Квантиль excel: Квантили распределений EXCEL. Примеры и описание

Оценка параметров надежности при нормальном законе распределения отказов средствами Excel



В статье проведена оценка показателей надежности безотказной работы системы. На примере показан расчет основных показателей средствами Excel.

Ключевые слова: безотказная работа, доверительный интервал, испытания, нормальный закон распределения, число отказов.

Определение показателей надёжности необходимо для формулирования требования по надежности к проектируемым устройствам или системам. Показатель надежности — это количественная характеристика одного или нескольких свойств, составляющих надежность объекта [1].

Поскольку отказы и сбои элементов являются случайными событиями, то теория вероятностей и математическая статистика являются основным аппаратом, используемым при исследовании надежности, а сами характеристики надежности должны выбираться из числа показателей, принятых в теории вероятностей [2, с.

13].

Количественные характеристики надежности при нормальном законе распределения отказов могут быть определены из следующих выражений:

(1)

P(t)= (2)

λ( )= (3),

где нормированная и центрированная функция Лапласа.

Произведем расчет параметров надежности испытаний, проведенных в течение 100 часов на 100 деталях, 34 из которых вышли из строя.

Для построения статистического ряда время испытаний разбивают на интервалы (разряды) и подсчитывают частоту, интенсивность и вероятность отказов, используя выражения (1), (2) и (3). Определяют доверительные интервалы математического ожидания и среднеквадратичного отклонения при нормальном законе распределения отказов и заданном коэффициенте доверия [3, с. 60].

Результаты вычислений представлены в таблице Excel (Таблица 1).

Таблица 1

Результаты расчета основных показателей испытаний

Параметр

Разряды

1

2

3

4

5

6

7

8

9

10

t

10

20

30

40

50

60

70

80

90

100

n*

5

3

5

2

2

3

3

3

5

3

Pн(t)

0,935

0,917

0,896

0,870

0,841

0,805

0,767

0,725

0,680

0,633

fн(t)

0,983

0,986

0,988

0,990

0,991

0,992

0,993

0,993

0,994

0,994

λн(t)

1,050

1,074

1,102

1,137

1,178

1,232

1,294

1,369

1,460

1,570

Qн(t)

0,064

0,082

0,103

0,129

0,158

0,194

0,232

0,274

0,319

0,366

0,014

0,002

0,026

0,020

0,011

0,005

0,002

0,014

0,009

0,026

λн

0,085065269

Листинг фрагмента программы расчета показателей при нормальном законе распределения:

‘Вычислим 43 строку таблицы(45)=============================Рн(t)

СтрокаТаблицы = 45

‘a=(t-Tср)/Сигма

СтолбецТаблицы = 4

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

a = Abs(Sheets(«ОсновнаяТаблица»). Cells(3, n).Value — Tcp) / Сигма

‘b=Фо

СтрокаТаблФункцЛапласа = 2

While Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа, 1).Value <> «»

СтрокаТаблФункцЛапласа = СтрокаТаблФункцЛапласа + 1

Wend

If a <= Sheets(«Таблица функции Лапласа»).Cells(2, 1).Value Then

ф0 = Sheets(«Таблица функции Лапласа»).Cells(2, 2).Value

GoTo далее

End If

If a >= Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа — 1, 1).Value Then

ф0 = Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа — 1, 2).Value

GoTo далее

End If

СтрокаТаблФункцЛапласа = 2

While Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа, 1).Value <> «»

If Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа, 1).Value = a Then

ф0 = Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа, 2).Value

GoTo далее3

End If

If a < Sheets(«Таблица функции Лапласа»). Cells(СтрокаТаблФункцЛапласа, 1).Value And a > Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа — 1, 1).Value Then

If Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа, 1).Value — a < a — Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа — 1, 1).Value Then

ф0 = Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа, 2).Value

Else

ф0 = Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа — 1, 2).Value

End If

GoTo далее3

End If

СтрокаТаблФункцЛапласа = СтрокаТаблФункцЛапласа + 1

Wend

далее3:

Sheets(«ОсновнаяТаблица»).Cells(СтрокаТаблицы, n).Value = 0.5 + ф0

Next

‘Вычислим 44 строку таблицы(46)=============================fн(t)

СтрокаТаблицы = 46

СтолбецТаблицы = 4

Pi = Application.WorksheetFunction.Pi

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

Sheets(«ОсновнаяТаблица»). 2)))

Next

‘Заполним 45 строку таблицы(47)=============================Лямбда н(t)

СтрокаТаблицы = 47

СтолбецТаблицы = 4

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

Sheets(«ОсновнаяТаблица»).Cells(СтрокаТаблицы, n).Value = Sheets(«ОсновнаяТаблица»).Cells(46, n).Value / Sheets(«ОсновнаяТаблица»).Cells(45, n).Value

Next

Для определения доверительного интервала для математического ожидания по таблице квантилей распределения Стьюдента находят квантиль вероятности. Используя выражения (4) и (5) проводят расчеты

(4)

(5)

‘Заполним 30 строку таблицы(32)=============================Tср min

СтрокаТаблицы = 32

СтолбецТаблицы = 4

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

Next

СтепеньСвободыПриНормРаспред = КоличествоСтолбцовТаблицы + 1 — 2

Sheets(«ОсновнаяТаблица»).Cells(СтрокаТаблицы, 4). Value = Tcp — Sheets(«ОсновнаяТаблица»).Cells(31, 4).Value * Сигма / Sqr(СтепеньСвободыПриНормРаспред)

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).MergeCells = True

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).HorizontalAlignment = xlCenter

‘Заполним 31 строку таблицы(33)=============================Tср max

СтрокаТаблицы = 33

СтолбецТаблицы = 4

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

Next

Sheets(«ОсновнаяТаблица»).Cells(СтрокаТаблицы, 4).Value = Tcp + Sheets(«ОсновнаяТаблица»).Cells(31, 4).Value * Сигма / Sqr(СтепеньСвободыПриНормРаспред)

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).MergeCells = True

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).HorizontalAlignment = xlCenter

Тср, min =

79,29380755 ч.

Тср, max =

172,43129 ч.

Для определения доверительного интервала для среднеквадратичного отклонения по таблице квантилей χ 2 – квадрат распределения определяют квантили для заданных вероятностей P 1 и P 2 .

(0,05) =

3,32511

(0,95) =

16,919

‘Заполним 32 строку таблицы(34)=============================X1(0,05)

СтрокаОсновнойТаблицы = 34

СтрокаТаблКвантили = 4

ВходнаяСтрочнаяВеличина = СтепеньСвободыПриНормРаспред

While Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value <> «»

СтрокаТаблКвантили = СтрокаТаблКвантили + 1

Wend

If ВходнаяСтрочнаяВеличина <= Sheets(«Квантили распределения хи»). Cells(4, 1).Value Then

СтрокаТабл = 4

GoTo СледующийПоиск10

End If

If ВходнаяСтрочнаяВеличина >= Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили — 1, 1).Value Then

СтрокаТабл = СтрокаТаблКвантили — 1

GoTo СледующийПоиск10

End If

СтрокаТаблКвантили = 4

While Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value <> «»

If Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value = ВходнаяСтрочнаяВеличина Then

СтрокаТабл = СтрокаТаблКвантили

GoTo СледующийПоиск10

End If

If ВходнаяСтрочнаяВеличина < Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value And ВходнаяСтрочнаяВеличина > Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили — 1, 1).Value Then

If Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value — ВходнаяСтрочнаяВеличина < ВходнаяСтрочнаяВеличина — Sheets(«Квантили распределения хи»). Cells(СтрокаТаблКвантили — 1, 1).Value Then

СтрокаТабл = СтрокаТаблКвантили

Else

СтрокаТабл = СтрокаТаблКвантили — 1

End If

GoTo СледующийПоиск10

End If

СтрокаТаблКвантили = СтрокаТаблКвантили + 1

Wend

СледующийПоиск10:

СтолбецТаблКвантили = 2

ВходнаяВертикальнаяВеличина = 0.05

While Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value <> «»

СтолбецТаблКвантили = СтолбецТаблКвантили + 1

Wend

If ВходнаяВертикальнаяВеличина <= Sheets(«Квантили распределения хи»).Cells(3, 2).Value Then

СтолбецТабл = 2

GoTo СледующийПоиск11

End If

If ВходнаяВертикальнаяВеличина >= Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили — 1).Value Then

СтолбецТабл = СтолбецТаблКвантили — 1

GoTo СледующийПоиск11

End If

СледующийПоиск11:

СтолбецТаблКвантили = 11

While Sheets(«Квантили распределения хи»). Cells(3, СтолбецТаблКвантили).Value <> «»

If Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value = ВходнаяВертикальнаяВеличина Then

СтолбецТабл = СтолбецТаблКвантили

GoTo СледующийПоиск12

End If

If ВходнаяСтрочнаяВеличина < Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value And ВходнаяВертикальнаяВеличина > Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили — 1).Value Then

If Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value — ВходнаяВертикальнаяВеличина < ВходнаяВертикальнаяВеличина — Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили — 1).Value Then

СтолбецТабл = СтолбецТаблКвантили

Else

СтолбецТабл = СтолбецТаблКвантили — 1

End If

GoTo СледующийПоиск12

End If

СтолбецТаблКвантили = СтолбецТаблКвантили + 1

Wend

СледующийПоиск12:

x1 = Sheets(«Квантили распределения хи»). Cells(СтрокаТабл, СтолбецТабл).Value

Sheets(«ОсновнаяТаблица»).Cells(СтрокаОсновнойТаблицы, 4).Value = x1

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаОсновнойТаблицы, 4), Cells(СтрокаОсновнойТаблицы, n — 1)).MergeCells = True

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаОсновнойТаблицы, 4), Cells(СтрокаОсновнойТаблицы, n — 1)).HorizontalAlignment = xlCenter

‘Заполним 33 строку таблицы(35)=============================X2(0,95)

СтрокаОсновнойТаблицы = 35

СтрокаТаблКвантили = 4

ВходнаяСтрочнаяВеличина = СтепеньСвободыПриНормРаспред

While Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value <> «»

СтрокаТаблКвантили = СтрокаТаблКвантили + 1

Wend

If ВходнаяСтрочнаяВеличина <= Sheets(«Квантили распределения хи»).Cells(4, 1).Value Then

СтрокаТабл = 4

GoTo СледующийПоиск13

End If

If ВходнаяСтрочнаяВеличина >= Sheets(«Квантили распределения хи»). Cells(СтрокаТаблКвантили — 1, 1).Value Then

СтрокаТабл = СтрокаТаблКвантили — 1

GoTo СледующийПоиск13

End If

СтрокаТаблКвантили = 4

While Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value <> «»

If Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value = ВходнаяСтрочнаяВеличина Then

СтрокаТабл = СтрокаТаблКвантили

GoTo СледующийПоиск13

End If

If ВходнаяСтрочнаяВеличина < Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value And ВходнаяСтрочнаяВеличина > Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили — 1, 1).Value Then

If Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value — ВходнаяСтрочнаяВеличина < ВходнаяСтрочнаяВеличина — Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили — 1, 1).Value Then

СтрокаТабл = СтрокаТаблКвантили

Else

СтрокаТабл = СтрокаТаблКвантили — 1

End If

GoTo СледующийПоиск13

End If

СтрокаТаблКвантили = СтрокаТаблКвантили + 1

Wend

СледующийПоиск13:

СтолбецТаблКвантили = 2

ВходнаяВертикальнаяВеличина = 0. 95

While Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value <> «»

СтолбецТаблКвантили = СтолбецТаблКвантили + 1

Wend

If ВходнаяВертикальнаяВеличина <= Sheets(«Квантили распределения хи»).Cells(3, 2).Value Then

СтолбецТабл = 2

GoTo СледующийПоиск14

End If

If ВходнаяВертикальнаяВеличина >= Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили — 1).Value Then

СтолбецТабл = СтолбецТаблКвантили — 1

GoTo СледующийПоиск14

End If

СледующийПоиск14:

СтолбецТаблКвантили = 2

While Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value <> «»

If Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value = ВходнаяВертикальнаяВеличина Then

СтолбецТабл = СтолбецТаблКвантили

GoTo СледующийПоиск15

End If

If ВходнаяСтрочнаяВеличина < Sheets(«Квантили распределения хи»). Cells(3, СтолбецТаблКвантили).Value And ВходнаяВертикальнаяВеличина > Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили — 1).Value Then

If Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value — ВходнаяВертикальнаяВеличина < ВходнаяВертикальнаяВеличина — Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили — 1).Value Then

СтолбецТабл = СтолбецТаблКвантили

Else

СтолбецТабл = СтолбецТаблКвантили — 1

End If

GoTo СледующийПоиск15

End If

СтолбецТаблКвантили = СтолбецТаблКвантили + 1

Wend

СледующийПоиск15:

x1 = Sheets(«Квантили распределения хи»).Cells(СтрокаТабл, СтолбецТабл).Value

Sheets(«ОсновнаяТаблица»).Cells(СтрокаОсновнойТаблицы, 4).Value = x1

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаОсновнойТаблицы, 4), Cells(СтрокаОсновнойТаблицы, n — 1)).MergeCells = True

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаОсновнойТаблицы, 4), Cells(СтрокаОсновнойТаблицы, n — 1)). HorizontalAlignment = xlCenter

Получим минимальное σ min и максимальное σ max значения среднеквадратического отклонения:

(6)

(7)

‘Заполним 34 строку таблицы(36)=============================Сигма min

СтрокаТаблицы = 36

СтолбецТаблицы = 4

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

Next

Sheets(«ОсновнаяТаблица»).Cells(СтрокаТаблицы, 4).Value = Сигма * Sqr((СтепеньСвободыПриНормРаспред — 1) / Sheets(«ОсновнаяТаблица»).Cells(35, 4).Value)

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).MergeCells = True

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).HorizontalAlignment = xlCenter

‘Заполним 35 строку таблицы(37)=============================Сигма max

СтрокаТаблицы = 37

СтолбецТаблицы = 4

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

Next

СтепеньСвободыПриНормРаспред = КоличествоСтолбцовТаблицы + 1 — 2

Sheets(«ОсновнаяТаблица»). Cells(СтрокаТаблицы, 4).Value = Сигма * Sqr((СтепеньСвободыПриНормРаспред — 1) / Sheets(«ОсновнаяТаблица»).Cells(34, 4).Value)

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).MergeCells = True

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).HorizontalAlignment = xlCenter

52,40646615

118,2140815

Число разрядов, на которые следует группировать статистический ряд, не должно быть слишком большим (тогда ряд распределения становится невыразительным, и часто в нем обнаруживают незакономерные колебания), с другой стороны, оно не должен быть слишком малым (свойства распределения при этом описываются статистическим рядом слишком грубо).

Литература:

  1. ГОСТ 27. 002-89 Надежность в технике (ССНТ). Основные понятия. Термины и определения.
  2. Федотов, А. В. Основы теории надежности и технической диагностики: конспект лекций / А. В. Федотов, Н. Г. Скабкин. – Омск : Изд-во ОмГТУ, 2010 – 64 с.
  3. Коваленко, В. Н. Надежность устройств железнодорожной автоматики, телемеханики : учеб. пособие / В. Н. Коваленко. – Екатеринбург : Изд-во УрГУПС, 2013. – 87 с.

Основные термины (генерируются автоматически): Таблица функции, строка таблицы, доверительный интервал, Сигма, математическое ожидание, распределение отказов, среднеквадратичное отклонение, статистический ряд, таблица, теория вероятностей.

КОРРЕЛЯЦИОННЫЙ И РЕГРЕССИОННЫЙ АНАЛИЗ В EXCEL

1. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПАРНОЙ КОРРЕЛЯЦИИ В ПРОГРАММЕ EXCEL

t-статистика=0,99*(КОРЕНЬ(20-2)/КОРЕНЬ(1-0,99*0,99))=29,7745296027549

Коэффициент корреляции=0,991477169252612

Распределение Стьюдента=2,10092204024104

Расчетное значение t-статистики больше квантиля распределения Стьюдента, следовательно величина коэффициента корреляции является значимой.

2. ПОСТРОЕНИЕ РЕГРЕССИОННОЙ МОДЕЛИ СВЯЗИ МЕЖДУ ДВУМЯ ВЕЛИЧИНАМИ

1-ый способ

 a1= 0,5014a0= 2,5326 
 Se1= 0,0155 Se0= 0,7075
 R2= 0,9830Se= 0,5561 
 Se= 0,5561n-k-1= 18 
 QR= 322,4250Qe= 5,5670 
Для проверки адекватности модели нашли квантиль распределения Фишера Ff. с помощью функции FРАСПОБР

FРАСПОБР=4,4139

Проверили адекватность построенной модели, используя расчетный уровень значимости (P):

2,18499711496499E-17

2 –й способ


а=2,532579627

в=0,50139175

Для данного примера уравнение модели имеет вид:Y=2,53+0,5X

Проверка адекватности модели выполняется по расчетному уровню значимости P, указанному в столбце Значимость F. Если расчетный уровень значимости меньше заданного уровня значимости α =0,05, то модель адекватна.

Проверка статистической значимости коэффициентов модели выполняется по расчетным уровням значимости P, указанным в столбце P-значение. Если расчетный уровень значимости меньше заданного уровня значимости α =0,05, то соответствующий коэффициент модели статистически значим.

Множественный Rкоэффициент корреляции. Чем ближе его величина к 1, тем более тесная связь между изучаемыми показателями. Для данного примера R= 0,99. Это позволяет сделать вывод, что качество земли – один из основных факторов, от которого зависит урожайность зерновых культур.

R-квадраткоэффициент детерминации. Он получается возведением в квадрат коэффициента корреляции – R2=0,98. Он показывает, что урожайность зерновых культур на 98% зависит от качества почвы, а на долю других факторов приходится 0,02%.

3-ий способ (графический)


Расчет квантилей или процентилей в Excel

В этом руководстве показано, как вычислять квантили или процентили, связанные с доверительными интервалами, в Excel с помощью программного обеспечения XLSTAT.

Квантиль и процентили

XLSTAT имеет полный инструмент для вычисления квантилей или процентилей, их доверительного интервала и графического представления.

Квантили являются важными статистическими показателями, их легко понять. Квантиль 0,5 — это значение, при котором половина выборки находится ниже, а другая половина — выше. Его еще называют средним. Квантиль называется процентилем, если он основан на шкале от 0 до 100. 0,95-квантиль эквивалентен 95-процентилю и таков, что 95 % выборки ниже его значения, а 5 % выше.

Набор данных для создания квантиля

Набор данных был получен от [Lewis T. and Taylor L.R. (1967). Введение в экспериментальную экологию, Нью-Йорк: Academic Press, Inc. Это касается 237 детей, описанных по полу и росту в сантиметрах (1 см = 0,4 дюйма).

Настройка расчета определенного квантиля

После открытия XLSTAT выберите XLSTAT / Description / Quantiles , или нажмите на соответствующую кнопку панели инструментов «Описание» (см. ниже).

После нажатия кнопки появится диалоговое окно Quantile . Выберите данные на листе Excel.

В нашем случае; переменная — это «Высота». Данные должны быть количественными .

Поскольку для переменных был выбран заголовок столбца, необходимо активировать опцию Метки переменных .

Мы выбираем метод оценки по умолчанию ( средневзвешенное значение при x(Np) ) и оба типа доверительных интервалов с доверительной вероятностью 95 % .

Подробную информацию о статистических методах можно найти в справке XLSTAT.

Во вкладке диаграммы выбираем все диаграммы и нас интересует 67-процентиль (две трети детей меньше, а одна треть выше).

Вычисления начинаются после того, как вы нажмете на ОК . Затем будут отображены результаты.

Интерпретация результатов генерации квантилей

В первой таблице показаны некоторые описательные статистические данные о переменной высоты. Во второй таблице отображаются квантили и связанные с ними доверительные интервалы для различных часто используемых значений. Например, медиана 159,9 см. 95-процентиль показывает, что 95% детей меньше 174,98 см.

Затем отображается значение 67-процентиля. Две трети детей меньше 164,58 см.

Первый график (см. ниже) позволяет нам визуализировать эмпирическую кумулятивную функцию распределения со значением 67-го процентиля.

Вторая и третья диаграммы представляют собой коробчатую диаграмму и диаграмму рассеяния. 67-процентиль отображается синей линией.

Вы также можете использовать подвыборки, например пол можно использовать в качестве групповой переменной. Веса, связанные с наблюдениями, также могут быть включены.

Была ли эта статья полезной?

  • Да

Квантиль (квартиль, дециль и процентиль): расчет вручную + Microsoft

Квантиль — важная статистическая концепция, позволяющая разделить данные на равные группы. Они часто используются для выявления и анализа шаблонов данных и проведения значимых сравнений между различными наборами данных. В этом кратком руководстве мы рассмотрим основы квантилей и более подробно рассмотрим некоторые из наиболее распространенных типов: квартили, децили и процентили.

Квантиль

Квантиль — это мера, указывающая значение, ниже которого падает определенная доля наблюдений в группе наблюдений. Квантиль используется в статистике для разделения группы наблюдений на группы одинакового размера. Например, квантиль 0,25 — это значение, ниже которого падают 25% наблюдений; квантиль 0,50 — это значение, ниже которого падает 50%, и так далее. Другим родственным измерением является медиана, которая совпадает с квантилем 0,50, поскольку 50% данных находятся ниже медианы.

Какие общие квантили существуют?

Некоторые распространенные квантили включают:

1. Квартиль

Квартиль — это тип квантиля, который делит группу наблюдений на четыре группы одинакового размера. Например, в группе наблюдений первый квартиль (Q1) — это значение, ниже которого опускаются первые 25 % наблюдений, второй квартиль (Q2, также известный как медиана) — это значение, ниже которого средние 50 % наблюдений падают, а третий квартиль (Q3) — это значение, ниже которого падают последние 25% наблюдений.

2. Дециль

Дециль – это мера, которая делит группу наблюдений на десять групп одинакового размера. Например, в группе наблюдений первый дециль (D1) — это значение, ниже которого попадают первые 10% наблюдений, второй дециль (D2) — это значение, ниже которого попадают первые 20% наблюдений, и скоро. 9-й дециль (D9) — это значение, ниже которого опускаются последние 10% наблюдений.

3. Процентиль

Процентиль — это мера, указывающая значение, ниже которого находится определенный процент наблюдений в группе наблюдений. Например, в группе наблюдений 20-й процентиль (P20) — это значение, ниже которого опускаются первые 20% наблюдений, 50-й процентиль (P50) — это значение, ниже которого опускаются средние 50% наблюдений, и 95-й процентиль (P95) — это значение, ниже которого падают последние 95% наблюдений.

50-й процентиль также является медианой, вторым квартилем и 5-м децилем.

 

Процентиль: Расчет вручную / Microsoft Excel

Процентиль — это мера, используемая в статистике для указания значения, ниже которого находится определенный процент наблюдений в группе наблюдений.

Чтобы найти местоположение определенного процентиля, такие программы, как Minitab, Python, R и Excel, используют следующие шаги:

  1. Расположите наблюдения в порядке возрастания.
  2. Используйте формулу для определения положения процентиля, чтобы вычислить положение, в котором будет располагаться значение процентиля, используя желаемое значение процентиля и общее количество наблюдений в качестве входных данных. Существует два подхода: EXC (Exclusive) и INC (Inclusive). Процентное положение в подходе EXC определяется формулой \(K(N+1)\), а положение в подходе INC определяется формулой \(K(N-1)+1\).
  3. Если местоположение процентиля является целым числом, значение в этой позиции в упорядоченном списке наблюдений является значением процентиля.
  4. Если местоположение процентиля не является целым числом, значение процентиля рассчитывается путем вычисления значения на пропорциональной основе между этими двумя числами.

Чтобы найти 65-й процентиль в группе из 8 наблюдений, вы должны сначала расположить наблюдения в порядке возрастания: 8, 9, 12, 22, 23, 33, 55, 61.

Затем вы должны использовать формулу для местоположения процентиля, чтобы вычислить положение, в котором будет расположен 65-й процентиль:

Для ПРОЦЕНТИЛЬ.ИСКЛ рассчитанный ранг равен \(K(N+1)\).

Расположение в процентиле (с использованием эксклюзивного подхода) = \(\left(\frac{65}{100}\right)(8+1)\) = 5,85

Поскольку положение в процентиле не является целым числом, 65-й процентиль будет между 5-м пунктом (номер 23) и 6-м пунктом (номер 33) на пропорциональной основе. Это будет \(23+0,85(33-23) = 31,5\).

Для PERCENTILE.INC (и PERCENTILE) рассчитанный ранг равен \(K(N-1)+1\).

Расположение в процентах (с использованием инклюзивного подхода) = \((65/100) (8-1)+1\) = 5,55

Поскольку местоположение процентиля не является целым числом, 65-й процентиль будет почти посередине между 5-м элементом (число 23) и 6-м элементом (число 33). Пропорционально получится \(23+0,55(33-23)\) = 28,5.

 

Квартиль: пример расчета вручную

Квартиль — это статистическое значение, которое делит набор данных на четыре равные части или четверти. Первый квартиль, также известный как нижний квартиль или Q1, — это значение, которое отделяет самые низкие 25 % данных от остальных. Второй квартиль, также известный как медиана или Q2, представляет собой значение, которое отделяет самые низкие 50% данных от самых высоких 50% данных. Третий квартиль, также известный как верхний квартиль или Q3, — это значение, которое отделяет самые высокие 25% данных от остальных.

Например, если у нас есть следующие числа: 14, 9, 10, 11, 11 и 6, мы можем разделить данные на четыре равные группы, найдя первый, второй и третий квартили.

Чтобы найти квартили набора данных, нам сначала нужно расположить данные в порядке возрастания следующим образом: 6, 9, 10, 11, 11, 14.

Затем нам нужно найти медиану, или Q2, которая является средним значением в наборе данных. В этом случае в наборе данных шесть чисел, поэтому медиана — это среднее значение третьего и четвертого значений, равное 10,5.

Чтобы найти нижний квартиль или Q1, мы берем медиану значений ниже медианы. В данном случае это будет медиана 9. Чтобы найти верхнюю квартиль или Q3, мы берем медиану значений выше медианы. В данном случае это будет медиана 11, 11 и 14, что равно 11.

Таким образом, для этого набора данных квартили: эти числа расчета квартиля не совпадают с расчетом Excel?

Квартиль Использование Excel:

Для расчета квартилей такие программы, как Microsoft Excel и Minitab, используют метод процентилей, как объяснялось ранее. Q1 рассчитывается как 25-й процентиль, Q2 — как 50-й и Q3 — как 75-й процентиль. Это приводит к тому, что значение квартиля иногда отличается от значения, рассчитанного с использованием обычного ручного метода расчета.

Возьмем тот же пример, который мы использовали ранее в ручном расчете для расчета первого квартиля (Q1).

Чтобы найти квартили набора данных, нам сначала нужно расположить данные в порядке возрастания следующим образом: 6, 9, 10, 11, 11, 14.

Вы можете использовать функцию КВАРТИЛЬ.ИСКЛ или КВАРТИЛЬ.ВКЛ. найти квартили набора чисел в Excel.

Quartile.Exc

Для QUARTILE.EXC расчетный ранг равен K*(N+1). Чтобы рассчитать положение Q1 (или 25-го процентиля), подставим в эту формулу соответствующие значения.

Местоположение 1-го квартиля (с использованием эксклюзивного подхода) = (25/100) * (6+1) = 1,75

Поскольку положение процентиля не является целым числом, 1-й квартиль будет между 1-м элементом (номер 6) и 2-м элементом (номер 9) на пропорциональной основе. Получится \(6 + (9-6)*0,75\) = 8,25.

Использование Minitab: Если вы используете Minitab для расчета Q1, это значение (8,25), которое вы получите в описательной статистике. Minitab использует метод EXC для расчета процентилей и квартилей.

Квартиль.Вкл

Для КВАРТИЛЬ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *