Онлайн калькулятор найти область сходимости ряда: Интервал сходимости степенного ряда

Калькулятор разложения в ряд лорана. Разложение функций в степенные ряды

Изучающим высшую математику должно быть известно, что суммой некоего степенного ряда, принадлежащего интервалу сходимости данного нам ряда, оказывается непрерывное и безграничное число раз дифференцированная функция. Возникает вопрос: можно ли утверждать, что заданная произвольная функция f(х) — это сумма некоего степенного ряда? То есть при каких условиях ф-ия f(х) может быть изображена степенным рядом? Важность такого вопроса состоит в том, что существует возможность приближенно заменить ф-ию f(х) суммой нескольких первых членов степенного ряда, то есть многочленом. Такая замена функции довольно простым выражением — многочленом — является удобной и при решении некоторых задач а именно: при решении интегралов, при вычислении и т. д.

Доказано, что для некой ф-ии f(х), в которой можно вычислить производные до (n+1)-го порядка, включая последний, в окрестности (α — R; x 0 + R) некоторой точки х = α справедливой является формула:

Данная формула носит имя известного ученого Брука Тейлора.

Ряд, который получают из предыдущего, называется ряд Маклорена:

Правило, которое дает возможность произвести разложение в ряд Маклорена:

  1. Определить производные первого, второго, третьего… порядков.
  2. Высчитать, чему равны производные в х=0.
  3. Записать ряд Маклорена для данной функции, после чего определить интервал его сходимости.
  4. Определить интервал (-R;R), где остаточная часть формулы Маклорена

R n (х) -> 0 при n -> бесконечности. В случае если таковой существует, в нем функция f(х) должна совпадать с суммой ряда Маклорена.

Рассмотрим теперь ряды Маклорена для отдельных функций.

1. Итак, первой будет f(x) = е х. Разумеется, что по своим особенностям такая ф-ия имеет производные самых разных порядков, причем f (k) (х) = e x , где k равняется всем Подставим х=0. Получим f (k) (0) = e 0 =1, k=1,2… Исходя из вышесказанного, ряд е х будет выглядеть следующим образом:

2. Ряд Маклорена для функции f(х) = sin х. Сразу же уточним, что ф-ия для всех неизвестных будет иметь производные, к тому же f » (х) = cos х = sin(х+п/2), f «» (х) = -sin х = sin(х+2*п/2)…, f (k) (х) = sin(х+k*п/2), где k равняется любому натуральному числу. То есть, произведя несложные расчеты, можем прийти к выводу, что ряд для f(х) = sin х будет такого вида:

3. Теперь попробуем рассмотреть ф-ию f(х) = cos х. Она для всех неизвестных имеет производные произвольного порядка, причем |f (k) (x)| = |cos(х+k*п/2)|

Итак, мы перечислили важнейшие функции, которые могут быть разложены в ряд Маклорена, однако их дополняют ряды Тейлора для некоторых функций. Сейчас мы перечислим и их. Стоит также отметить, что ряды Тейлора и Маклорена являются важной частью практикума решения рядов в высшей математике. Итак, ряды Тейлора.

1. Первым будет ряд для ф-ии f(х) = ln(1+x). Как и в предыдущих примерах, для данной нам f(х) = ln(1+х) можно сложить ряд, используя общий вид ряда Маклорена. однако для этой функции ряд Маклорена можно получить значительно проще.

Проинтегрировав некий геометрический ряд, мы получим ряд для f(х) = ln(1+х) такого образца:

2. И вторым, который будет заключительным в нашей статье, будет ряд для f(х) = arctg х. Для х, принадлежащего промежутку [-1;1] справедливым является разложение:

На этом все. В данной статье были рассмотрены наиболее употребляемые ряды Тейлора и Маклорена в высшей математике, в частности, в экономических и технических вузах.

Среди функциональных рядов наиболее важное место занимают степенные ряды.

Степенным рядом называют ряд

члены которого – степенные функции, расположенные по возрастающим целым неотрицательным степеням

x , а c 0 , c 1 , c 2 , c n — постоянные величины. Числа c 1 , c 2 , c n — коэффициенты членов ряда, c 0 — свободный член. Члены степенного ряда определены на всей числовой прямой.

Ознакомимся с понятием области сходимости степенного ряда. Это множество значений переменной x , для которых ряд сходится. Степенные ряды имеют довольно простую область сходимости. Для действительных значений переменной x область сходимости состоит либо из одной точки, либо является некоторым интервалом (интервалом сходимости), либо совпадает со всей осью Ox .

При подстановке в степенной ряд значения x = 0 получится числовой ряд

c 0 +0+0+…+0+… ,

который сходится.

Следовательно, при x = 0 сходится любой степенной ряд и, значит,

область его сходимости не может быть пустым множеством. Структура области сходимости всех степенных рядов одинакова. Её можно установить с помощью следующей теоремы.

Теорема 1 (теорема Абеля) . Если степенной ряд сходится при некотором значении x = x 0 , отличном от нуля, то он сходится, и притом абсолютно, при всех значениях |x | x 0 | . Обратите внимание: и отправное значение «икс нулевое» и любое значение «икса», которое сравнивается с отправным, взяты по модулю — без учёта знака.

Следствие. Если степенной ряд расходится при некотором значении x = x 1 , то он расходится и при всех значениях |x | > |x 1 | .

Как мы уже выяснили ранее, любой степенной ряд сходится при значении x = 0. Есть степенные ряды, которые сходятся только при x

= 0 и расходятся при остальных значениях х . Исключая из рассмотрения этот случай, предположим, что степенной ряд сходится при некотором значении x = x 0 , отличном от нуля. Тогда, по теореме Абеля, он сходится во всех точках интервала ]-|x 0 |, |x 0 |[ (интервала, левой и правой границами которого являются значения икса, при котором степенной ряд сходится, взятые соответственно со знаком минус и со знаком плюс), симметричного относительно начала координат.

Если же степенной ряд расходится при некотором значении x = x 1 , то на основании следствия из теоремы Абеля он расходится и во всех точках вне отрезка [-|x 1 |, |x 1 |] . Отсюда следует, что для любого степенного ряда имеется интервал , симметричный относительно начала координат, называемый интервалом сходимости

, в каждой точке которого ряд сходится, на границах может сходиться, а может и расходиться, при чем не обязательно одновременно, а вне отрезка ряд расходится. Число R называется радиусом сходимости степенного ряда.

В частных случаях интервал сходимости степенного ряда может вырождаться в точку (тогда ряд сходится только при x = 0 и считается, что R = 0) или представлять собой всю числовую прямую (тогда ряд сходится во всех точках числовой прямой и считается, что ).

Таким образом, определение области сходимости степенного ряда заключается в определении его радиуса сходимости R и исследовании сходимости ряда на границах интервала сходимости (при ).

Теорема 2. Если все коэффициенты степенного ряда, начиная с некоторого, отличны от нуля, то его радиус сходимости равен пределу при отношения абсолютных величин коэффициентов общего следующего за ним членов ряда, т.

е..

Пример 1. Найти область сходимости степенного ряда

Решение. Здесь

Используя формулу (28), найдём радиус сходимости данного ряда:

Исследуем сходимость ряда на концах интервала сходимости . В примере 13 показано, что данный ряд сходится при x = 1 и расходится при x = -1. Следовательно, областью сходимости служит полуинтервал .

Пример 2. Найти область сходимости степенного ряда

Решение. Коэффициенты ряда положительны, причём

Найдём предел этого отношения, т.е. радиус сходимости степенного ряда:

Исследуем сходимость ряда на концах интервала . Подстановка значений x = -1/5 и x = 1/5 в данный ряд даёт:

Первый из этих рядов сходится (см. пример 5). Но тогда в силу теоремы параграфа «Абсолютная сходимость» сходится и второй ряд, а область его сходимости – отрезок

Пример 3. Найти область сходимости степенного ряда

Решение. Здесь

По формуле (28) находим радиус сходимости ряда:

Исследуем сходимость ряда при значениях . Подставив их в данный ряд, соответственно получим

Оба ряда расходятся, так как не выполняется необходимое условие сходимости (их общие члены не стремятся к нулю при ). Итак, на обоих концах интервала сходимости данный ряд расходится, а область его сходимости – интервал .

Пример 5. Найти область сходимости степенного ряда

Решение. Находимо отношение , где , а :

Согласно формуле (28) радиус сходимости данного ряда

,

то есть ряд сходится только при x = 0 и расходится при остальных значениях х .

Примеры показывают, что на концах интервала сходимости ряды ведут себя различно. В примере 1 на одном конце интервала сходимости ряд сходится, а на другом – расходится, в примере 2 – на обоих концах сходится, в примере 3 – на обоих концах расходится.

Формула радиуса сходимости степенного ряда получена в предположении, что все коэффициенты членов ряда, начиная с некоторого, отличны от нуля. Поэтому применение формулы (28) допустимо только в этих случаях. Если это условие нарушается, то радиус сходимости степенного ряда следует искать с помощью признака Даламбера , или же, сделав замену переменной, преобразованием ряда к виду, в котором указанное условие выполняется.

Пример 6. Найти интервал сходимости степенного ряда

Решение. Данный ряд не содержит членов с нечётными степенями х . Поэтому преобразуем ряд, полагая . Тогда получим ряд

для нахождения радиуса сходимости которого можно применить формулу (28). Так как , а , то радиус сходимости этого ряда

Из равенства получаем , следовательно, данный ряд сходится на интервале .

Сумма степенного ряда. Дифференцирование и интегрирование степенных рядов

Пусть для степенного ряда

радиус сходимости R > 0, т.е. этот ряд сходится на интервале .

Тогда каждому значению х из интервала сходимости соответствует некоторая сумма ряда. Следовательно, сумма степенного ряда есть функция от х на интервале сходимости. Обозначая её через f (x ), можем записать равенство

понимая его в том смысле, что сумма ряда в каждой точке х из интервала сходимости равна значению функции f (x ) в этой точке. В этом же смысле будем говорить, что степенной ряд (29) сходится к функции f (x ) на интервале сходимости.

Вне интервала сходимости равенство (30) не имеет смысла.

Пример 7. Найти сумму сумму степенного ряда

Решение. Это геометрический ряд, у которого a = 1, а q = x . Следовательно, его сумма есть функция . Ряд сходится, если , а — его интервал сходимости. Поэтому равенство

справедливо лишь для значений , хотя функция определена для всех значений х , кроме х = 1.

Можно доказать, что сумма степенного ряда f (x ) непрерывна и дифференцируема на любом отрезке внутри интервала сходимости, в частности в любой точке интервала сходимости ряда.

Приведем теоремы о почленном дифференцировании и интегрировании степенных рядов.

Теорема 1. Степенной ряд (30) в интервале его сходимости можно почленно дифференцировать неограниченное число раз, причём получающиеся при этом степенные ряды имеют тот же радиус сходимости, что исходный ряд, а суммы их соответственно равны .

Теорема 2. Степенной ряд (30) можно неограниченное число раз почленно интегрировать в пределах от 0 до х , если , причём получающиеся при этом степенные ряды имеют тот же радиус сходимости, что и исходный ряд, а суммы их соответственно равны

Разложение функций в степенные ряды

Пусть дана функция f (x ), которую требуется разложить в степенной ряд, т.е. представить в виде (30):

Задача состоит в определении коэффициентов ряда (30). Для этого, дифференцируя равенство (30) почленно, последовательно найдём:

……………………………………………….. (31)

Полагая в равенствах (30) и (31) х = 0, находим

Подставляя найденные выражения в равенство (30), получим

(32)

Найдём разложение в ряд Маклорена некоторых элементарных функций.

Пример 8. Разложить в ряд Маклорена функцию

Решение. Производные этой функции совпадают с самой функцией:

Поэтому при х = 0 имеем

Подставляя эти значения в формулу (32), получим искомое разложение:

(33)

Этот ряд сходится на всей числовой прямой (его радиус сходимости ).

Если функция f(x) имеет на некотором интервале, содержащем точку а , производные всех порядков, то к ней может быть применена формула Тейлора:

где r n – так называемый остаточный член или остаток ряда, его можно оценить с помощью формулы Лагранжа:

, где число x заключено между х и а .

Если для некоторого значения х r n ®0 при n ®¥, то в пределе формула Тейлора превращается для этого значения в сходящийся ряд Тейлора :

Таким образом, функция f(x) может быть разложена в ряд Тейлора в рассматриваемой точке х , если:

1) она имеет производные всех порядков;

2) построенный ряд сходится в этой точке.

При а =0 получаем ряд, называемый рядом Маклорена :

Пример 1 f(x)= 2 x .

Решение . Найдем значения функции и ее производных при х =0

f(x) = 2 x , f(0) = 2 0 =1;

f¢(x) = 2 x ln2, f¢(0) = 2 0 ln2= ln2;

f¢¢(x) = 2 x ln 2 2, f¢¢(0) = 2 0 ln 2 2= ln 2 2;

f (n) (x) = 2 x ln n 2, f (n) (0) = 2 0 ln n 2= ln n 2.

Подставляя полученные значения производных в формулу ряда Тейлора, получим:

Радиус сходимости этого ряда равен бесконечности, поэтому данное разложение справедливо для -¥x

Пример 2 х +4) для функции f(x)= e x .

Решение . Находим производные функции e x и их значения в точке х =-4.

f(x) = е x , f(-4) = е -4 ;

f¢(x) = е x , f¢(-4) = е -4 ;

f¢¢(x) = е x , f¢¢(-4) = е -4 ;

f (n) (x) = е x , f (n) ( -4) = е -4 .

Следовательно, искомый ряд Тейлора функции имеет вид:

Данное разложение также справедливо для -¥x

Пример 3 . Разложить функцию f(x) =lnx в ряд по степеням (х- 1),

(т.е. в ряд Тейлора в окрестности точки х =1).

Решение . Находим производные данной функции.

Подставляя эти значения в формулу, получим искомый ряд Тейлора:

С помощью признака Даламбера можно убедиться, что ряд сходится при

½х-

Ряд сходится, если ½х- 1½x х =2 получаем знакочередующийся ряд, удовлетворяющий условиям признака Лейбница. При х =0 функция не определена. Таким образом, областью сходимости ряда Тейлора является полуоткрытый промежуток (0;2].

Приведем полученные подобным образом разложения в ряд Маклорена (т.е. в окрестности точки х =0) для некоторых элементарных функций:

(2) ,

(3) ,

(последнее разложение называют биномиальным рядом)

Пример 4 . Разложить в степенной ряд функцию

Решение . В разложении (1) заменяем х на –х 2 , получаем:

Пример 5 . Разложить в ряд Маклорена функцию

Решение . Имеем

Пользуясь формулой (4), можем записать:

подставляя вместо х в формулу –х , получим:

Отсюда находим:

Раскрывая скобки, переставляя члены ряда и делая приведение подобных слагаемых, получим

Этот ряд сходится в интервале

(-1;1), так как он получен из двух рядов, каждый из которых сходится в этом интервале.

Замечание .

Формулами (1)-(5) можно пользоваться и для разложения соответствующих функций в ряд Тейлора, т.е. для разложения функций по целым положительным степеням (х-а ). Для этого над заданной функцией необходимо произвести такие тождественные преобразования, чтобы получить одну из функций (1)-(5), в которой вместо х стоит k(х-а ) m , где k – постоянное число, m – целое положительное число. Часто при этом удобно сделать замену переменной t =х-а и раскладывать полученную функцию относительно t в ряд Маклорена.

Этот метод иллюстрирует теорему о единственности разложения функции в степенной ряд. Сущность этой теоремы состоит в том, что в окрестности одной и той же точки не может быть получено два различных степенных ряда, которые бы сходились к одной и той же функции, каким бы способом ее разложение ни производилось.

Пример 6 . Разложить функцию в ряд Тейлора в окрестности точки х =3.

Решение . Эту задачу можно решить, как и раньше, с помощью определения ряда Тейлора, для чего нужно найти производные функции и их значения при х =3. Однако проще будет воспользоваться имеющимся разложением (5):

Полученный ряд сходится при или –3x- 3x

Пример 7 . Написать ряд Тейлора по степеням (х -1) функции .

Решение .

Ряд сходится при , или -2 x £ 5.

Числовые ряды, ряды фурье и преобразование Фурье

Задание 1

Исследовать на сходимость числовые ряды.

А)

Б)

Решение

А) Исследуем ряд на абсолютную сходимость. Рассмотри ряд из модулей:

При n→∞: →0, поэтому применим формулу при , тогда получим ряд , а этот ряд сходится как сумма геометрической прогрессии.

— следовательно, на основании второго (предельного) признака сравнения заключаем, что исходный ряд сходится абсолютно.

Б) Воспользуемся интегральным признаком Коши:

Следовательно, исходный ряд расходится, так как расходится соответствующий несобственный интеграл.

Задание 2

Исследовать знакочередующийся ряд На абсолютную и условную сходимость.

Решение

1) Исследуем ряд на абсолютную сходимость:

;

Используем 2й признак сравнения:

Так как ряд расходится как обобщённый гармонический. Следовательно, данный ряд не сходится абсолютно.

Исследуем ряд на условную сходимость.

Так как ряд сходится по признаку Лейбница (,) , то сходится условно по 2му признаку сравнения и ряд

Следовательно, данный ряд сходится условно.

Задание 3

Найти интервал сходимости степенного ряда. Исследовать поведение ряда на концах интервала сходимости.

Решение

Найдём интервал сходимости ряда ,

Тогда или , .

Ряд сходится абсолютно на интервале (-8;-2)

Исследуем поведение ряда на концах интервала сходимости:

При x=-8 исходный ряд примет вид , данный ряд является знакопеременным, исследуем его на абсолютную сходимость:

Воспользуемся вторым признаком сравнения: , , . Следовательно и сходятся или расходятся одновременно, а так как ряд расходится (Так как ряд Дирихле

Расходится при р<1), то ряд не сходится абсолютно.

Данный ряд сходится условно по признаку Лейбница: И .

При х=-2 исходный ряд примет вид . Как мы убедились выше этот ряд расходится.

Значит степенной ряд имеет интервал абсолютной сходимости: . В т. х=-8 ряд сходится условно.

Задание 4

Разложить функцию в ряд Тейлора по степеням . Указать область сходимости полученного ряда. Найти , если Варианта.

А)

Б)

Решение

А) Преобразуем исходное выражение:

Тогда используем стандартное разложение:

, тогда

Используем стандартное разложение:

, тогда

Подставим:

Б) Преобразуем исходную функцию к виду:

Воспользуемся стандартным разложением:

Имеем окончательно:

Задание 5

Используя признак Вейерштрасса, доказать равномерную сходимость функционального ряда на указанном промежутке.

Решение

Исходя из неравенств

на

Максимум числителя при n=2, то есть , 3/2<2

Минимум знаменателя на при ,

Имеем: — мажорирующий ряд.

Если мажорирующий ряд сходится, то функциональный ряд сходится равномерно.

Ряд сходится как сумма геометрической прогрессии.

Следовательно, мажорирующий ряд сходится.

А значит сходится и функциональный ряд на промежутке .

Задание 6

А) Разложить функцию , заданную па полупериоде , в ряд Фурье по косинусам. Построить графики второй, третьей, десятой частичных сумм. Написать равенство Парсеваля для по­лученного ряда. Сумму какого числового ряда можно отыскать с помощью полученного равенства?

Б) Разложить функцию , заданную на полупериоде , в ряд Фурье по синусам. Построить графики второй, третьей, де­сятой частичных сумм. Указать тип сходимости полученного ряда.

В) Разложить функцию в ряд Фурье, продолжая ее па полупериод функцией, равной 0. Построить графики второй, четвертой, десятой частичных сумм. Указать тип сходимости полу­ченного ряда.

Решение

а) Доопределим функцию на промежутке чётным образом и продолжим её на всю числовую ось как периодическую с периодом, равным 2. — чётная функция. Тригонометрический ряд Фурье содержит только косинусы. Вычислим коэффициенты Фурье этой функции.

, следовательно

,

Так как рассматриваемая функция непрерывна всюду, то сумма её ряда Фурье равна данной функции при всех х и .

При Имеем и

Равенство Парсеваля:

, так как , то

Б) Доопределим функцию на промежутке нечётным образом, а значение в т : и продолжим её на всю числовую ось как периодическую с периодом, равным 2. Согласно теореме Дирихле тригонометрический ряд Фурье такой функции будет сходиться к этой функции во всех точках непрерывности. Вычислим коэффициенты Фурье этой функции.

Так как рассматриваемая функция непрерывна всюду, то сумма её ряда Фурье равна данной функции при всех х и .

Так как функция кусочно-дифференцируема на то ряд Фурье сходится в среднем на

В) Разложим в ряд Фурье функцию

Т=2

Вычислим коэффициенты Фурье этой функции

, следовательно

,

Ряд Фурье имеет вид:

Ряд Фурье сходится в среднем (аналогично пункту б)

Задание 7

Методом Фурье найти решение уравнения колебания струны длины , закреплённой на концах и удовлетворяющей следующим

Начальным условиям: ,

,

Решение

Решение ищем в виде ряда

, где l=2 по условию.

Так как , а По условию, то решение имеет вид:

, где

Окончательно:

Задание 8

Найти приближённое решение задачи Коши ; ;

Решение задачи Коши ищется в виде степенного ряда , коэффициенты которого вычисляются последовательно. Ограничи­ваясь суммой , содержащей N + 1 член рада, получаем приближенное решение. Оценка погрешности этого решения в ра­боте облегчается тем, что получающиеся степенные ряды знако­чередующиеся. Требуется, чтобы эта погрешность не превосходила 0,001 при .

Решение

Ищем решение в виде: , тогда

,

,

Используя начальные условия, найдём значения двух коэффициентов ; .

Подставим ряды в заданное уравнение и приводим подобные члены. Получаем:

Приравнивая все коэффициенты ряда, стоящего в первой части, к нулю (только при таком условии ряд будет тождественно равен нулю), получим систему:

,, , , тогда из которой определяем следующие значения всех остальных коэффициенов

, ,,…,,…

Таким образом искомый частный интеграл данного уравнения есть степенной ряд

, который сходится при любом значении x (согласно признаку Даламбера )

Оценим погрешность. Она не должна превосходить 0,001 при

Так как , то достаточно взять первые 2 члена ряда

Задание 9

Приближенно вычислить определенный интеграл

Для вычисления интеграла функцию f(x) разлагают на отрезке интегрирования в степенной ряд, который интегрируют почленно. Ограничившись несколькими первыми слагаемыми полученного та­ким образом числового ряда, имеем приближенное значение инте­грала. В работе погрешность приближения не должна превышать 0.0001, и оценка этой погрешности упрощается по тем же причинам, что и в задаче 8.

Решение

Воспользуемся разложением функции в ряд Маклорена

, при

Тогда

Имеем

Получен знакочередующийся ряд, слагаемое меньше чем 0.0001. Отбрасывая это слагаемое, получим приближённое значение интеграла с заданной точностью

Задание 10

А) Найти преобразование Фурье (спектральную плотность S(u)) следующих функций (сигналов).

Б) Продолжить периодически функцию (сигнал) с интервала [0,Т] (или [-Т/2,Т/2], см. рисунок) на всю числовую прямую, разложить в ряд Фурье. Построить графики второй и третьей частичных сумм.

Решение

а) Найдём функцию, по рисунку. Прямая проходит через 2 точки: И . Запишем уравнение искомой прямой: . Имеем:

Следовательно, исходный сигнал описывается следующей формулой:

Спектральную плотность S(u) найдем с помощью прямого преобразования Фурье:

Первый интеграл берем по частям: U=t dU=dt dV=e-jutdt V=-(e-jut)/(ju),

Б) Продолжим функцию нечётным образом, тогда

Ряд Фурье имеет вид:

Графики частичных сумм:

< Предыдущая   Следующая >

Калькуляторы численных методов


Главная > Калькуляторы численных методов

Уровень образования Средняя школа, гимназия и колледж
Назначение программы Предоставляйте пошаговые решения ваших задач с помощью онлайн-калькуляторов (онлайн-решателей)
Источник проблемы Ваш учебник и т. д.

1. Найдите корень уравнения с помощью
1. Метод деления пополам
2. Метод ложного позиционирования
3. Итерационный метод с фиксированной точкой
4. Метод Ньютона Рафсона
5. Метод секущих
6. Метод Мюллера
7. Метод Галлея 9полиномиальное уравнение (й) степени)
11. Метод Бэрстоу
2. Найдите корни нелинейных уравнений, используя
Модифицированный метод Ньютона-Рафсона (Многомерный метод Ньютона-Рафсона)
3. Числовая интерполяция с использованием
0. Наиболее подходящая формула (от 2 до 10)
1. Формула прямой разности Ньютона
2. Формула обратной разности Ньютона
3. Формула интерполяции разделенной разности Ньютона
4. Интерполяционная формула Лагранжа
5. Обратная интерполяционная формула Лагранжа
6. Формула Гаусса вперед
7. Обратная формула Гаусса
8. Формула Стирлинга
9. Формула Бесселя
10. Формула Эверетта
11. Формула Эрмита
12. Отсутствующие члены в интерполяционной таблице


4.1 Численное дифференцирование с использованием
1. Наиболее подходящая формула (от 2 до 7)
2. Формула прямой разности Ньютона
3. Формула обратной разности Ньютона
4. Формула разделенной разности Ньютона
5. Формула Лагранжа
6. Формула Стирлинга
7. Формула Бесселя

4.2 Численное дифференцирование первого и второго порядка с использованием
1. 2 точки Вперед, Назад, Формула центральной разности
2. 3 точки Вперед, Назад, Формула центральной разности
3. 4 точки Вперед, Назад, Формула центральной разности
4. 5 баллов вперед, формула центральной разницы

4.3 Экстраполяционная формула Ричардсона для дифференцирования


5. Численное интегрирование с использованием
1. Трапециевидная линейка
2. Правило 1/3 Симпсона
3. Правило 3/8 Симпсона
4. Правило Буля
5. Правило Уэдла
6.1 Решить числовое дифференциальное уравнение (1-го порядка) с помощью
1. Метод Эйлера
2. Метод Рунге-Кутта 2
3. Метод Рунге-Кутта 3
4. Метод Рунге-Кутта 4
5. Усовершенствованный метод Эйлера
6. Модифицированный метод Эйлера
7. Метод ряда Тейлора
8. Метод предиктора Адамса Башфорта
9. Метод корректора предиктора Симпсона Милна

6. 2 Решите числовое дифференциальное уравнение (2-го порядка), используя
1. Метод Эйлера
2. Метод Рунге-Кутта 2
3. Метод Рунге-Кутта 3
4. Метод Рунге-Кутта 4


7. Интерполяция кубическим сплайном


2. Численное дифференцирование 92)` для х = 2,2.
х 1,0 1,2 1,4 1,6 1,8 2,0 ​​ 2,2
у 2,7183 3.3201 4.0552 4,9530 6.0496 7.3891 9.0250
3. Численная интеграция
Численное интегрирование с использованием правил трапеций, Симпсона 1/3, Симпсона 3/8

1. Из следующей таблицы найдите площадь, ограниченную кривой и осью x из от x = 7,47 до x = 7,52 с использованием правил трапеций, Симплсона 1/3, Симплсона 3/8.

х 7,47 7,48 7.49 7,50 7.51 7,52
ф(х) 1,93 1,92+y)`, y(0) = 1, с шагом 0,1
5. Найти y(0,2) для `y’=-y`, y(0) = 1, с шагом 0,1
4. Численная интерполяция
Числовая интерполяция с использованием прямого и обратного метода

1. Население города при десятичной переписи было таким, как указано ниже. Расчет населения на 1895 год.

Год 1891 1901 1911 1921 1931
Население
(в тысячах)
46 66 81 93 101

2. Пусть y(0) = 1, y(1) = 0, y(2) = 1 и y(3) = 10. Найдите y(4), используя формулу прямой разности Ньютона.

3. В приведенной ниже таблице значения y являются последовательными членами ряда, в котором число 21,6 является 6-м членом. Найдите 1-й и 10-й члены ряда.

Х 3 4 5 6 7 8 9
Д 2,7 6,4 12,5 21,6 34,3 51,2 72,9

4. Население города при десятичной переписи было таким, как указано ниже. Расчет населения на 1895 год.

Х 0,10 0,15 0,20 0,25 0,30
желто-коричневый(X) 0,1003 0,1511 0,2027 0,2553 0,3073
Найти (1) тангенс 0,12    (2) тангенс 0,26

5. Некоторыми значениями x и log10x являются (300,2,4771), (304,2,4829), (305,2,4843) и (307,2,4871). Найдите лог10 301.

6. Найдите интерполяционный многочлен Лагранжа степени 2, аппроксимирующий функцию y = ln x, определенную следующей таблицей значений. Отсюда находим пер. 2.7

Х 2 2,5 3
пер(Х) 0,69315 0,91629 1.09861

7. Используя следующую таблицу, найдите f(x) как многочлен от x
х -1 0 3 6 7
ф(х) 3 -6 39 822 1611



Поделитесь этим решением или страницей с друзьями.

Copyright © 2023. Все права защищены. ,

калькулятор дивергенции или конвергенции — Google

AlleBilderVideosBücherMapsNewsShopping

suchoptionen

Series Calculator — Symbolab

www. symbolab.com › Step-by-Step › Calculus

Бесплатный калькулятор сходимости рядов — проверка бесконечного ряда для сходимость шаг за шагом.

Калькулятор сходимости серии

· Абсолютная сходимость · Power Series

Калькулятор сходимости рядов

mathforyou.net › онлайн › исчисление › сходимости

Онлайн калькулятор проверки сходимости различных рядов.

Калькулятор теста сходимости + онлайн-решатель с бесплатными шагами

www. storyofmathematics.com › math-calculators › c… Калькулятор тестов вергенции — это онлайн-инструмент предназначен для определения того, является ли ряд сходящимся или расходящимся. Тест конвергенции очень особенный в этом …

конвергентный ряд — Wolfram|Alpha

www.wolframalpha.com › input

Вычисляйте ответы, используя революционную технологию и базу знаний Wolfram, на которые полагаются миллионы студентов и профессионалов. Для математики, естественных наук, питания, …

Калькулятор серий и сумм с шагами — eMathHelp

www.emathhelp.net › калькуляторы › исчисление-2 › серия…

Этот калькулятор попытается найти бесконечность сумма арифметического, геометрического, степенного и биномиального рядов, а также частичная сумма с указанием шагов (если.

Калькулятор неправильных интегралов — сходящиеся/расходящиеся интегралы

calculate-online.net › калькулятор неправильных интегралов

Но если пределы не являются числом, то данный интеграл расходится. Теперь обсудим случай, когда наш несобственный интеграл имеет два бесконечных предела. В …

Калькулятор сходимости рядов — Обмен файлами — MATLAB Central

fr.mathworks.com › matlabcentral › 72141-series-co…

Этот скрипт находит сходимость или расхождение бесконечных рядов, вычисляет сумма, обеспечивает график частичной суммы и вычисляет радиус и интервал …

Серия тестов для калькулятора сходимости или расхождения

ugq.spremberger-kulturbund.de › blog › test-series-…

Калькулятор сходимости или расхождения с шагами Бесплатный калькулятор теста дивергенции серии — Проверка …

Divergence Divergence Online Calculator App

1T9NP.BEZECZNEZBIORY.EU ›Convergence -Divergen …

Неточный калькулятор — Convergent/Divergent. Поскольку значение интеграла не является конечным числом, то интеграл расходится.

Калькулятор сходимости или расхождения последовательности

yifp.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

Карта сайта