Системы неравенств с двумя переменными
Решением неравенства с двумя переменными называется пара значений переменных, обращающие данное неравенство в верное числовое неравенство.
Определение:
Решением системы неравенств называются пара значений переменных, обращающая каждое неравенство системы в верное числовое неравенство.
Проверим, являются ли решениями системы пары чисел. Система состоит из двух неравенств, подставим значения в систему:
Получаем, что пара чисел системы а) и г) являются решениями, а пара чисел системы б) и в) — не являются решениями.
Понятно, что если каждое неравенство может иметь множество решений, то и общих решений может найтись большое количество.
Изобразим на координатной плоскости множество решений системы неравенств:
Найдём множество решений первого неравенства:
Изобразим график:
Решением будет множество точек расположенных ниже прямой.
Найдём множество решений второго неравенства:
Изобразим график уравнения:
Решением будет множество точек расположенных ниже прямой.
Изобразим множества решений неравенств в одной координатной плоскости:
Видим их общие решения, которые являются решением системы неравенств.
Изобразим на координатной плоскости множество решений системы неравенств:
Изобразим множество решений первого неравенства:
Изобразим график уравнения:
Решением неравенства будет множество точек находящихся ниже прямой.
Перейдём ко второму неравенству системы:
Изобразим график:
Решением неравенства будет множество внутренних точек круга.
Пересечение полученных множеств и является решением данной системы неравенств.
Изобразим на координатной плоскости множество решений системы неравенств:
Решением первого неравенства будет множество внутренних точек круга:
Решением второго неравенства будет множество, состоящее из точек, находящихся вне круга.
Пересечение полученных множеств и является решением данной системы:
Изобразим на координатной плоскости множество решений системы неравенств:
Изобразим множество решений ещё одной системы неравенств.
Решением первого неравенства будет множество точек находящихся между ветвями гиперболы. Решением второго неравенства будет множество внутренних точек круга.
Фигура, полученная в результате пересечения двух решений, представляет собой множество решений данной системы.
33. Неравенства с двумя переменными и их системы
Неравенством с двумя переменными х и у Называется неравенство вида
(или знак ),
Где – некоторое выражение с данными переменными.
Решением неравенства с двумя переменными называют упорядоченную пару чисел при которой это неравенство обращается в верное числовое неравенство.
Решить неравенство – значит найти множество всех его решений. Решением неравенства с двумя переменными является некоторое множество точек координатной плоскости.
Основным методом решений данных неравенств является Графический. Он заключается в том, что строят линии границ (если неравенство строгое, линии строят пунктиром). Уравнение границы получают, если в заданном неравенстве заменяют знак неравенства на знак равенства. Все линии в совокупности разбивают координатную плоскость на части. Искомое множество точек, которое соответствует заданному неравенству или системе неравенств, можно определить, если взять контрольную точку внутри каждой области.
Системы, содержащие неравенства с двумя переменными, вида
Называются Системами неравенств с двумя переменными. Решением данных систем является пересечение решений всех неравенств, входящих в систему.
Совокупность неравенств с двумя переменными имеет вид
Решением совокупности является объединение всех решений неравенств.
Пример 1. Решить систему
Решение. Построим в системе Оху соответствующие линии (рис. 4.24):
Рис. 4.24
Уравнение задает окружность с центром в точке О¢(0; 1) и R = 2.
Уравнение определяет параболу с вершиной в точке О(0; 0).
Решение системы – пересечение двух указанных областей (на рис. 4.24 показано наложением двух штриховок).
< Предыдущая | Следующая > |
---|
matica.org.ua
19.2. Решение систем mлинейных неравенств с двумя переменными
Дана система т линейных неравенств с двумя переменными
Знаки некоторых или всех неравенств могут быть ≥.
Рассмотрим первое неравенство в системе координат Х1ОХ2. Построим прямую
которая является граничной прямой.
Эта прямая делит плоскость на две полуплоскости 1 и 2 (рис. 19.4).
Полуплоскость 1 содержит начало координат, полуплоскость 2 не содержит начала координат.
Для определения, по какую сторону от граничной прямой расположена заданная полуплоскость, надо взять произвольную точку на плоскости (лучше начало координат) и подставить координаты этой точки в неравенство. Если неравенство справедливо, то полуплоскость обращена в сторону этой точки, если не справедливо, то в противоположную от точки сторону.
Направление полуплоскости на рисунках показываем стрелкой.
Определение 15. Решением каждого неравенства системы является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее.
Определение 16. Пересечение полуплоскостей, каждая из которых определяется соответствующим неравенством системы, называется областью решения системы (ОР).
Определение 17. Область решения системы, удовлетворяющая условиям неотрицательности (xj ≥ 0, j = ), называется областью неотрицательных, или допустимых, решений (ОДР).
Если система неравенств совместна, то ОР и ОДР могут быть многогранником, неограниченной многогранной областью или одной точкой.
Если система неравенств несовместна, то ОР и ОДР — пустое множество.
Пример 1. Найти ОР и ОДР системы неравенств и определить координаты угловых точек ОДР
Решение. Найдем ОР первого неравенства: х1 + 3x2 ≥ 3. Построим граничную прямую х1 +3x2 – 3 = 0 (рис. 19.5). Подставим координаты точки (0,0) в неравенство: 1∙0 + 3∙0 > 3; так как координаты точки (0,0) не удовлетворяют ему, то решением неравенства (19.1) является полуплоскость, не содержащая точку (0,0).
Аналогично найдем решения остальных неравенств системы. Получим, что ОР и ОДР системы неравенств является выпуклый многогранник ABCD.
Найдем угловые точки многогранника. Точку А определим как точку пересечения прямых
Решая систему, получим А(3/7, 6/7).
Точку В найдем как точку пересечения прямых
Из системы получим B(5/3, 10/3). Аналогично найдем координаты точек С и D: С(11/4; 9/14), D(3/10; 21/10).
Пример 2. Найти ОР и ОДР системы неравенств
Решение. Построим прямые и определим решения неравенств (19.5)-(19.7). ОР и ОДР являются неограниченные многогранные области ACFM и ABDEKM соответственно (рис. 19.6).
Пример 3. Найти ОР и ОДР системы неравенств
Решение. Найдем решения неравенств (19.8)-(19.10) (рис. 19.7). ОР представляет неограниченную многогранную область ABC; ОДР — точка В.
Пример 4. Найти OP и ОДР системы неравенств
Решение. Построив прямые, найдем решения неравенств системы. ОР и ОДР несовместны (рис. 19.8).
Упражнения
Найти ОР и ОДР систем неравенств
Глава 20. Графический метод
20.1. Постановка задачи
Наиболее простым и наглядным методом линейного программирования является графический метод. Он применяется для решения задач ЛП с двумя переменными, заданными в неканонической форме, и многими переменными в канонической форме при условии, что они содержат не более двух свободных переменных.
С геометрической точки зрения в задаче линейного программирования ищется такая угловая точка или набор точек из допустимого множества решений, на котором достигается самая верхняя (нижняя) линия уровня, расположенная дальше (ближе) остальных в направлении наискорейшего роста.
Для нахождения экстремального значения целевой функции при графическом решении задач ЛП используют вектор L() на плоскости Х1ОХ2, который обозначим . Этот вектор показывает направление наискорейшего изменения целевой функции, он равен
где е1 и е2 — единичные векторы по осям OX1 и ОX2 соответственно; таким образом, = (∂L/∂х1, ∂L/∂х2). Координатами вектора являются коэффициенты целевой функции L().
studfiles.net
19.2. Решение систем M линейных неравенств с двумя переменными
Дана система Т линейных неравенств с двумя переменными
Знаки некоторых или всех неравенств могут быть ≥.
Рассмотрим первое неравенство в системе координат Х1ОХ2. Построим прямую
Которая является Граничной прямой.
Эта прямая делит плоскость на две полуплоскости 1 и 2 (рис. 19.4).
Полуплоскость 1 содержит начало координат, полуплоскость 2 не содержит начала координат.
Для определения, по какую сторону от граничной прямой расположена заданная полуплоскость, надо взять произвольную точку на плоскости (лучше начало координат) и подставить координаты этой точки в неравенство. Если неравенство справедливо, то полуплоскость обращена в сторону этой точки, если не справедливо, то в противоположную от точки сторону.
Направление полуплоскости на рисунках показываем стрелкой.
Определение 15. Решением каждого неравенства системы является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее.
Определение 16. Пересечение полуплоскостей, каждая из которых определяется соответствующим неравенством системы, называется Областью решения системы (ОР).
Определение 17. Область решения системы, удовлетворяющая условиям неотрицательности (Xj ≥ 0, J = ), называется Областью неотрицательных, или допустимых, решений (ОДР).
Если система неравенств совместна, то ОР и ОДР могут быть многогранником, неограниченной многогранной областью или одной точкой.
Если система неравенств несовместна, то ОР и ОДР — пустое множество.
Пример 1. Найти ОР и ОДР системы неравенств и определить координаты угловых точек ОДР
Решение. Найдем ОР первого неравенства: Х1 + 3X2 ≥ 3. Построим граничную прямую Х1 +3X2 – 3 = 0 (рис. 19.5). Подставим координаты точки (0,0) в неравенство: 1∙0 + 3∙0 > 3; так как координаты точки (0,0) не удовлетворяют ему, то решением неравенства (19.1) является полуплоскость, не содержащая точку (0,0).
Аналогично найдем решения остальных неравенств системы. Получим, что ОР и ОДР системы неравенств является выпуклый многогранник ABCD.
Найдем угловые точки многогранника. Точку А определим как точку пересечения прямых
Решая систему, получим А(3/7, 6/7).
Точку В найдем как точку пересечения прямых
Из системы получим B(5/3, 10/3). Аналогично найдем координаты точек С и D: С(11/4; 9/14), D(3/10; 21/10).
Пример 2. Найти ОР и ОДР системы неравенств
Решение. Построим прямые и определим решения неравенств (19.5)-(19.7). ОР и ОДР являются неограниченные многогранные области ACFM и ABDEKM соответственно (рис. 19.6).
Пример 3. Найти ОР и ОДР системы неравенств
Решение. Найдем решения неравенств (19.8)-(19.10) (рис. 19.7). ОР представляет неограниченную многогранную область ABC; ОДР — точка В.
Пример 4. Найти OP и ОДР системы неравенств
Решение. Построив прямые, найдем решения неравенств системы. ОР и ОДР несовместны (рис. 19.8).
< Предыдущая | Следующая > |
---|
matica.org.ua