Примеры решения задач с векторами: Примеры решения задач с векторами

Примеры решения задач с векторами

Векторы используются во многих науках, таких как: математика, физика, геометрия и многие другие прикладные науки. На практике они позволяют не выполнять ненужных операций и сокращают время на выполнение задач. Поэтому для будущих специалистов очень важно понять теорию векторов и научиться решать с ними проблемы.

Прежде чем изучать примеры решения проблем, советуем вам изучить теоретический материал по векторам, прочитать все определения и свойства. Список тем находится в правом меню.

Векторные координаты

пример

Запись \(\ \overline{a}=(5 ;-2) \) означает, что вектор \(\ \overline{a} \) имеет следующие координаты: абсцисса равна 5, ордината равна -2.

пример

  • Задание.

    Векторы и дан \(\ \overline{a}=(-3 ; 5) \) и \(\ \overline{b}=(0 ;-1) \) . Найти векторные координаты \(\ \overline{c}=\overline{a}+\overline{b} \)

  • Решение.

    \(\ \overline{c}=\overline{a}+\overline{b}=(-3 ; 5)+(0 ;-1)=(-3+0 ; 5+(-1))=(-3 ; 4) \)

    Пример

  • Задание. {\circ} \)

    Разложение вектора по ортам координатных осей

    пример

  • Задание.

    Зная разложение вектора \(\ \overline{a} \) на базисной системе векторов: \(\ \overline{a}=3 \overline{i}-\overline{k} \)запишите координаты этого вектора в пространстве.

  • Решение.

    Коэффициенты ортов являются координатами вектора, поэтому из того, что \(\ \overline{a}=3 \overline{i}-0 \cdot \overline{j}-\overline{k} \) мы получаем \(\ \overline{a}=(3 ; 0 ;-1) \)

    Пример

  • Задание.

    Вектор \(\ \overline{a} \) определяется его координатами: \(\ \overline{a}=(2 ;-1 ; 5) \) запишите разложение этого вектора по осям осей.

  • Решение.

    Координаты вектора представляют собой коэффициенты по осям координатных осей при разложении вектора в основную систему векторов, поэтому требуется разложение:

    \(\ \overline{a}=2 \overline{i}-\overline{j}+5 \overline{k} \)

    Скалярное произведение векторов

    Пример

  • Задание.

    Рассчитайте скалярное произведение векторов \(\ \overline{a} \) и \(\ \overline{b} \) , если их длины равны 2 и 3 соответственно, а угол между ними равен 60 °. {\circ}=6 \cdot \frac{1}{2}=3 \)

    Пример

  • Задание.

    Найти скалярное произведение векторов \(\ \overline{a}=(3 ;-1) \) и \(\ \overline{b}=(-2 ; 7) \)

  • Решение.

    Скалярное произведение

    \(\ \overline{a} \overline{b}=3 \cdot(-2)+(-1) \cdot 7=-6-7=-13 \) Векторное произведение векторов пример

  • Задание.

    Найти векторное произведение векторов \(\ \overline{a}=(6 ; 7 ; 10) \) и \(\ \overline{b}=(8 ; 5 ; 9) \)

  • Решение.

    Составляем определитель и вычисляем его:

    \(\ \overline{a} \times \overline{b}=\left| \begin{array}{ccc}{\overline{i}} & {\overline{j}} & {\overline{k}} \\ {6} & {7} & {10} \\ {8} & {5} & {9}\end{array}\right|=\overline{i} \left| \begin{array}{cc}{7} & {10} \\ {5} & {9}\end{array}\right|-\overline{j} \left| \begin{array}{cc}{6} & {10} \\ {8} & {9}\end{array}\right|+\overline{k} \left| \begin{array}{cc}{6} & {7} \\ {8} & {5}\end{array}\right|= \)

    \(\ =\overline{i}(7 \cdot 9-5 \cdot 10)-\overline{j}(6 \cdot 9-8 \cdot 10)+\overline{k}(6 \cdot 5-8 \cdot 7)= \)

    \(\ =13 \overline{i}+26 \overline{j}-26 \overline{k}=(13 ; 26 ;-26) \)

    Смешанное произведение векторов

    Пример

  • Задание.

    Рассчитать объем пирамиды, построенной на векторах \(\ \overline{a}=(2 ; 3 ; 5), \overline{b}=(1 ; 4 ; 4), c=(3 ; 5 ; 7) \)

  • Решение.

    Мы находим смешанное произведение указанных векторов, для этого составляем определитель, в строки которого записываем координаты векторов \(\ \overline{a}, \overline{b} \) и \(\ \overline{c} \):

    \(\ (\overline{a}, \overline{b}, \overline{c})=\left| \begin{array}{ccc}{2} & {3} & {5} \\ {1} & {4} & {4} \\ {3} & {5} & {7}\end{array}\right|=2 \cdot 4 \cdot 7+1 \cdot 5 \cdot 5+3 \cdot 4 \cdot 3- \)

    \(\ -3 \cdot 4 \cdot 5-5 \cdot 4 \cdot 2-1 \cdot 3 \cdot 7=-4 \)

    \(\ V_{\mathrm{пир}}=\frac{1}{6}|(\overline{a}, \overline{b}, \overline{c})|=\frac{1}{6} \cdot 4=\frac{2}{3}(\mathrm{куб} . \mathrm{ед.}) \)

  • Физика

    166

    Реклама и PR

    31

    Педагогика

    80

    Психология

    72

    Социология

    7

    Астрономия

    9

    Биология

    30

    Культурология

    86

    Экология

    8

    Право и юриспруденция

    36

    Политология

    13

    Экономика

    49

    Финансы

    9

    История

    16

    Философия

    8

    Информатика

    20

    Право

    35

    Информационные технологии

    6

    Экономическая теория

    7

    Менеджент

    719

    Математика

    338

    Химия

    20

    Микро- и макроэкономика

    1

    Медицина

    5

    Государственное и муниципальное управление

    2

    География

    542

    Информационная безопасность

    2

    Аудит

    11

    Безопасность жизнедеятельности

    3

    Архитектура и строительство

    1

    Банковское дело

    1

    Рынок ценных бумаг

    6

    Менеджмент организации

    2

    Маркетинг

    238

    Кредит

    3

    Инвестиции

    2

    Журналистика

    1

    Конфликтология

    15

    Этика

    9

    Формулы дифференцирования Действия над векторами и свойства векторов Смешанное произведение векторов Векторное произведение векторов Скалярное произведение векторов

    Узнать цену работы

    Узнай цену

    своей работы

    Имя

    Выбрать тип работыЧасть дипломаДипломнаяКурсоваяКонтрольнаяРешение задачРефератНаучно — исследовательскаяОтчет по практикеОтветы на билетыТест/экзамен onlineМонографияЭссеДокладКомпьютерный набор текстаКомпьютерный чертежРецензияПереводРепетиторБизнес-планКонспектыПроверка качестваЭкзамен на сайтеАспирантский рефератМагистерскаяНаучная статьяНаучный трудТехническая редакция текстаЧертеж от рукиДиаграммы, таблицыПрезентация к защитеТезисный планРечь к дипломуДоработка заказа клиентаОтзыв на дипломПубликация в ВАКПубликация в ScopusДиплом MBAПовышение оригинальностиКопирайтингДругое

    Принимаю  Политику  конфиденциальности

    Подпишись на рассылку, чтобы не пропустить информацию об акциях

    Примеры решения задач с векторами

    Примеры решения задач с векторами

    Вектора применяются во многих науках, таких как: математика, физика, геометрия и многих других прикладных науках. На практике, они позволяют не делать лишних операций и сократить время выполнения задач. Поэтому, будущим специалистам очень важно понять теорию векторов и научиться решать задачи с ними.

    Перед изучением примеров решения задач советуем изучить теоретический материал по векторам, прочитать все определения и свойства. Список тем находится в правом меню.

    Координаты вектора

    Теоретический материал по теме — координаты вектора.

    Пример

    Запись означает, что вектор имеет следующие координаты: абсцисса равна 5, ордината равна -2.

    Пример

    Задание. Заданы векторы и . Найти координаты вектора

    Решение.

    Пример

    Задание. Вектор . Найти координаты вектора

    Решение.

    Пример

    Задание. Найти координаты вектора , если

    Решение.

    Длина (модуль) вектора

    Теоретический материал по теме — длина вектора.

    Пример

    Задание. Найти длину вектора

    Решение. Используя формулу, получаем:

    Пример

    Задание. Найти длину вектора

    Решение. Используя формулу, получаем:

    Угол между векторами

    Теоретический материал по теме — угол между векторами.

    Пример

    Задание. Известно, что скалярное произведение двух векторов , а их длины . Найти угол между векторами и .

    Решение. Косинус искомого угла:

    Пример

    Задание. Найти угол между векторами и

    Решение. Косинус искомого угла

    Пример

    Задание. Найти угол между векторами и

    Решение. Косинус искомого угла:

    Разложение вектора по ортам координатных осей

    Теоретический материал по теме — разложение вектора по ортам.

    Пример

    Задание. Зная разложения вектора по базисной системе векторов: , записать координаты этого вектора в пространстве.

    Решение. Коэффициенты при ортах и есть координатами вектора, поэтому из того, что , получаем, что

    Пример

    Задание. Вектор задан своими координатами: . Записать разложение данного вектора по ортам осей координат.

    Решение. Координаты вектора — это коэффициенты при ортах координатных осей в разложении вектора по базисной системе векторов, поэтому искомое разложение:

    Скалярное произведение векторов

    Теоретический материал по теме — скалярное произведение векторов.

    Пример

    Задание. Вычислить скалярное произведение векторов и , если их длины соответственно равны 2 и 3, а угол между ними 60°.

    Решение. Так как из условия , , а , то

    Пример

    Задание. Найти скалярное произведение векторов и

    Решение. Скалярное произведение

    Векторное произведение векторов

    Теоретический материал по теме — векторное произведение векторов.

    Пример

    Задание. Найти векторное произведение векторов и

    Решение. Составляем определитель и вычисляем его:

    Смешанное произведение векторов

    Теоретический материал по теме — смешанное произведение векторов.

    Пример

    Задание. Вычислить объем пирамиды, построенной на векторах , ,

    Решение. Найдем смешанное произведение заданных векторов, для это составим определитель, по строкам которого запишем координаты векторов , и :

    Решение задач с векторами

    Горячая математика

    Мы можем использовать векторы для решения многих задач, связанных с физическими величинами, такими как скорость, скорость, вес, работа и так далее.

    Скорость:

    Скорость движущегося объекта моделируется вектором, направление которого является направлением движения, а величина — скоростью.

    Пример :

    Мяч брошен с начальной скоростью 70 футов в секунду, под углом 35 ° с горизонталью. Найдите вертикальную и горизонтальную составляющие скорости.

    Позволять в представить скорость и использовать данную информацию, чтобы написать в в форме единичного вектора:

    в «=» 70 ( потому что ( 35 ° ) ) я + 70 ( грех ( 35 ° ) ) Дж

    Упрощая скаляры, мы получаем:

    в ≈ 57,34 я + 40. 15 Дж

    Поскольку скаляры являются горизонтальной и вертикальной компонентами в ,

    Следовательно, горизонтальная составляющая 57,34 футов в секунду, а вертикальная составляющая 40.15 футов в секунду.

    Сила:

    Сила также представлена ​​вектором. Если на объект действуют несколько сил, результирующая сила, испытываемая объектом, представляет собой векторную сумму этих сил.

    Пример :

    Две силы Ф 1 и Ф 2 с величинами 20 и 30 фунт соответственно действуют на объект в точке п как показано. Найдите результирующие силы, действующие на п .

    Сначала мы пишем Ф 1 и Ф 2 в виде компонентов:

    в ≈ 57,34 я + 40. 15 Дж

    Упрощая скаляры, мы получаем:

    Ф 1 «=» ( 20 потому что ( 45 ° ) ) я + ( 20 грех ( 45 ° ) ) Дж «=» 20 ( 2 2 ) я + 20 ( 2 2 ) Дж «=» 10 2 я + 10 2 Дж Ф 2 «=» ( 30 потому что ( 150 ° ) ) я + ( 30 грех ( 150 ° ) ) Дж «=» 30 ( − 3 2 ) я + 30 ( 1 2 ) Дж «=» − 15 3 я + 15 Дж

    Итак, результирующая сила Ф является

    Ф «=» Ф 1 + Ф 2 «=» ( 10 2 я + 10 2 Дж ) + ( − 15 3 я + 15 Дж ) «=» ( 10 2 − 15 3 ) я + ( 10 2 + 15 ) Дж ≈ − 12 я + 29Дж

    Работа:

    Работа Вт сделано силой Ф при движении по вектору Д является Вт «=» Ф ⋅ Д .

    Пример :

    Сила задается вектором Ф «=» 〈 2 , 3 〉 и перемещает объект из точки ( 1 , 3 ) к точке ( 5 , 9) . Найдите проделанную работу.

    Сначала мы находим Displacement.

    Вектор смещения

    Д «=» 〈 5 − 1 , 9 − 3 〉 «=» 〈 4 , 6 〉 .

    По формуле совершенная работа равна

    Вт «=» Ф ⋅ Д «=» 〈 2 , 3 〉 ⋅ 〈 4 , 6 〉 «=» 26

    Если единицей силы являются фунты, а расстояние измеряется в футах, то выполненная работа равна 26 фут-фунт

    Решения и примеры для физики

    Векторы могут использоваться для решения множества задач, которые включают в себя такие величины, как ускорение, импульс, сила, скорость и перемещение.

    В чем разница между скалярами и векторами?

    Скаляр — это величина, которая имеет нет направление . Это просто шкала таких величин, как килограммы или сантиметры. Например, ваш вес и рост выражаются через количество и единицу измерения, но не имеют направления. Примерами скалярных величин являются скорость, масса, температура, энергия, длина и расстояние.

    Вектор , , с другой стороны, имеет величину и направление . Импульс объекта, например, равен его массе на ускорение и имеет направление, которое делает его векторной единицей. Примерами векторных величин являются скорость, ускорение, импульс, смещение и сила, включая вес.

    Разложение векторов на компоненты

    Разложение векторов на компоненты помогает нам, когда мы имеем дело с сложными векторными задачами . Чтобы разложить вектор на его компоненты, нам нужно измерить горизонтальную и вертикальную длину вектора и укажите эти длины как две отдельные величины. Давайте посмотрим на пример ниже, чтобы лучше понять концепцию.

    Найдите компоненты вектора, показанного ниже.

    Чтобы найти компоненты этого вектора, нам нужно начать с определения его горизонтальной и вертикальной длины.

    Как видите, длина по горизонтали равна 12, а по вертикали — 10. Когда мы разлагаем вектор на его компоненты, мы всегда получаем одно значение по горизонтали и одно по вертикали. Длины, которые мы измерили, являются величинами компонентов вектора.

    Как видите, компонентами этого вектора являются два вектора, горизонтальный и вертикальный, с величинами 12 и 10.

    Можем ли мы разложить вектор на его компоненты, если мы не можем измерить его горизонтальная и вертикальная длина? Да, можем, но давайте посмотрим, как это делается.

    Рис. 3. Вектор v и его компоненты.

    Если мы знаем угол градиента вектора, мы можем определить величину его горизонтальной и вертикальной составляющих. Для приведенного выше вектора v угол градиента равен a. Затем мы можем определить соотношение между углом и величиной компонентов с помощью тригонометрии.

    Определим величину горизонтальной составляющей v x . Мы знаем, что:

    Если мы решим уравнение для v x , мы получим:

    Теперь определим величину вертикальной составляющей v y . Опять же, мы знаем, что:

    Если мы решим уравнение для v y , мы получим:

    Сложение векторов вместе

    Сложение двух векторов вместе называется нахождением их равнодействующей. Есть два способа сложения векторов. В первом задействовано с использованием масштабных диаграмм , а второй использует тригонометрию .

    Определение результирующих векторов с помощью масштабных диаграмм

    Чтобы найти результирующие векторы с помощью масштабных диаграмм, нам нужно нарисовать масштабную диаграмму векторов, которые мы хотим сложить вместе, соединяя векторы ‘ кончик к хвосту ‘.

    Следующий пример иллюстрирует эту концепцию.

    Человек сначала проходит на северо-восток 11,40 м, затем продолжает идти на восток 6,6 м и, наконец, проходит на северо-запад 21,26 м, прежде чем остановиться. Определить полное перемещение человека.

    Чтобы определить полное перемещение человека, нам нужно указать длины, которые он прошел, в виде векторов, каждый из которых имеет правильное направление и величину. Назовем его первое движение вектором А, второе — вектором В, а третье — вектором С.

    Рис. Источник: Огулкан Тезкан, StudySmarter.

    Если вы измерите линейкой общее перемещение, то увидите, что оно составляет 23,094 метра в северном направлении, хотя человек прошел 390,26 метра. Давайте докажем это математически, разложив векторы на их компоненты. В этом конкретном примере нам нужны только вертикальные компоненты, поскольку общее смещение является только вертикальным.

    Рис. 5. Компоненты вектора. Источник: Огулкан Тезкан, StudySmarter.

    Чтобы определить A y , , мы применяем уравнение для разложения векторов на их компоненты:

    Нам не нужно определять компоненты B, так как этот пример не включает вертикальную компоненту . Для определения C y , мы применяем то же уравнение.

    Полное перемещение равно сумме A y и C y , которое можно рассчитать следующим образом: 0005

    Если два вектора перпендикулярны друг другу, мы можем найти равнодействующую с помощью тригонометрии. Давайте снова посмотрим на пример.

    Двое друзей толкают коробку. Две силы, которые они прикладывают, перпендикулярны друг другу. Один из друзей прикладывает силу в 3 ньютона (F 1 ) в восточном направлении, а другой прикладывает силу в 4 ньютона (F 2 ) в северном направлении. Определите результирующий вектор полной силы, действующей на коробку.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *