицо существенное упрощение выражения — за счет свойств дельты Кронекера и того, что векторное произведение . Но тензора инерции в (25) не видно. С целью его получить проведем ряд эквивалентных преобразований
Здесь мы снова учли, что , воспользовались свойствами дельты Кронекера и операцией поднятия/опускания индексов при умножении на метрический тензор. И, теперь мы интегрируем (26)
Здесь мы снова видим тензор инерции:
с учетом которого получаем компактное выражение для составляющей главного момента сил инерции, связанного с центробежными силами
Выражение (27) эквивалентно векторно-матричному соотношению:
И хоть меня и переполняют пафосные фразы, отложу их на потом, а сейчас аккуратно выпишу итоговый результат в векторной форме.
В общем случае движения твердого тела главный вектор и главный момент сил инерции, приложенных к твердому телу, равны
А теперь все же восхитимся — не смотря на то, что вышеприведенные преобразования похожи на египетские иероглифы, они формальны, мы просто выполняли действия над индексами тензоров и использовали свойства тензорных операций. Нам не надо было упражняться с векторами, расписывать векторные операции в компонентах и сводить получившиеся проекции векторов к результатам матричных операций. Все матричные и векторные операции конечных выражение вышли у нас автоматически. К тому же, естественным образом получены такие фундаментальные характеристики как координаты центра масс тела и тензор инерции.
Читая лекции студентам я задался целью вывести (29) и (30) оперируя векторами. После того как я перевел стопку бумаги и изрядно поломав мозги я пришел к результату. Поверьте на слово — вышеприведенные преобразования просто семечки, в сравнении с тем, через что надо пройти не используя тензоров.
К тому же, выражения (29) и (30) получены нами для произвольного центра приведения сил, в качестве которого мы взяли полюс O1. Эти выражения помогут нам понять что такое центр масс тела и его важность для механики.
Используя формулы (29) и (30) вернемся к уравнениям (10) и (11) и, выполнив подстановку, придем к дифференциальным уравнениям движения твердого тела
Чем плохи эти уравнения? А тем, что они зависят друг от друга — ускорение полюса будет зависеть от углового ускорения и угловой скорости тела, угловое ускорение — от ускорения полюса. Вектор определяет положение центра масс тела по отношению к полюсу. А что если мы выберем полюс прямо в центре масс? Тогда ведь и уравнения (31), (32) примут более простой вид
Узнаете эти уравнения? Уравнение (33) — теорема о движении центра масс механической системы, а (34) — динамическое уравнение Эйлера сферического движения. И эти уравнения независимы друг от друга. Таким образом, центр масс твердого тела — это точка, относительно которой силы инерции приводятся к наиболее простому виду. Поступательное движение вместе с полюсом и сферическое вокруг полюса — динамически развязаны. Тензор инерции тела, вычисляется относительно центра масс и называется центральным тензором инерции.
Уравнения (33), (34) в зарубежной литературе называют уравнениями Ньютона-Эйлера, и, в настоящее время весьма активно используются для построения ПО, предназначенного для моделирования механических систем. В рамках цикла о тензорах мы ещё не раз о них вспомним.
Прочитанная вами статья имеет две цели — в ней мы ввели базовые понятия динамики твердого тела и проиллюстрировали мощность тензорного подхода при упрощении громоздких векторных соотношений.
В дальнейшем мы подробнее остановимся на тензоре инерции и изучим его свойства. Погрузившись в дебри аналитической механики, сведем уравнения (31) — (34) к уравнениям движения в обобщенных координатах. В общем, рассказать ещё есть о чем. А пока, благодарю за внимание!
Продолжение следует…
Как упростить векторное выражение?
Вот способ сделать все, о чем вы просили, автоматически, независимо от версии Mathematica . Подход основан на специальном символе для идентификации, когда мы имеем дело с вектором: вместо использования таких вещей, как x
, y
и т. д. для векторов, теперь принято соглашение, что векторы записываются как vec[x]
, vec[y]
и т. д.
Вы также можете определить оболочку OverVector[x]
для этой цели, потому что он отображается как $\vec{x}$. Но для этого поста я хочу, чтобы он был простым, и стрелки не будут легко отображаться в исходном коде ниже.
ClearAll[scalarProduct, vec]; SetAttributes[scalarProduct, {Беспорядковый}] vec /: Dot[vec[x_], vec[y_]] := scalarProduct[vec[x], vec[y]] vec /: Cross[vec[x_], HoldPattern[Plus[y__]]] := Map[Cross[vec[x], #] &, Plus[y]] vec /: Cross[HoldPattern[Plus[y__]], vec[x_]] := Map[Cross[#, vec[x]] &, Plus[y]] scalarProduct /: MakeBoxes[scalarProduct[x_, y_], _] := RowBox[{ToBoxes[x], ".", ToBoxes[y]}] век[х].век[у] (* ==> vec[x].vec[y] *) vec[x].vec[y] == vec[y].vec[x] (* ==> Верно *) Крест[vec[x], vec[a] + vec[b]] (* ==> vec[x]\[Cross]vec[a] + vec[x]\[Cross]vec[b] *) Крест[vec[a] + vec[b], vec[x]] (* ==> vec[a]\[Cross]vec[x] + vec[b]\[Cross]vec[x] *)
Для произведения Dot
я определил поведение vec
таким образом, что оно оценивается как новая функция scalarProduct
, единственным алгебраическим свойством которой является то, что это Беспорядок
, как вы и ожидали для скалярного произведения векторов. Конечно, это верно только для евклидовых скалярных произведений, поэтому здесь это предположение неявно. Для получения дополнительной информации о том, как работает это определение, см. TagSetDelayed
.
Кроме того, скалярное произведение
получает настраиваемый формат отображения, определяя, что он должен снова отображаться, как если бы он был точечным произведением, когда он появляется в функции низкоуровневого форматирования MakeBoxes
.
Для распределительного свойства перекрестного произведения я придаю vec
дополнительное свойство, заключающееся в том, что когда оно появляется в Cross
вместе с выражением head Plus
, сумма расширяется. Здесь определения TagSetDelayed
выполняются для обоих заказов и содержат HoldPattern
для предотвращения слишком ранней оценки Plus
в определении.
Теперь вы можете вернуться с еще многими пожеланиями: например, как насчет мультипликативных скаляров в скалярном или перекрестном произведении, и как насчет матриц. Тем не менее, это широкое поле, которое открывает банку червей, поэтому я бы сказал, просто реализуйте минимум функций, которые вы можете использовать символически, а затем приступайте к конкретной рабочей основе, чтобы вместо этого вы могли писать векторы как списки.
Другим подходом может быть определение нового символа для пользовательского скалярного произведения. Это сделано в этом вопросе.
Использование OverVector
Как упоминалось выше, вы можете заменить vec
на Overvector
везде в приведенном выше исходном коде, чтобы получить результат с лучшим форматированием. Предполагая, что вы сделали это (я не буду повторять определения с этим изменением), вот несколько примеров:
Чтобы ввести эти векторные выражения, обратитесь к вспомогательной палитре Basic Math. Перекрестное произведение может быть введено как Esc крест
Esc .
Еще одна вещь, которую вы просили, это использовать антисимметрию векторного произведения в упрощениях. На самом деле это уже сделано, если вы вызываете FullSimplify
:
symbolic — возможно ли упростить выражение в векторной форме, которое включает в себя перекрестное произведение и скалярное произведение?
Мне часто приходится упрощать выражения, включающие перекрестное произведение и скалярное произведение, например:
f = Dot[Cross[Cross[p1 - p, e1], Cross[p2 - p, e2]], Cross[p3 - p , е3]]
, где все символы в RHS являются трехмерными векторами, но нежелательно ссылаться на их компоненты, потому что из результатов довольно сложно найти полезную информацию. Это упрощение очень часто требуется в таких областях, как кинематика и динамика, и я полагаю, что многие люди сталкивались с этой проблемой, но мой поиск не дал очень релевантных результатов.
Есть ли способ справиться с таким упрощением? Я думаю, что возможное решение, которое может сработать, заключается в том, что мы можем определить некоторые настраиваемые операторы или функции для представления перекрестного произведения и скалярного произведения, а затем определить набор правил для этих операторов (или для Simplify
commend), чтобы отразить возможные упрощения, такие как расширение смешанного произведения и т. д. Но я новичок в Mathematica, и не знаю, как это сделать, и не знаю, является ли это лучшим способом, или.
Кто-нибудь может помочь? Будем очень признательны за любой ответ! Спасибо!
Follow Up 1
Благодаря маршу я нашел команду $Assumptions = {p1 [Element] Vectors[3, Reals]}
, которая преобразует проблему в тензорную задачу. Я попробовал эту команду для всех векторов, и 9Функция 0005 f действительно показывает правильное выражение, но после этого Expand
, Simplification
, Collect
не работают, только TensorExpand
и TensorReduce
работают для этих тензоров. Выражение кажется каким-то сложным, так как Упростить
сейчас не получится. Пока я не нашел способа справиться с этим.
Тем не менее, я думаю, что может помочь способ определения настраиваемых операторов (или функций) или правил (в Simplify
), которые могут определять такие операции, как смешанное произведение или двойное перекрестное произведение.