Mathway | Популярные задачи
Популярные задачи
Элемент. математикаОсновы алгебрыАлгебраТригонометрияОсновы мат. анализаМатематический анализКонечная математикаЛинейная алгебраХимияPhysics
Рейтинг | Тема | Задача | Форматированная задача |
---|---|---|---|
1 | Решить, используя обратную матрицу | x+2y=1 , 4x+5y=13 | , |
2 | Перемножить матрицы | [[1/( квадратный корень из 17),-4/( квадратный корень из 17)]][[1/( квадратный корень из 17)],[-4/( квадратный корень из 17)]] | |
3 | Найти область определения | x+y=3 | |
4 | Найти область определения | x-y=3 | |
5 | Найти область определения | y=-2x+3 | |
6 | Найти область определения | y=2x+1 | |
7 | Записать в виде векторного равенства | x=x^2+9x+3 , x=x+2 | , |
8 | Найти область определения | y=2x | |
9 | Найти область определения | y=-3x | |
10 | Найти область определения | y=3x-2 | |
11 | Найти область определения | y=4x | |
12 | Найти область определения | 3x+2y=6 | |
13 | Trovare la 5×5 Matrice Identità | 5 | |
14 | Trovare la 6×6 Matrice Identità | 6 | |
15 | Trovare la 4×4 Matrice Identità | 4 | |
16 | Решить, используя обратную матрицу | 2x+y=-2 , x+2y=2 | , |
17 | Решить, используя обратную матрицу | 4x+4=y , y=6x | , |
18 | Решить, используя обратную матрицу | 4x+2=5y-3 , y=3x-1 | , |
19 | Найти степенное множество | (3,4) | |
20 | Вычислить | кубический корень из 216 | |
21 | Найти степенное множество | (1,3) | |
22 | Найти область определения | 3x-2y=12 | |
23 | Найти область определения | y=5x+2 | |
24 | Найти область определения | y=2x-3 | |
25 | Найти область определения | y=2x-4 | |
26 | Найти область определения | y=2x+5 | |
27 | Найти область определения | y=1/2x | |
28 | Найти область определения | y=1/2x-3 | |
29 | Найти область определения | y=2/3x-2 | |
30 | Найти область определения | x=2y | |
31 | Найти область определения | x-2y=2 | |
32 | Найти область определения | x-2y=6 | |
33 | Найти область определения | 2y+x | |
34 | Найти область определения | 2x+y=0 | |
35 | Найти область определения | y=5x+6 | |
36 | Найти область определения | y=x+3 | |
37 | Solve Using a Matrix by Elimination | y=4x+3x-2 , y=6 | , |
38 | Проверить линейную зависимость | B={[[-10,2],[5,-2. 5]]} | |
39 | Сложение | [[2,4],[6,-4]]+[[-3,-7],[20,10]] | |
40 | Проверить линейную зависимость | B={[[-1,2],[0,-2.5]]} | |
41 | Перемножить матрицы | [[0,0,1,1],[1,0,1,0],[0,0,0,1],[0,1,0,0]][[0,0,1,1],[1,0,1,0],[0,0,0,1],[0,1,0,0]] | |
42 | Найти область определения | y=5x | |
43 | Найти область определения | y=7x | |
44 | Найти область определения | y=-x-2 | |
45 | Найти область определения | y=x-2 | |
46 | Найти область определения | y=x-3 | |
47 | Привести матрицу к ступенчатому виду по строкам | [[4,-3,1,0],[1,0,-2,0],[-2,1,1,0]] | |
48 | Записать в виде векторного равенства | x+y+z=2 , 4x+5y+z=12 , 2x=-4 | , , |
49 | Найти определитель | [[0,-1,a],[3,-a,1],[1,-2,3]] | |
50 | Найти область определения | y=-x+2 | |
51 | Найти определитель | [[2,5,0],[1,0,-3],[2,-1,2]] | |
52 | Найти определитель | [[7,5,0],[4,5,8],[0,-1,5]] | |
53 | Найти обратный элемент | [[1,-3,0,-2],[3,-12,-2,-6],[-2,10,2,5],[-1,6,1,3]] | |
54 | Найти обратный элемент | [[1,2,3],[2,5,7],[3,7,9]] | |
55 | Привести матрицу к ступенчатому виду по строкам | [[0,1,5,-4],[1,4,3,-2],[2,7,1,-2]] | |
56 | Привести матрицу к ступенчатому виду по строкам | [[1,1,0],[1,0,1],[1,0,1],[2,1,0],[2,1,0]] | |
57 | Привести матрицу к ступенчатому виду по строкам | [[1,2,3],[4,5,6],[7,8,9]] | |
58 | Привести матрицу к ступенчатому виду по строкам | [[7,8]] | |
59 | Найти область определения | 2x+y=1 | |
60 | Записать в виде векторного равенства | 2x+y=-2 , x+2y=2 | , |
61 | Найти область определения | x-2y=4 | |
62 | Найти область определения | x-y=-1 | |
63 | Найти область определения | x+y=5 | |
64 | Найти область определения | x=-3y-8 | |
65 | Найти область определения | x=-2y-8 | |
66 | Найти область определения | x+y=6 | |
67 | Найти область определения | x+y=4 | |
68 | x+2y=4 | ||
69 | Найти область определения | x+y | |
70 | Найти область определения | y=7x+9 | |
71 | Найти область определения | y=1/2x-5 | |
72 | Найти область определения | y=1/2x+2 | |
73 | Найти область определения | y=1/2x+3 | |
74 | Найти область определения | x-y=-3 | |
75 | Найти область определения | x-y=4 | |
76 | Найти область определения | y=-2x | |
77 | Найти область определения | y=-2x+1 | |
78 | Найти область определения | y=2^(x+9) | |
79 | Найти область определения | y=10-x^2 | |
80 | Найти область определения | y=2x-6 | |
81 | Найти область определения | y=-2x-3 | |
82 | Найти область определения | y=3x-8 | |
83 | Найти область определения | y=3x | |
84 | Найти область определения | y=-3x+1 | |
85 | Найти область определения | y=4x+3 | |
86 | Найти область определения | y=3x-4 | |
87 | Найти область определения | y=4x-2 | |
88 | Найти область определения | y=-6x | |
89 | Найти область определения | y=x-4 | |
90 | Найти область определения | 7 корень четвертой степени из 567y^4 | |
91 | Найти область определения | c=5/9*(f-32) | |
92 | Найти область определения | f=9/5c+32 | |
93 | Вычислить | квадратный корень из 4 | |
94 | Привести матрицу к ступенчатому виду по строкам | [[-6,7],[2,6],[-4,1]] | |
95 | Найти собственные значения | [[2,1],[3,2]] | |
96 | Найти собственные значения | [[4,0,1],[2,3,2],[49,0,4]] | |
97 | Найти степенное множество | A=(2,3,4,5) | |
98 | Найти мощность | (2,1) | |
99 | Решить, используя обратную матрицу | -3x-4y=2 , 8y=-6x-4 | , |
100 | Решить, используя обратную матрицу | 2x-5y=4 , 3x-2y=-5 | , |
Область определения функции: понятие, примеры решение задач
Область определения функции: понятие
Функция задается тогда, когда любому значению, например x соответствует любое значение y. Независимой переменной называют значение х или по другому — аргументом. Числовое значение y, как правило, является зависимой переменной.
Данная зависимость между x и y в алгебре называют функциональной. Записывают ее в виде функции y = f(x)
Другими словами, функция, это когда значения одной переменной зависят от значений другой переменной.
Далее можно сформулировать определение область функции. То есть, на какой промежуток действе функции распространяется.
Определение
В математике под областью определения функции понимают множество, которое включает в себя все значения аргумента. Если функция имеет предел, то он является значением аргумента при котором функция возрастает или убывает. Область определения функции также называется областью допустимых значений функции.
Область функции можно выразить геометрически. Например, в виде графика. Где за основу берутся оси х и y.
Ограничение области определения
Область ограничения действительных чисел может быть от \[(0 ;+\infty)\]. {4}+2 x-x+2}{4}+2 \frac{2}{3} \cdot x\], в данном множестве нет переменной, поэтому и решается оно иначе.
Пример 2: \[y=\frac{3}{x-1}\], нужно вычислить область определения. Обязательно, при решении нужно уделить внимание на знаменатель. Потому что, по законам алгебры деление на ноль запрещено.
Получаем следующее действие:\[\frac{3}{x-1}\].
Область значения не должна быть равной единице, так как в знаменателе получим нулевое значение. Отсюда область определения будет в пределах \[(-\infty, 1) \cup(1,+\infty)\].
Область определения для суммы, разности и произведений числовых значений
Чтобы правильно уметь определять данную область, нужно знать следующие утверждения: если функция вычисляется, при помощи суммы: \[f_{1}+f_{2}+\ldots f_{n} \text { или } \mathrm{y}=f_{1}+f_{2}+\ldots f_{n}\]
Область определения будет следующего вида: \[\mathrm{D}(\mathrm{f})=\mathrm{D}\left(f_{1}\right)\left(f_{2}\right) \ldots\left(f_{n}\right)\]
Пример суммы числовых значений: возьмем уравнение: \[y=x^{7}+x+5+t g x\]. {2}-4}\].
Первое слагаемое имеет область определения множество действительных чисел. Второе — также все числа, кроме -2 и 2, они приведут знаменатель к нулю. Область определения должна соответствовать условиям двух слагаемых и равняться действительным числам, кроме -2 и 2.
Область определения тригонометрических функций
Множество значений всех действительных чисел, будет являться областью определения функций синус и косинус, и записываться следующим образом.
Функции являются ограниченными, как сверху, так и снизу, y = sin x и y = cos x. Промежуток их действия сводится к неравенству -1 ≤ y ≤ 1
Областью определения функции тангенс tg x, является выражение \[\mathrm{x} \neq \frac{\pi}{2}+\pi k, \mathrm{k} \in z\].
Областью определения функции y = ctg x является множество чисел \[x \neq \frac{\pi}{2}, \quad k \in z\].
На нижеприведенных примерах подробно расписано решение задач, при определении области функции, при заданных промежутках значений.
Пример №1
Определить область значения функции sin x
Данный вид функции относится к категории периодической. Ее период равняется 2п.
Определяем множество значений на следующем отрезке:( 0;2).
Пример №2:
Необходимо определить область значения функции cos x.
Наименьшее значение равно -1;
Минимальное значение косинуса равняется -1, потому что наименьшее значение х, на окружности стремится к этому значению и следовательно равняется -1.
Максимальное значение косинуса будет соответственно 1. Поскольку значение на окружности х имеет число 1.
Область значение, следовательно, будет от минус одно до плюс одного. [-1;1].
Применяем двойное неравенство и записывает следующее выражение:
\[-1 \leq \cos x \leq 1\]
Область значения косинуса никогда не зависит от аргумента, только если сам аргумент выражен в виде сложного выражения. Где имеют место ограничения касающиеся области определения и области значения.
Таким образом, минимальное значение cos x, cos (15a), cos(5-11x) и так далее, будет однозначно равняться -1;
Самым максимальным значением cos x, cos(4φ), cos(5х+3) равняется 1. {2}}}\] на определенном интервале (-1;1).
Решение:
Для всех значений x производная будет положительной, в пределах от -1;1
Нет времени решать самому?
Наши эксперты помогут!
Контрольная
| от 300 ₽ |
Реферат
| от 500 ₽ |
Курсовая
| от 1 000 ₽ |
Область определения показательной и логарифмической функции
Показательная функция записывается как: y = kx, где значения:
- x — показатель степени;
- k — число, которое обязательно больше нуля и не равно единице.
Определение
Область определения показательной функции — это множество значений R.
Основные примеры показательных функций:
Область определения, для этих функций, записывается следующим образом: \[(-\infty,+\infty)\].
Логарифмическая функция выражается как: y=log nk
Где значение n, имеет значение больше нуля и не менее единицы.
Определение
Область определения логарифма и логарифмической функции — это множество положительных значений и действительных чисел.
Рассмотрим на примере, характер решения задачи данной функции.
Пример №1:
y = lnx , определить область определения натурального логарифма.
\[D(y)=(0 ;+\infty)\]
На заданном интервале, производная будет иметь положительное значение, и функция будет возрастать на всем промежутке.
\[y=\ln x=\frac{1}{x}\]
Определим односторонний предел при, стремлении аргумента к нулю и когда значение x стремится к бесконечности.
Из данного решения мы видим, что значения будут возрастать от минус бесконечности до плюс бесконечности.
Из этого следует, что множество всех действительных чисел – является областью значений функции натурального логарифма ln.
Ответ: множество всех действительных чисел, это и есть область значений функции ln.
Определения области значения функции x
На примерах рассмотрим, как определить области значений функции.
Первоначально, необходимо определить значения непрерывной функции y=f(x).
Известно, что функция непрерывная и достигает своих максимальных max f(x) и минимальных min f(x) значений, на разных периодах. Из этого следует отрезок, где находятся значения исходной функции. Тогда решение состоит в нахождении точек максимума и минимума.
Пример №1 :
Необходимо вычислить область значений уравнения y = x4 — 5x3 + 6x2 на отрезке [ 1 ; 4 ] [1; 4].
Для решения задачи необходимо произвести следующие действия:
Следующим шагом будет определение значений функции в конечной и начальной точках.
Ответ: \[\left(\frac{117-165 \cdot \sqrt{33}}{512} ; 32\right)\]
Пример №2.
Необходимо вычислить область значений уравнения
y = x4 — 7x3 + 5x2 на отрезке [ 1 ; 4 ] [1; 4].
Для решения задачи необходимо произвести следующие действия:
Следующим шагом будет определение значений функции в конечной и начальной точках. {2}-4}=-\frac{1}{4}\]
\[-\frac{1}{4}\] — будет являться наибольшим значение заданной функции.
Следующим шагом в нашем решении, будет выяснение направления функции. Когда x значение стремится к (-2) и (+2).
В алгебре иными словами эти значения называют односторонними пределами.
Решение выглядит следующим образом.
В конечном итоге мы получаем, что в пределах от -2 до 0, функции будут возрастать \[\text { От }-\infty \text { до }-\frac{1}{4} \text {. }\]
Если аргумент меняется, от 0 до то наоборот будет убывать к \[-\infty\].
Следовательно, необходимое множество значений будет на интервале \[-\infty \text { до }-\frac{1}{4}\].
Ответ: \[\left(-\infty-\frac{1}{4}\right)\]
Область определения функции
yПример №1:
Данная функция имеет определенное значение, только при положительных значениях. \[D(y)=(0 ;+\infty)\].
Производная будет иметь следующий вид: \[y=(\ln x)=\frac{1}{x}\].
Так как функция имеет положительное значение, то на всем промежутке будет наблюдаться ее возрастание. {2}-1}\];
Если значение z имеет положительное значение, то функция будет считаться определенной.
Вычислим наибольшее и наименьшее значение, а также промежутки возрастания и убывания.
Если значение x будет больше, либо равным 0,то функция будет убывать.
Если значение x будет меньше либо равным нулю , функция будет возрастать.
Затем рассмотрим поведение функции и ее значения на бесконечной прямой.
Вывод: если аргумент изменяется от \[-\infty\] до 0, тогда значение функции увеличиваются от 0 до 9 . Когда значения аргумента меняются от 0 до \[+\infty\], значения функции будут уменьшаться от 9 до 0.
Пример №3:
Определить область значений \[y=\frac{x}{x-2}\];
По правилам математики, знаменатель не может равняться нулю. Поэтому: \[D(y)=(-\infty ; 2)(+\infty ; 2)\].
Определим множества на первом отрезке. \[(-\infty ; 2)\]. На этом отрезке функция будет убывающей и значение отрицательным:
Функция ассиметрично начнет приближаться к 1, когда аргумент будет изменяться к минус бесконечности.
Определим множества на втором отрезке \[(+\infty ; 2)\].
На этом отрезке функция будет также убывающей:
1 | Найти точное значение | грех(30) | |
2 | Найти точное значение | грех(45) | |
3 | Найти точное значение | грех(30 градусов) | |
4 | Найти точное значение | грех(60 градусов) | |
5 | Найти точное значение | загар (30 градусов) | |
6 | Найти точное значение | угловой синус(-1) | |
7 | Найти точное значение | грех(пи/6) | |
8 | Найти точное значение | cos(pi/4) | |
9 | Найти точное значение | грех(45 градусов) | |
10 | Найти точное значение | грех(пи/3) | |
11 | Найти точное значение | арктан(-1) | |
12 | Найти точное значение | cos(45 градусов) | |
13 | Найти точное значение | cos(30 градусов) | |
14 | Найти точное значение | желтовато-коричневый(60) | |
15 | Найти точное значение | csc(45 градусов) | |
16 | Найти точное значение | загар (60 градусов) | |
17 | Найти точное значение | сек(30 градусов) | |
18 | Найти точное значение | cos(60 градусов) | |
19 | Найти точное значение | cos(150) | |
20 | Найти точное значение | грех(60) | |
21 | Найти точное значение | cos(pi/2) | |
22 | Найти точное значение | загар (45 градусов) | |
23 | Найти точное значение | arctan(- квадратный корень из 3) | |
24 | Найти точное значение | csc(60 градусов) | |
25 | Найти точное значение | сек(45 градусов) | |
26 | Найти точное значение | csc(30 градусов) | |
27 | Найти точное значение | грех(0) | |
28 | Найти точное значение | грех(120) | |
29 | Найти точное значение | соз(90) | |
30 | Преобразовать из радианов в градусы | пи/3 | |
31 | Найти точное значение | желтовато-коричневый(30) | |
32 | 92|||
35 | Преобразовать из радианов в градусы | пи/6 | |
36 | Найти точное значение | детская кроватка(30 градусов) | |
37 | Найти точное значение | арккос(-1) | |
38 | Найти точное значение | арктан(0) | |
39 | Найти точное значение | детская кроватка(60 градусов) | |
40 | Преобразование градусов в радианы | 30 | |
41 | Преобразовать из радианов в градусы | (2 шт. )/3 | |
42 | Найти точное значение | sin((5pi)/3) | |
43 | Найти точное значение | sin((3pi)/4) | |
44 | Найти точное значение | тан(пи/2) | |
45 | Найти точное значение | грех(300) | |
46 | Найти точное значение | соз(30) | |
47 | Найти точное значение | соз(60) | |
48 | Найти точное значение | соз(0) | |
49 | Найти точное значение | соз(135) | |
50 | Найти точное значение | cos((5pi)/3) | |
51 | Найти точное значение | cos(210) | |
52 | Найти точное значение | сек(60 градусов) | |
53 | Найти точное значение | грех(300 градусов) | |
54 | Преобразование градусов в радианы | 135 | |
55 | Преобразование градусов в радианы | 150 | |
56 | Преобразовать из радианов в градусы | (5 дюймов)/6 | |
57 | Преобразовать из радианов в градусы | (5 дюймов)/3 | |
58 | Преобразование градусов в радианы | 89 градусов | |
59 | Преобразование градусов в радианы | 60 | |
60 | Найти точное значение | грех(135 градусов) | |
61 | Найти точное значение | грех(150) | |
62 | Найти точное значение | грех(240 градусов) | |
63 | Найти точное значение | ||
64 | Преобразовать из радианов в градусы | (5 дюймов)/4 | |
65 | Найти точное значение | грех(225) | |
66 | Найти точное значение | грех(240) | |
67 | Найти точное значение | cos(150 градусов) | |
68 | Найти точное значение | желтовато-коричневый(45) | |
69 | Оценить | грех(30 градусов) | |
70 | Найти точное значение | сек(0) | |
71 | Найти точное значение | cos((5pi)/6) | |
72 | Найти точное значение | КСК(30) | |
73 | Найти точное значение | arcsin(( квадратный корень из 2)/2) | |
74 | Найти точное значение | загар((5pi)/3) | |
75 | Найти точное значение | желтовато-коричневый(0) | |
76 | Оценить | грех(60 градусов) | |
77 | Найти точное значение | arctan(-( квадратный корень из 3)/3) | |
78 | Преобразовать из радианов в градусы | (3 пи)/4 | |
79 | Найти точное значение | sin((7pi)/4) | |
80 | Найти точное значение | угловой синус(-1/2) | |
81 | Найти точное значение | sin((4pi)/3) | |
82 | Найти точное значение | КСК(45) | |
83 | Упростить | арктан(квадратный корень из 3) | |
84 | Найти точное значение | грех(135) | |
85 | Найти точное значение | грех(105) | |
86 | Найти точное значение | грех(150 градусов) | |
87 | Найти точное значение | sin((2pi)/3) | |
88 | Найти точное значение | загар((2pi)/3) | |
89 | Преобразовать из радианов в градусы | пи/4 | |
90 | Найти точное значение | грех(пи/2) | |
91 | Найти точное значение | сек(45) | |
92 | Найти точное значение | cos((5pi)/4) | |
93 | Найти точное значение | cos((7pi)/6) | |
94 | Найти точное значение | угловой синус(0) | |
95 | Найти точное значение | грех(120 градусов) | |
96 | Найти точное значение | желтовато-коричневый ((7pi)/6) | |
97 | Найти точное значение | соз(270) | |
98 | Найти точное значение | sin((7pi)/6) | |
99 | Найти точное значение | arcsin(-( квадратный корень из 2)/2) | |
100 | Преобразование градусов в радианы | 88 градусов |
Предварительное вычисление алгебры — Нахождение диапазона и области определения $f(x)=\tan (x)$
Это действительно зависит от того, насколько строгим вы хотите быть. Ваши идеи о том, чтобы показать, что $\tan(x)$ расходится к тому, когда $\cos(x)$ стремится к 0, хороши, но строгое доказательство будет начинаться с определения «стремления к бесконечности» и манипулировать предельными определениями, чтобы показать, что из них следует что $\tan(x)$ действительно стремится к бесконечности согласно определению .
Кроме того, полезно просто рассматривать интервал $(-\frac{\pi}{2},\frac{\pi}{2})$, так как в силу периодичности $\tan(x)$ любой результат на этот интервал будет немедленно перенесен на весь интервал.
После того, как вы доказали, что $\tan(x) \rightarrow \pm\infty$, теперь вы хотите показать, что $\tan(x)$ непрерывна на интервале $(-\frac{\pi}{2}, \frac{\pi}{2})$. Это можно сделать, показав, что и $\sin(x)$, и $\cos(x)$ непрерывны на отрезке (это легко показать из определения), и обратившись к алгебре пределов версии непрерывности: так как оба непрерывны , $\tan(x)=\frac{\sin(x)}{\cos(x)}$ непрерывен.
После того, как вы показали это, вам нужно использовать теорему о промежуточном значении. Поскольку $\tan(x)$ переходит в $\pm\infty$, мы всегда можем найти, для любого $y\in\mathbb{R}$ можно найти $x_1,x_2\in(-\frac{\pi {2},\frac{\pi}{2})$ такие, что $y$ лежит строго между $\tan(x_1)$ и $\tan(x_2)$, и применить IVT к $\tan(x)$ на $[x_1,x_2]$ ( или $[x_2,x_1]$, как это может быть), чтобы найти, что существует $z\in(-\frac{\pi}{2},\frac{\pi}{2})$ такое, что $ \тан(г)=у$.
редактировать: Хорошо, судя по вашему ответу, я очень сомневаюсь, что вы когда-либо сталкивались со строгими определениями пределов и непрерывности функций, поэтому я думаю, что давать вам кучу аргументов $\epsilon — \delta$ было бы неуместно ( попробуйте поискать их в Google, чтобы увидеть, что я имею в виду под определением эпсилон-дельта).
Я бы начал с определения $\sin(x)$ и $\cos(x)$. Я думаю, вы, скорее всего, встречали эти определения в терминах отношения между длинами сторон треугольника, и это определение 9{2k}}{(2k)!}$
- Это определение совпадает с рядом Талиора функции sin и cos, если вам интересно, почему кто-то определяет их таким образом.
Теперь я почти уверен, что вы довольны тем, что я говорю, что такие функции, как $f(x)=x$, непрерывны. Существует теорема о том, что если $f,g$ — непрерывные функции, то
i) $\lambda fg$ и
ii) $\lambda f+\mu g$ также являются непрерывными функциями для любых $\lambda, \mu \in\mathbb{R}$.
Более того, для $g\neq0$ функция
iii) $\lambda \frac{f}{g}$ также непрерывна в той же области.
Надеюсь, это действительно интуитивно понятно, и пока вы можете принять это.
Тогда вы можете видеть, что и $\sin(x)$, и $\cos(x)$, , определенные выше , непрерывны в области $(-\frac{\pi}{2},\frac{ \pi}{2})$ (но для обоснования этого требуется тот факт, что оба приведенных выше бесконечных ряда равномерно сходятся на всем интервале. Но вы можете принять это сейчас, и это должно иметь для вас интуитивный смысл: как вы сказали, оба $\ sin(x)$ и $\cos(x)$ — действительные числа, а их частное должно существовать непрерывно). Например, $x^{2k+1}$ непрерывна для любого k, если i) многократно применяется к $f(x)=x$
Тогда, поскольку $\cos(x)\neq 0$ в данной области, по третьему результату $\frac{\sin(x)}{\cos(x)}=\tan(x)$ непрерывен.