Онлайн вычислить определитель по правилу треугольника: Правило треугольников онлайн

Содержание

Вычисление определителей

Пусть имеется квадратная матрица A размером n x n.
Определение. Определителем называется алгебраическая сумма всевозможных произведений элементов, взятых по одному из каждого столбца и каждой строки матрицы A. Если в каждом таком произведении (члене определителя) множители расположены в порядке следования столбцов (т.е. вторые индексы элементов aij в произведении расположены в порядке возрастания), то со знаком (+) берутся те произведения, у которых перестановка первых индексов чётная, а со знаком (-) – те, ­ у которых она нечетная. Здесь [i1, i2, …, in ] — число инверсий в перестановке индексов i1, i2, …, in.

Методы нахождения определителей

  1. Определитель матрицы разложением по строкам и столбцам через миноры.
  2. Определитель матрицы методом треугольников
  3. Определитель матрицы методом понижения порядка
  4. Определитель методом приведения к треугольному виду (методом Гаусса)
  5. Определитель матрицы методом декомпозиции

Свойство определителей

  1. При транспонировании матрицы её определитель не меняется.
  2. Если поменять местами две строки или два столбца определителя, то определитель изменит знак, а по абсолютной величине не изменится.
  3. Пусть C = AB где A и B квадратные матрицы. Тогда detC = detA ∙ detB .
  4. Определитель с двумя одинаковыми строками или с двумя одинаковыми столбцами равен 0. Если все элементы некоторой строки или столбца равны нулю, то и сам определитель равен нулю.
  5. Определитель с двумя пропорциональными строками или столбцами равен 0.
  6. Определитель треугольной матрицы равен произведению диагональных элементов. Определитель диагональной матрицы равен произведению элементов стоящих на главной диагонали.
  7. Если все элементы строки (столбца) умножить на одно и то же число, то определитель умножится на это число.
  8. Если каждый элемент некоторой строки (столбца) определителя представлен в виде суммы двух слагаемых, то определитель равен сумме двух определителей, у которых все строки (столбцы) кроме данной, прежние, а в данной строке (столбце) в первом определителе стоят первые, а во втором — вторые слагаемые.
  9. Теорема Якоби: Если к элементам некоторого столбца определителя прибавить соответствующие элементы другого столбца, умноженные на произвольный множитель λ, то величина определителя не изменится.
Таким образом, определитель матрицы остается без изменения, если:
  • транспонировать матрицу;
  • прибавить к какой-либо строке другую строку, умноженную на любое число.

Задание 1. Вычислить определитель, разлагая его по строке или столбцу.

Решение в MS Word. Решение в MS Excel.
Пример 2 в MS Word. Решение в xls.

Перейти к онлайн решению

Задание 2. Вычислить определитель двумя способами: а) по правилу «треугольников»; б) разложением по строке.

Решение.
а) Слагаемые, входящие в со знаком «минус», строятся таким же образом относительно побочной диагонали.

221
-104
-220
=
= 2•0•0 — 2•4•2 — (-1)•2•0 + (-1)•1•2 + (-2)•2•4 — (-2)•1•0 = -34
б) Запишем матрицу в виде:
A =
221
-104
-220
Главный определитель:
∆ = 2 • (0 • 0-2 • 4)-(-1 • (2 • 0-2 • 1))+(-2 • (2 • 4-0 • 1)) = -34

Задание 3. Укажите, чему равен определитель квадратной матрицы A четвертого порядка, если ее ранг r(A)=1.
Ответ: det(A) = 0.

det a

det a

Вы искали det a? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и det a матрицы, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «det a».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает.

Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как det a,det a матрицы,det a матрицы что это,det в матрице это,det матрицы,det что такое,det это,вычисление детерминанта матрицы,вычисление определителей,вычисление определителей матрицы,вычисление определителя,вычисления определителя матрицы,вычислите определители,вычислите определитель,вычислите определитель матрицы,вычислить определители,вычислить определители матриц,вычислить определитель,вычислить определитель матрица,вычислить определитель матрицы,вычислить определитель матрицы а,вычислить определитель матрицы онлайн по правилу треугольника,вычислить определитель матрицы по правилу треугольника онлайн,вычислить определитель методом треугольника,вычислить определитель по правилу треугольника,вычислить определитель по правилу треугольника онлайн,детерминант как найти,детерминант матрицы,детерминант матрицы как найти,детерминант матрицы это,как вычислить определитель,как вычислить определитель матрицы,как вычислить определитель матрицы 2 на 2,как найти детерминант матрицы,как найти определитель в матрице,как найти определитель матрицы 2 на 2,как обозначается определитель матрицы,как определить определитель матрицы,как посчитать определитель,как решить определитель,как считать определители,как считать определитель,как считать определитель матрицы,математика определитель,математика определитель матрицы,матрица вычислить определитель,матрица и определители,матрица и определитель,матрица метод треугольника,матрица метод треугольников,матрица найти определитель,матрица определители,матрица определитель,матрица определитель вычислить,матрица определитель которой равен нулю называется,матрица правила треугольника,матрица правило треугольника,матрица свойства определителей,матрицы det,матрицы det a,матрицы вычисление определителей,матрицы вычисления определителя,матрицы и определители,матрицы метод треугольника,матрицы метод треугольников,матрицы определение определителя,матрицы определители,матрицы определитель определение,матрицы определитель свойства,матрицы определить,матрицы решение методом треугольника,матрицы свойства определителей,метод треугольника матрица,метод треугольников матрица,найти детерминант матрицы,найти определитель,найти определитель матрица,найти определитель матрицы,нахождение определителя,нахождение определителя матрицы,нахождение определителя матрицы методом треугольника,нахождения определителя матрицы,определение матрицы определителя,определение определитель,определение определитель матрицы,определение определителя,определение определителя матрицы,определители как считать,определители матриц,определители матрица,определители матрицы,определитель,определитель 2 на 2,определитель в математике,определитель в матрице,определитель и матрица,определитель как посчитать,определитель математика,определитель матрица,определитель матрицы,определитель матрицы 2 на 2,определитель матрицы 3х3 правило треугольника,определитель матрицы всегда целое число,определитель матрицы детерминант матрицы,определитель матрицы как искать,определитель матрицы как считать,определитель матрицы математика,определитель матрицы методом треугольника,определитель матрицы не всегда можно вычислить,определитель матрицы определение,определитель матрицы прямоугольной,определитель матрицы свойства,определитель матрицы формула,определитель матрицы что это,определитель матрицы это,определитель матрицы это что,определитель методом треугольника,определитель равен,определитель треугольной матрицы,определить матрицу,определить матрицы,подсчет определителя,поиск определителя матрицы,правила треугольника матрица,правило треугольников в матрице,правило треугольников матрица,правило треугольников матрицы,примеры определитель матрицы,расчет определителя,расчет определителя матрицы,решение матриц методом треугольника,решение матрицы методом треугольника,решение определителей,решение определителя,решить определитель,свойства определителей матриц,свойства определителей матрица,свойства определителей матрицы,свойства определителей матрицы с примерами,свойства определитель матрицы,свойства определителя матрицы,свойство матрицы определителя,свойство определителя матрицы,способы нахождения определителя матрицы,формула детерминант,формула лейбница для матриц,формула определителя,что такое det,что такое det в матрице,что такое в матрице det,что такое определитель матрицы.
На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и det a. Просто введите задачу в окошко и нажмите «решить» здесь (например, det a матрицы что это).

Решить задачу det a вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

Онлайн-калькулятор для расчета определителя 3×3

Онлайн-калькулятор для расчета определителя 3×3

Онлайн-калькулятор вычисляет значение определителя матрицы 3×3 по правилу Сарруса и с разложением Лапласа в строке или столбце.

Определитель 3х3

det A=|a11a12a13a21a22a23a31a32a33|

Введите коэффициенты

а 11 =

а 12 =

а 13 =

а 21

=

а 22 =

а 23 =

а 31 =

а 32 =

а 33 =

Расчет значения определителя

Расчет по правилу Сарруса

Для матрицы 3×3 определитель можно вычислить по правилу Сарруса. Правило Сарруса использует диагонали для расчета. Калькулятор показывает этапы расчета. Для иллюстрации элементы главных диагоналей окрашены в зеленый цвет, а элементы второстепенных диагоналей — в синий. Серым цветом первые два столбца повторяются для облегчения чтения диагоналей.

Вычисление с использованием разложения Лапласа

Общий метод вычисления определителя дается теоремой разложения Лапласа. Теорему можно использовать из любой строки или столбца. Калькулятор показывает расширение для выбранной строки или столбца. Вы можете выбрать строку или столбец, которые будут использоваться для расширения.

Расчет с помощью алгоритма Гаусса

Примечание:

Если ведущие коэффициенты равны нулю, то столбцы или строки меняются местами соответственно, чтобы было возможно деление на старший коэффициент. Значение определителя правильное, если после преобразований нижняя треугольная матрица равна нулю, а все элементы главной диагонали равны 1.

Объяснение методов

Определитель матрицы 3×3 по правилу Сарруса

Определитель вычисляется по правилу Сарруса следующим образом. Схематически первые два столбца определителя повторяются, так что большая и малая диагонали могут быть виртуально соединены линейной линией. Затем делают произведения главных диагональных элементов и добавляют эти произведения. С второстепенными диагоналями вы должны сделать то же самое. Разница между ними дает определитель матрицы.

Теорема Лапласа о расширении

Теорема Лапласа о развитии предлагает метод вычисления определителя, в котором определитель развивается после строки или столбца. Размерность уменьшается и может быть уменьшена далее шаг за шагом до скаляра.

det A=∑i=1n-1i+j⋅aijdetAij ( Расширение по j-му столбцу )

det A=∑j=1n-1i+j⋅aijdetAij ( Разложение по i-й строке )

где A ij , подматрица A, которая возникает, когда i-я строка и j- й столбец удален.

Пример разложения Лапласа по первой строке матрицы 3×3.

det A=|a11a12a13a21a22a23a31a32a33|

Первый элемент задается коэффициентом a 11 и субдетерминантом, состоящим из элементов с зеленым фоном.

|a11a12a13a21a22a23a31a32a33|=>a11|a22a23a32a33|

Второй элемент определяется коэффициентом a 12 и субдетерминантом, состоящим из элементов с зеленым фоном.

|a11a12a13a21a22a23a31a32a33|=>a12|a21a23a31a33|

Третий элемент определяется коэффициентом a 13 и субдетерминантом, состоящим из элементов с зеленым фоном.

|a11a12a13a21a22a23a31a32a33|=>a13|a21a22a31a32|

С тремя элементами определитель может быть записан как сумма определителей 2×2.

det A=|a11a12a13a21a22a23a31a32a33|=a11|a22a23a32a33|-a12|a21a23a31a33|+a13|a21a22a31a32|

Важно учитывать, что знаки элементов чередуются следующим образом.

|+-+-+-+-+|

Метод Гаусса

В методе Гаусса определитель преобразуется таким образом, что элементы нижней матрицы треугольника становятся равными нулю. Для этого вы используете правила коэффициента строки и добавление строк. Добавление строк не меняет значения определителя. Факторы ряда должны рассматриваться как множители перед определителем. Если определитель треугольный и элементы главной диагонали равны единице, то множитель перед определителем соответствует значению самого определителя.

det A=|a11a12…a1naj1aj2…ajn⋮an1an2…ann|=λ|1a12…a1n01…ajn⋮00…1|=λdet A’=λ

Онлайн-калькулятор для расчета определителя 5×5

Онлайн-калькулятор для определителя 5×5

Онлайн-калькулятор вычисляет значение определителя матрицы 5х5 с разложением Лапласа по строке или столбцу и алгоритмом Гаусса.

Определитель 5х5

det A=|a11a12a13a14a15a21a22a23a24a25a31a32a33a34a35a41a42a43a44a45a51a52a53a54a55|

Введите коэффициенты

а 11 =

а 12 =

а 13 =

а 14 =

а 15 =

а 21 =

а 22 =

а 23 =

а 24 =

а 25 =

а 31 =

а 32 =

а 33 =

а 34 =

а 35 =

а 41 =

а 42 =

а 43 =

а 44 =

а 45 =

а 51 =

а 52 =

а 53 =

а 54 =

а 55 =

Вычисление значения определителя с помощью расширения Лапласа

Вы можете выбрать строку или столбец, которые будут использоваться для расширения.

Расчет по алгоритму Гаусса

Примечание:

Если ведущие коэффициенты равны нулю, то столбцы или строки должны быть заменены местами соответственно, чтобы стало возможным деление на старший коэффициент. Значение определителя правильное, если после преобразований нижняя треугольная матрица равна нулю, а все элементы главной диагонали равны 1.

Объяснение методов

Теорема Лапласа о расширении

Теорема Лапласа о развитии предлагает метод вычисления определителя, в котором определитель развивается после строки или столбца. Размерность уменьшается и может быть уменьшена далее шаг за шагом до скаляра.

det A=∑i=1n-1i+j⋅aijdetAij ( Расширение по j-му столбцу )

det A=∑j=1n-1i+j⋅aijdetAij ( Разложение по i-й строке )

где A ij , подматрица A, которая возникает, когда i-я строка и j- й столбец удален.

Пример разложения Лапласа по первой строке матрицы 3×3.

det A=|a11a12a13a21a22a23a31a32a33|

Первый элемент определяется коэффициентом a 11 и субдетерминант, состоящий из элементов с зеленым фоном.

|a11a12a13a21a22a23a31a32a33|=>a11|a22a23a32a33|

Второй элемент определяется коэффициентом a 12 и субдетерминантом, состоящим из элементов с зеленым фоном.

|a11a12a13a21a22a23a31a32a33|=>a12|a21a23a31a33|

Третий элемент определяется коэффициентом a 13 и субдетерминантом, состоящим из элементов с зеленым фоном.

|a11a12a13a21a22a23a31a32a33|=>a13|a21a22a31a32|

С тремя элементами определитель может быть записан как сумма определителей 2×2.

det A=|a11a12a13a21a22a23a31a32a33|=a11|a22a23a32a33|-a12|a21a23a31a33|+a13|a21a22a31a32|

Важно учитывать, что знаки элементов чередуются следующим образом.

|+-+-+-+-+|

Метод Гаусса

В методе Гаусса определитель преобразуется таким образом, что элементы нижней матрицы треугольника становятся равными нулю. Для этого вы используете правила коэффициента строки и добавление строк. Добавление строк не меняет значения определителя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *