ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ косинус 2 Ρ…: производная cos^2 x Π½Π°ΠΉΡ‚ΠΈ

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ x 7 x 2. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ косинуса: (cos x)β€²

ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΈ Π²Ρ‹Π²ΠΎΠ΄ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ синуса — sin(x). ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ вычислСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΡ‚ sin 2x, синуса Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅ ΠΈ ΠΊΡƒΠ±Π΅. Π’Ρ‹Π²ΠΎΠ΄ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ синуса n-Π³ΠΎ порядка.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x ΠΎΡ‚ синуса x Ρ€Π°Π²Π½Π° косинусу x:
(sin x)β€² = cos x .

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ

Для Π²Ρ‹Π²ΠΎΠ΄Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ синуса, ΠΌΡ‹ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:
.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ этот ΠΏΡ€Π΅Π΄Π΅Π», Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ свСсти Π΅Π³ΠΎ ΠΊ извСстным Π·Π°ΠΊΠΎΠ½Π°ΠΌ, свойствам ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌ. Для этого Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ свойства.
1) Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Π·Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π°:
(1) ;
2) ΠΠ΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ косинус:
(2) ;
3) ВригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ . Нам понадобится ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°:
(3) ;
4) Бвойство ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ²:
Если ΠΈ , Ρ‚ΠΎ
(4) .

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ эти ΠΏΡ€Π°Π²ΠΈΠ»Π° ΠΊ Π½Π°ΡˆΠ΅ΠΌΡƒ ΠΏΡ€Π΅Π΄Π΅Π»Ρƒ. Π‘Π½Π°Ρ‡Π°Π»Π° ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ алгСбраичСскоС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅

.
Для этого ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ
(3) .
Π’ нашСм случаС
; . Π’ΠΎΠ³Π΄Π°
;
;
;
.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ сдСлаСм подстановку . ΠŸΡ€ΠΈ , . ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ Π·Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€Π΅Π΄Π΅Π» (1):
.

Π‘Π΄Π΅Π»Π°Π΅ΠΌ Ρ‚Π°ΠΊΡƒΡŽ ΠΆΠ΅ подстановку ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ свойство нСпрСрывности (2):
.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹, вычислСнныС Π²Ρ‹ΡˆΠ΅, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚, Ρ‚ΠΎ примСняСм свойство (4):

.

Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ синуса Π΄ΠΎΠΊΠ°Π·Π°Π½Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Рассмотрим простыС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, содСрТащих синус. ΠœΡ‹ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΎΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:
y = sin 2x; y = sin 2 x ΠΈ y = sin 3 x .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ sin 2x .

РСшСниС

Π‘Π½Π°Ρ‡Π°Π»Π° Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ самой простой части:
(2x)β€² = 2(x)β€² = 2 Β· 1 = 2.
ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ .
.
Π—Π΄Π΅ΡΡŒ .

ΠžΡ‚Π²Π΅Ρ‚

(sin 2x)β€² = 2 cos 2x.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ синуса Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅:
y = sin 2 x .

РСшСниС

ΠŸΠ΅Ρ€Π΅ΠΏΠΈΡˆΠ΅ΠΌ ΠΈΡΡ…ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π² Π±ΠΎΠ»Π΅Π΅ понятном Π²ΠΈΠ΄Π΅:
.
НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ самой простой части:
.
ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

.
Π—Π΄Π΅ΡΡŒ .

МоТно ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΎΠ΄Π½Ρƒ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ» Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π’ΠΎΠ³Π΄Π°
.

ΠžΡ‚Π²Π΅Ρ‚

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3

Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ синуса Π² ΠΊΡƒΠ±Π΅:
y = sin 3 x .

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π²Ρ‹ΡΡˆΠΈΡ… порядков

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ sin x ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· синус ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:
.

НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ :

.
Π—Π΄Π΅ΡΡŒ .

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ sin x ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ Π΅Π³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Π½Π° . Π’ΠΎΠ³Π΄Π° производная n-Π³ΠΎ порядка ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:
(5) .

Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ это, примСняя ΠΌΠ΅Ρ‚ΠΎΠ΄ матСматичСской ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ.

ΠœΡ‹ ΡƒΠΆΠ΅ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ , Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° (5) справСдлива.

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° (5) справСдлива ΠΏΡ€ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ .

Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΠ· этого слСдуСт, Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° (5) выполняСтся для .

Π’Ρ‹ΠΏΠΈΡˆΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (5) ΠΏΡ€ΠΈ :
.
Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌ это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, примСняя ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ диффСрСнцирования слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

.
Π—Π΄Π΅ΡΡŒ .
Π˜Ρ‚Π°ΠΊ, ΠΌΡ‹ нашли:
.
Если ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ , Ρ‚ΠΎ эта Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ Π²ΠΈΠ΄ (5).

Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π΄ΠΎΠΊΠ°Π·Π°Π½Π°.

Поиск ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ матСматичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ называСтся Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ матСматичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ – частая Π·Π°Π΄Π°Ρ‡Π°, Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‰Π°ΡΡΡ Π² Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅. Π“ΠΎΠ²ΠΎΡ€ΠΈΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎ-Ρ€Π°Π·Π½ΠΎΠΌΡƒ: Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ, Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ, ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, Π²Π·ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ, Π½ΠΎ всС это ΠΎΠ΄Π½ΠΈ ΠΈ Ρ‚Π΅ ΠΆΠ΅ понятия. Π‘Ρ‹Π²Π°ΡŽΡ‚, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ, ΠΈ слоТныС задания, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ всСго лишь ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π·Π°Π΄Π°Ρ‡ΠΈ. На нашСм сСрвисС сайт Ρƒ вас Π΅ΡΡ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°ΠΊ ΠΎΡ‚ элСмСнтарных, Ρ‚Π°ΠΊ ΠΈ ΠΎΡ‚ слоТных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… аналитичСского Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΠ½Π»Π°ΠΉΠ½ Π½Π° нашСм сСрвисС ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π½Π°ΠΉΠ΄Π΅Π½Π° практичСски ΠΎΡ‚ любой матСматичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π΄Π°ΠΆΠ΅ самой слоТной, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Π²Π°ΠΌ Π½Π΅ смогли Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ сСрвисы.

А ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ всСгда Π²Π΅Ρ€Π½Ρ‹ΠΉ Π½Π° 100% ΠΈ ΠΈΡΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ошибки. ΠŸΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ, ΠΊΠ°ΠΊ происходит процСсс нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π° нашСм сайтС ΠΌΠΎΠΆΠ½ΠΎ Π½Π° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ…. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ находятся справа ΠΎΡ‚ ΠΊΠ½ΠΎΠΏΠΊΠΈ «РСшСниС». Π’Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ Π»ΡŽΠ±ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΈΠ· списка ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ², ΠΎΠ½Π° автоматичСски подставится Π² ΠΏΠΎΠ»Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° Π·Π°Ρ‚Π΅ΠΌ Π½Π°ΠΆΠΌΠΈΡ‚Π΅ ΠΊΠ½ΠΎΠΏΠΊΡƒ «РСшСниС». Π’Ρ‹ ΡƒΠ²ΠΈΠ΄ΠΈΡ‚Π΅ пошаговоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, ваша производная Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°ΠΉΠ΄Π΅Π½Π° Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ. ΠŸΡ€Π΅ΠΈΠΌΡƒΡ‰Π΅ΡΡ‚Π²Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΠ½Π»Π°ΠΉΠ½. Π”Π°ΠΆΠ΅ Ссли Π²Ρ‹ Π·Π½Π°Π΅Ρ‚Π΅, ΠΊΠ°ΠΊ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅, этот процСсс ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅ΠΌΠ°Π»ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ сил. БСрвис сайт ΠΏΡ€ΠΈΠ·Π²Π°Π½ ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒ вас ΠΎΡ‚ ΡƒΡ‚ΠΎΠΌΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π΄ΠΎΠ»Π³ΠΈΡ… вычислСний, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΊ Ρ‚ΠΎΠΌΡƒ ΠΆΠ΅ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π΄ΠΎΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ ΠΎΡˆΠΈΠ±ΠΊΡƒ. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΠ½Π»Π°ΠΉΠ½ Ρƒ нас вычисляСтся ΠΎΠ΄Π½ΠΈΠΌ Π½Π°ΠΆΠ°Ρ‚ΠΈΠ΅ΠΌ ΠΊΠ½ΠΎΠΏΠΊΠΈ «РСшСниС» послС Π²Π²ΠΎΠ΄Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π’Π°ΠΊΠΆΠ΅ сайт ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎ ΠΏΠΎΠ΄ΠΎΠΉΠ΄Π΅Ρ‚ Ρ‚Π΅ΠΌ, ΠΊΡ‚ΠΎ Ρ…ΠΎΡ‡Π΅Ρ‚ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ свои умСния Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ матСматичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ ΡƒΠ±Π΅Π΄ΠΈΡ‚ΡŒΡΡ Π² ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ Π½Π°ΠΉΡ‚ΠΈ Π΄ΠΎΠΏΡƒΡ‰Π΅Π½Π½ΡƒΡŽ Π² Π½Π΅ΠΌ ΠΎΡˆΠΈΠ±ΠΊΡƒ. Для этого достаточно лишь ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ свой ΠΎΡ‚Π²Π΅Ρ‚ с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ вычислСний ΠΎΠ½Π»Π°ΠΉΠ½-сСрвиса.
Если Π²Ρ‹ Π½Π΅ Ρ…ΠΎΡ‚ΠΈΡ‚Π΅ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ‚Π°Π±Π»ΠΈΡ†Π°ΠΌΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½ΡƒΠΆΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π·Π°Π±ΠΈΡ€Π°Π΅Ρ‚ достаточно Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ρ‚ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ наш сСрвис вмСсто Ρ‚Π°Π±Π»ΠΈΡ† ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ прСимущСства нашСго сайта Π² сравнСнии с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΌΠΈ сСрвисами состоят Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ вычислСниС происходит Ρƒ нас ΠΎΡ‡Π΅Π½ΡŒ быстро (Π² срСднСм 5 сСкунд) ΠΈ Π·Π° Π½Π΅Π³ΠΎ Π½Π΅ Π½ΡƒΠΆΠ½ΠΎ Π½ΠΈΡ‡Π΅Π³ΠΎ ΠΏΠ»Π°Ρ‚ΠΈΡ‚ΡŒ, — сСрвис Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎ бСсплатный. ΠžΡ‚ вас Π½Π΅ потрСбуСтся Π½ΠΈΠΊΠ°ΠΊΠΈΡ… рСгистраций, Π²Π²ΠΎΠ΄ΠΎΠ² e-mail ΠΈΠ»ΠΈ своих ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…. ВсС, Ρ‡Ρ‚ΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ – ввСсти Π·Π°Π΄Π°Π½Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΈ Π½Π°ΠΆΠ°Ρ‚ΡŒ ΠΊΠ½ΠΎΠΏΠΊΡƒ «РСшСниС». Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ производная. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ – основноС понятиС Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΈ матСматичСском Π°Π½Π°Π»ΠΈΠ·Π΅. ΠžΠ±Ρ€Π°Ρ‚Π½Ρ‹ΠΉ этому процСссу – ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ извСстной ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. Говоря ΠΏΡ€ΠΎΡ‰Π΅, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ являСтся дСйствиСм Π½Π°Π΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ, Π° производная – это ΡƒΠΆΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Ρ‚Π°ΠΊΠΎΠ³ΠΎ дСйствия. Для вычислСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅, Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ x замСняСтся числСнным Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΈ вычисляСтся Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅.
ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ΡΡ производная ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠΌ Π² ΠΏΡ€Π°Π²ΠΎΠΌ Π²Π΅Ρ€Ρ…Π½Π΅ΠΌ ΡƒΠ³Π»Ρƒ Π½Π°Π΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ. Π’Π°ΠΊΠΆΠ΅ ΡˆΡ‚Ρ€ΠΈΡ… ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Для нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ элСмСнтарной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Π°ΠΌ понадобится Π·Π½Π°Ρ‚ΡŒ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ»ΠΈ ΠΈΠΌΠ΅Ρ‚ΡŒ Π΅Π΅ всСгда ΠΏΠΎΠ΄ Ρ€ΡƒΠΊΠΎΠΉ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π½Π΅ ΠΎΡ‡Π΅Π½ΡŒ ΡƒΠ΄ΠΎΠ±Π½ΠΎ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π·Π½Π°Ρ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования, поэтому Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΠ΅ΠΌ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ нашим сСрвисом, Π³Π΄Π΅ вычисляСтся производная ΠΎΠ½Π»Π°ΠΉΠ½, достаточно Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ввСсти Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π² ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½ΠΎΠ΅ для этого ΠΏΠΎΠ»Π΅. АргумСнтом Π΄ΠΎΠ»ΠΆΠ½Π° Π±Ρ‹Ρ‚ΡŒ x пСрСмСнная, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ΡΡ ΠΏΠΎ Π½Π΅ΠΌΡƒ. Если Π½Π°Π΄ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π²Ρ‚ΠΎΡ€ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ, Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚. Как вычисляСтся производная ΠΎΠ½Π»Π°ΠΉΠ½. Π£ΠΆΠ΅ Π΄Π°Π²Π½ΠΎ созданы ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π»Π΅Π³ΠΊΠΎ Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΡ‚ΡŒ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… для элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, поэтому Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ элСмСнтарной (простой) матСматичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ – довольно простоС Π΄Π΅Π»ΠΎ. Однако ΠΊΠΎΠ³Π΄Π° трСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ слоТной матСматичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ это ΡƒΠΆΠ΅ Π½Π΅ Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½Π°Ρ Π·Π°Π΄Π°Ρ‡Π° ΠΈ ΠΎΠ½Π° ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π½Π΅ΠΌΠ°Π»ΠΎ усилий ΠΈ Π·Π°Ρ‚Ρ€Π°Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.
ΠžΡ‚ бСссмыслСнных ΠΈ Π΄ΠΎΠ»Π³ΠΈΡ… расчСтов Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒΡΡ, Ссли Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚Π΅ΡΡŒ нашим ΠΎΠ½Π»Π°ΠΉΠ½ сСрвисом. Благодаря Π΅ΠΌΡƒ производная Π±ΡƒΠ΄Π΅Ρ‚ вычислСна Π·Π° считанныС сСкунды.

ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΈ Π²Ρ‹Π²ΠΎΠ΄ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ косинуса — cos(x). ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ вычислСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΡ‚ cos 2x, cos 3x, cos nx, косинуса Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅, Π² ΠΊΡƒΠ±Π΅ ΠΈ Π² стСпСни n. Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ косинуса n-Π³ΠΎ порядка.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x ΠΎΡ‚ косинуса x Ρ€Π°Π²Π½Π° минус синусу x:
(cos x)β€² = — sin x .

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ

Π§Ρ‚ΠΎΠ±Ρ‹ вывСсти Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ косинуса, Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:
.

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ это Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎΠ±Ρ‹ свСсти Π΅Π³ΠΎ ΠΊ извСстным матСматичСским Π·Π°ΠΊΠΎΠ½Π°ΠΌ ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌ. Для этого Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ свойства.
1) ВригономСтричСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ . Нам понадобится ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°:
(1) ;
2) Бвойство нСпрСрывности Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ синус:
(2) ;
3) Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Π·Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π°:
(3) ;
4) Бвойство ΠΏΡ€Π΅Π΄Π΅Π»Π° ΠΎΡ‚ произвСдСния Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:
Если ΠΈ , Ρ‚ΠΎ
(4) .

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ эти Π·Π°ΠΊΠΎΠ½Ρ‹ ΠΊ Π½Π°ΡˆΠ΅ΠΌΡƒ ΠΏΡ€Π΅Π΄Π΅Π»Ρƒ. Π‘Π½Π°Ρ‡Π°Π»Π° ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ алгСбраичСскоС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅

.
Для этого ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ
(1) ;
Π’ нашСм случаС
; . Π’ΠΎΠ³Π΄Π°
;
;
;
.

Π‘Π΄Π΅Π»Π°Π΅ΠΌ подстановку . ΠŸΡ€ΠΈ , . Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ свойство нСпрСрывности (2):
.

Π‘Π΄Π΅Π»Π°Π΅ΠΌ Ρ‚Π°ΠΊΡƒΡŽ ΠΆΠ΅ подстановку ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ Π·Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€Π΅Π΄Π΅Π» (3):
.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹, вычислСнныС Π²Ρ‹ΡˆΠ΅, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚, Ρ‚ΠΎ примСняСм свойство (4):

.

Π’Π΅ΠΌ самым ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ косинуса.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Рассмотрим простыС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, содСрТащих косинус. НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΎΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:
y = cos 2x; y = cos 3x; y = cos nx; y = cos 2 x ; y = cos 3 x ΠΈ y = cos n x .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΎΡ‚ cos 2x, cos 3x ΠΈ cos nx .

РСшСниС

Π˜ΡΡ…ΠΎΠ΄Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΏΠΎΡ…ΠΎΠΆΠΈΠΉ Π²ΠΈΠ΄. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΌΡ‹ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = cos nx . Π—Π°Ρ‚Π΅ΠΌ, Π² ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ cos nx , подставим n = 2 ΠΈ n = 3 .

И, Ρ‚Π΅ΠΌ самым, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΡ‚ cos 2x ΠΈ cos 3x .

Π˜Ρ‚Π°ΠΊ, Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
y = cos nx .
ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ эту Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΎΡ‚ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x ΠΊΠ°ΠΊ ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, ΡΠΎΡΡ‚ΠΎΡΡ‰ΡƒΡŽ ΠΈΠ· Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:
1)
2)
Π’ΠΎΠ³Π΄Π° исходная функция являСтся слоТной (составной) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ, составлСнной ΠΈΠ· Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ :
.

НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x:
.
НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ :
.
ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ .
.
ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ :
(П1) .

Π’Π΅ΠΏΠ΅Ρ€ΡŒ, Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (П1) подставим ΠΈ :
;
.

ΠžΡ‚Π²Π΅Ρ‚

;
;
.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΎΡ‚ косинуса Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅, косинуса Π² ΠΊΡƒΠ±Π΅ ΠΈ косинуса Π² стСпСни n:
y = cos 2 x ; y = cos 3 x ; y = cos n x .

РСшСниС

Π’ этом ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Ρ‚Π°ΠΊΠΆΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΏΠΎΡ…ΠΎΠΆΠΈΠΉ Π²ΠΈΠ΄. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΌΡ‹ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ самой ΠΎΠ±Ρ‰Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ — косинуса Π² стСпСни n:

y = cos n x .
Π—Π°Ρ‚Π΅ΠΌ подставим n = 2 ΠΈ n = 3 . И, Ρ‚Π΅ΠΌ самым, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΡ‚ косинуса Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅ ΠΈ косинуса Π² ΠΊΡƒΠ±Π΅.

Π˜Ρ‚Π°ΠΊ, Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
.
ΠŸΠ΅Ρ€Π΅ΠΏΠΈΡˆΠ΅ΠΌ Π΅Π΅ Π² Π±ΠΎΠ»Π΅Π΅ понятном Π²ΠΈΠ΄Π΅:
.
ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ эту Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΊΠ°ΠΊ ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, ΡΠΎΡΡ‚ΠΎΡΡ‰ΡƒΡŽ ΠΈΠ· Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:
1) Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ , зависящСй ΠΎΡ‚ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ : ;
2) Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ , зависящСй ΠΎΡ‚ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ : .
Π’ΠΎΠ³Π΄Π° исходная функция являСтся слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ, составлСнной ΠΈΠ· Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ :
.

Находим ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x:
.
Находим ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ :
.
ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ диффСрСнцирования слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ .
.
ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ :
(П2) .

Π’Π΅ΠΏΠ΅Ρ€ΡŒ подставим ΠΈ :
;
.

ΠžΡ‚Π²Π΅Ρ‚

;
;
.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π²Ρ‹ΡΡˆΠΈΡ… порядков

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ cos x ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· косинус ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:
.

НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ :

.
Π—Π΄Π΅ΡΡŒ .

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ cos x ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ Π΅Π³ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Π½Π° . Π’ΠΎΠ³Π΄Π° производная n-Π³ΠΎ порядка ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:
(5) .

Π‘ΠΎΠ»Π΅Π΅ строго эту Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° матСматичСской ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ для n-ΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ синуса ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΎ Π½Π° страницС β€œΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ синуса ”. Для n-ΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ косинуса Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΎΠ΅. НуТно Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π²ΠΎ всСх Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°Ρ… Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ sin Π½Π° cos.

ВычислСниС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ — ΠΎΠ΄Π½Π° ΠΈΠ· самых Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ Π² Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ исчислСнии. НиТС приводится Ρ‚Π°Π±Π»ΠΈΡ†Π° нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π‘ΠΎΠ»Π΅Π΅ слоТныС ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования смотритС Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… ΡƒΡ€ΠΎΠΊΠ°Ρ…:

  • Π’Π°Π±Π»ΠΈΡ†Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ логарифмичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ ΠΊΠ°ΠΊ справочныС значСния. Они ΠΏΠΎΠΌΠΎΠ³ΡƒΡ‚ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ Π·Π°Π΄Π°Ρ‡. На ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ΅, Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° «ΡˆΠΏΠ°Ρ€Π³Π°Π»ΠΊΠ°» основных случаСв нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² понятном для примСнСния Π²ΠΈΠ΄Π΅, рядом с Π½ΠΈΠΌ Π΄Π°Π½Ρ‹ пояснСния для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ случая.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

1. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ‚ числа Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ
с´ = 0
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
5Β΄ = 0

ПояснСниС :
ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ число Π½ΠΈΠΊΠ°ΠΊ Π½Π΅ мСняСтся Π½ΠΈ ΠΏΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… условиях — ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ измСнСния всСгда Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

2. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅
xΒ΄ = 1

ПояснСниС :
ΠŸΡ€ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° (Ρ…) Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° вычислСний) увСличиваСтся Π½Π° эту ΠΆΠ΅ ΡΠ°ΠΌΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = x Ρ‚ΠΎΡ‡Π½ΠΎ Ρ€Π°Π²Π½Π° скорости измСнСния значСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°.

3. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈ мноТитСля Ρ€Π°Π²Π½Π° этому ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŽ
сx´ = с
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
(3x)Β΄ = 3
(2x)Β΄ = 2
ПояснСниС :
Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС, ΠΏΡ€ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Ρ… ) Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ (y) растСт Π² с Ρ€Π°Π·. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСнСния значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ скорости измСнСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ρ‚ΠΎΡ‡Π½ΠΎ Ρ€Π°Π²Π½ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ с .

ΠžΡ‚ΠΊΡƒΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ
(cx + b)» = c
Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=kx+b Ρ€Π°Π²Π΅Π½ ΡƒΠ³Π»ΠΎΠ²ΠΎΠΌΡƒ коэффициСнту Π½Π°ΠΊΠ»ΠΎΠ½Π° прямой (k).

4. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ Ρ€Π°Π²Π½Π° частному этой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΊ Π΅Π΅ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ
|x|» = x / |x| ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ Ρ… β‰  0
ПояснСниС :
ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ производная ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ (см. Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ 2) Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, Ρ‚ΠΎ производная модуля отличаСтся лишь Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ скорости измСнСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ мСняСтся Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ΅ ΠΏΡ€ΠΈ пСрСсСчСнии Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π°Ρ‡Π°Π»Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (ΠΏΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉΡ‚Π΅ Π½Π°Ρ€ΠΈΡΠΎΠ²Π°Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = |x| ΠΈ ΡƒΠ±Π΅Π΄ΠΈΡ‚Π΅ΡΡŒ Π² этом сами. ИмСнно Ρ‚Π°ΠΊΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈ Π²ΠΎΠ·Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ x / |x| . Когда x 0 — Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅. Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… значСниях ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Ρ… ΠΏΡ€ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ Π½Π° Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΆΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Π° ΠΏΡ€ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… — Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚, возрастаСт, Π½ΠΎ Ρ‚ΠΎΡ‡Π½ΠΎ Π½Π° Ρ‚Π°ΠΊΠΎΠ΅ ΠΆΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

5. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² стСпСни Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ числа этой стСпСни ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² стСпСни, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½Π½ΠΎΠΉ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ
(x c)»= cx c-1 , ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ x c ΠΈ сx c-1 ,ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Π° с β‰  0
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
(x 2)» = 2x
(x 3)» = 3x 2
Для запоминания Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ :
БнСситС ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ «Π²Π½ΠΈΠ·» ΠΊΠ°ΠΊ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚Π΅ саму ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ. НапримСр, для x 2 — Π΄Π²ΠΎΠΉΠΊΠ° оказалась Π²ΠΏΠ΅Ρ€Π΅Π΄ΠΈ икса, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½Π½Π°Ρ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ (2-1=1) просто Π΄Π°Π»Π° Π½Π°ΠΌ 2Ρ…. Π’ΠΎ ΠΆΠ΅ самоС ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ для x 3 — Ρ‚Ρ€ΠΎΠΉΠΊΡƒ «ΡΠΏΡƒΡΠΊΠ°Π΅ΠΌ Π²Π½ΠΈΠ·», ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅ΠΌ Π΅Π΅ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ ΠΈ вмСсто ΠΊΡƒΠ±Π° ΠΈΠΌΠ΅Π΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ 3x 2 . НСмного «Π½Π΅ Π½Π°ΡƒΡ‡Π½ΠΎ», Π½ΠΎ ΠΎΡ‡Π΅Π½ΡŒ просто Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ.

6. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π΄Ρ€ΠΎΠ±ΠΈ 1/Ρ…
(1/Ρ…)» = — 1 / x 2
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π΄Ρ€ΠΎΠ±ΡŒ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ
(1/x)» = (x -1)» , Ρ‚ΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈΠ· ΠΏΡ€Π°Π²ΠΈΠ»Π° 5 Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…
(x -1)» = -1x -2 = — 1 / Ρ… 2

7. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π΄Ρ€ΠΎΠ±ΠΈ с ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ стСпСни Π² Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»Π΅
(1 / x c)» = — c / x c+1
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
(1 / x 2)» = — 2 / x 3

8. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ корня (производная ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ΄ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΌ ΠΊΠΎΡ€Π½Π΅ΠΌ)
(√x)» = 1 / (2√x) ΠΈΠ»ΠΈ 1/2 Ρ… -1/2
ΠŸΡ€ΠΈΠΌΠ΅Ρ€:
(√x)» = (Ρ… 1/2)» Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΈΠ· ΠΏΡ€Π°Π²ΠΈΠ»Π° 5
(Ρ… 1/2)» = 1/2 Ρ… -1/2 = 1 / (2βˆšΡ…)

9. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ΄ ΠΊΠΎΡ€Π½Π΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ стСпСни
(n √x)» = 1 / (n n √x n-1)

ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΡ отыскания ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ называСтся Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ.

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ ΠΎΠ± отыскании ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Ρƒ самых простых (ΠΈ Π½Π΅ ΠΎΡ‡Π΅Π½ΡŒ простых) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΊ ΠΏΡ€Π΅Π΄Π΅Π»Π° ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ приращСния ΠΊ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° появились Ρ‚Π°Π±Π»ΠΈΡ†Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ Ρ‚ΠΎΡ‡Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Π΅ ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования. ΠŸΠ΅Ρ€Π²Ρ‹ΠΌΠΈ Π½Π° Π½ΠΈΠ²Π΅ нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡ‚Ρ€ΡƒΠ΄ΠΈΠ»ΠΈΡΡŒ Исаак ΠΡŒΡŽΡ‚ΠΎΠ½ (1643-1727) ΠΈ Π“ΠΎΡ‚Ρ„Ρ€ΠΈΠ΄ Π’ΠΈΠ»ΡŒΠ³Π΅Π»ΡŒΠΌ Π›Π΅ΠΉΠ±Π½ΠΈΡ† (1646-1716).

ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² нашС врСмя, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ любой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π΅ Π½Π°Π΄ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ упомянутый Π²Ρ‹ΡˆΠ΅ ΠΏΡ€Π΅Π΄Π΅Π» ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ приращСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊ ΠΏΡ€ΠΈΡ€Π°Ρ‰Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, Π° Π½ΡƒΠΆΠ½ΠΎ лишь Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌΠΈ диффСрСнцирования. Для нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ , Π½Π°Π΄ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠΎΠΌ ΡˆΡ‚Ρ€ΠΈΡ…Π° Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ Π½Π° ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ простыС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊΠΈΠΌΠΈ дСйствиями (ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, сумма, частноС) связаны эти Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π”Π°Π»Π΅Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… произвСдСния, суммы ΠΈ частного — Π² ΠΏΡ€Π°Π²ΠΈΠ»Π°Ρ… диффСрСнцирования. Π’Π°Π±Π»ΠΈΡ†Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования Π΄Π°Π½Ρ‹ послС ΠΏΠ΅Ρ€Π²Ρ‹Ρ… Π΄Π²ΡƒΡ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ².

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС. Из ΠΏΡ€Π°Π²ΠΈΠ» диффСрСнцирования выясняСм, Ρ‡Ρ‚ΠΎ производная суммы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π΅ΡΡ‚ΡŒ сумма ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Ρ‚. Π΅.

Из Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… выясняСм, Ρ‡Ρ‚ΠΎ производная «ΠΈΠΊΡΠ°» Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, Π° производная синуса — косинусу. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ эти значСния Π² сумму ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡƒΡŽ условиСм Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС. Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌ ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ суммы, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ слагаСмоС с постоянным ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΌ, Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ вынСсти Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:

Если ΠΏΠΎΠΊΠ° Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ вопросы, ΠΎΡ‚ΠΊΡƒΠ΄Π° Ρ‡Ρ‚ΠΎ бСрётся, ΠΎΠ½ΠΈ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΏΡ€ΠΎΡΡΠ½ΡΡŽΡ‚ΡΡ послС ознакомлСния с Ρ‚Π°Π±Π»ΠΈΡ†Π΅ΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠΌΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌΠΈ диффСрСнцирования. К Π½ΠΈΠΌ ΠΌΡ‹ ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ прямо сСйчас.

Π’Π°Π±Π»ΠΈΡ†Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

1. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ константы (числа). Π›ΡŽΠ±ΠΎΠ³ΠΎ числа (1, 2, 5, 200…), ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π΅ΡΡ‚ΡŒ Π² Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ВсСгда Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. Π­Ρ‚ΠΎ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½ΠΎ ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ трСбуСтся ΠΎΡ‡Π΅Π½ΡŒ часто
2. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. Π§Π°Ρ‰Π΅ всСго «ΠΈΠΊΡΠ°». ВсСгда Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅. Π­Ρ‚ΠΎ Ρ‚ΠΎΠΆΠ΅ Π²Π°ΠΆΠ½ΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Π½Π°Π΄ΠΎΠ»Π³ΠΎ
3. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ стСпСни. Π’ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ Π½Π΅ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ.
4. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² стСпСни -1
5. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня
6. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ синуса
7. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ косинуса
8. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ тангСнса
9. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ котангСнса
10. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ арксинуса
11. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ арккосинуса
12. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ арктангСнса
13. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ арккотангСнса
14. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°
15. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ логарифмичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
16. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ экспонСнты
17. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования

1. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы ΠΈΠ»ΠΈ разности
2. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ произвСдСния
2a. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ выраТСния, ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π° постоянный ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ
3. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ частного
4. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ 1. Если Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ , Ρ‚ΠΎ Π² Ρ‚ΠΎΠΉ ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ

Ρ‚. Π΅. производная алгСбраичСской суммы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° алгСбраичСской суммС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

БлСдствиС. Если Π΄Π²Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ Π½Π° постоянноС слагаСмоС, Ρ‚ΠΎ ΠΈΡ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹ , Ρ‚.Π΅.

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ 2. Если Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ , Ρ‚ΠΎ Π² Ρ‚ΠΎ ΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎ ΠΈ ΠΈΡ… ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅

ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ

Ρ‚.Π΅. производная произвСдСния Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° суммС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π΄Ρ€ΡƒΠ³ΠΎΠΉ.

БлСдствиС 1. ΠŸΠΎΡΡ‚ΠΎΡΠ½Π½Ρ‹ΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π½ΠΎΡΠΈΡ‚ΡŒ Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ :

БлСдствиС 2. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ произвСдСния Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° суммС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· сомноТитСлСй Π½Π° всС ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅.

НапримСр, для Ρ‚Ρ€Ρ‘Ρ… ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ:

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ 3. Если Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈ , Ρ‚ΠΎ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎ ΠΈ ΠΈΡ… частноС u/v , ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ

Ρ‚. Π΅. производная частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° Π΄Ρ€ΠΎΠ±ΠΈ, Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΅ΡΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ знамСнатСля Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ числитСля ΠΈ числитСля Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ знамСнатСля, Π° Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π΅ΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΏΡ€Π΅ΠΆΠ½Π΅Π³ΠΎ числитСля.

Π“Π΄Π΅ Ρ‡Ρ‚ΠΎ ΠΈΡΠΊΠ°Ρ‚ΡŒ Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… страницах

ΠŸΡ€ΠΈ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ произвСдСния ΠΈ частного Π² Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡Π°Ρ… всСгда трСбуСтся ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ сразу нСсколько ΠΏΡ€Π°Π²ΠΈΠ» диффСрСнцирования, поэтому большС ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π½Π° эти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ — Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ «ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ произвСдСния ΠΈ частного Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ » .

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅. Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ Π½Π΅ ΠΏΡƒΡ‚Π°Ρ‚ΡŒ константу (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, число) ΠΊΠ°ΠΊ слагаСмоС Π² суммС ΠΈ ΠΊΠ°ΠΊ постоянный ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ! Π’ случаС слагаСмого Π΅Ρ‘ производная Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ, Π° Π² случаС постоянного мноТитСля ΠΎΠ½Π° выносится Π·Π° Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…. Π­Ρ‚ΠΎ типичная ошибка, которая встрСчаСтся Π½Π° Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΌ этапС изучСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, Π½ΠΎ ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΡƒΠΆΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΎΠ΄Π½ΠΎ- двухсоставных ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² срСдний студСнт этой ошибки ΡƒΠΆΠ΅ Π½Π΅ Π΄Π΅Π»Π°Π΅Ρ‚.

А Ссли ΠΏΡ€ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ произвСдСния ΠΈΠ»ΠΈ частного Ρƒ вас появилось слагаСмоС u «v , Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ u — число, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, 2 ΠΈΠ»ΠΈ 5, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ константа, Ρ‚ΠΎ производная этого числа Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, всё слагаСмоС Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ (Ρ‚Π°ΠΊΠΎΠΉ случай Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π½ Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ 10).

Другая частая ошибка — мСханичСскоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ простой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ посвящСна ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Π°Ρ ΡΡ‚Π°Ρ‚ΡŒΡ. Но сначала Π±ΡƒΠ΄Π΅ΠΌ ΡƒΡ‡ΠΈΡ‚ΡŒΡΡ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ простых Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

По Ρ…ΠΎΠ΄Ρƒ Π½Π΅ ΠΎΠ±ΠΎΠΉΡ‚ΠΈΡΡŒ Π±Π΅Π· ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ. Для этого ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΡŒ Π² Π½ΠΎΠ²Ρ‹Ρ… ΠΎΠΊΠ½Π°Ρ… пособия ДСйствия со стСпСнями ΠΈ корнями ΠΈ ДСйствия с дробями .

Если Π’Ρ‹ ΠΈΡ‰Π΅Ρ‚Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π΄Ρ€ΠΎΠ±Π΅ΠΉ со стСпСнями ΠΈ корнями, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, ΠΊΠΎΠ³Π΄Π° функция ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ Π²Ρ€ΠΎΠ΄Π΅ , Ρ‚ΠΎ слСдуйтС Π½Π° занятиС «ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы Π΄Ρ€ΠΎΠ±Π΅ΠΉ со стСпСнями ΠΈ корнями «.

Если ΠΆΠ΅ ΠΏΠ΅Ρ€Π΅Π΄ Π’Π°ΠΌΠΈ Π·Π°Π΄Π°Ρ‡Π° Π²Ρ€ΠΎΠ΄Π΅ , Ρ‚ΠΎ Π’Π°ΠΌ Π½Π° занятиС «ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ простых тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ».

ΠŸΠΎΡˆΠ°Π³ΠΎΠ²Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ — ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ части выраТСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: всё Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ прСдставляСт ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, Π° Π΅Π³ΠΎ сомноТитСли — суммы, Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ΄Π½ΠΎ ΠΈΠ· слагаСмых содСрТит постоянный ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ. ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ диффСрСнцирования произвСдСния: производная произвСдСния Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° суммС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π΄Ρ€ΡƒΠ³ΠΎΠΉ:

Π”Π°Π»Π΅Π΅ примСняСм ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ диффСрСнцирования суммы: производная алгСбраичСской суммы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° алгСбраичСской суммС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π’ нашСм случаС Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ суммС Π²Ρ‚ΠΎΡ€ΠΎΠ΅ слагаСмоС со Π·Π½Π°ΠΊΠΎΠΌ минус. Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ суммС Π²ΠΈΠ΄ΠΈΠΌ ΠΈ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡƒΡŽ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ, производная ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, ΠΈ константу (число), производная ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. Π˜Ρ‚Π°ΠΊ, «ΠΈΠΊΡ» Ρƒ нас прСвращаСтся Π² Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ, Π° минус 5 — Π² ноль. Π’ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ «ΠΈΠΊΡ» ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ Π½Π° 2, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎ Π΄Π²ΠΎΠΉΠΊΡƒ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π½Π° Ρ‚Ρƒ ΠΆΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ «ΠΈΠΊΡΠ°». ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ значСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Π² сумму ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡƒΡŽ условиСм Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ всСй Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС. ΠžΡ‚ нас трСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ частного. ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ диффСрСнцирования частного: производная частного Π΄Π²ΡƒΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π½Π° Π΄Ρ€ΠΎΠ±ΠΈ, Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΅ΡΡ‚ΡŒ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ знамСнатСля Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ числитСля ΠΈ числитСля Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ знамСнатСля, Π° Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π΅ΡΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΏΡ€Π΅ΠΆΠ½Π΅Π³ΠΎ числитСля. ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ сомноТитСлСй Π² числитСлС ΠΌΡ‹ ΡƒΠΆΠ΅ нашли Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ 2. НС Π·Π°Π±ΡƒΠ΄Π΅ΠΌ Ρ‚Π°ΠΊΠΆΠ΅, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΡΠ²Π»ΡΡŽΡ‰Π΅Π΅ΡΡ Π²Ρ‚ΠΎΡ€Ρ‹ΠΌ сомноТитСлСм Π² числитСлС Π² Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ бСрётся со Π·Π½Π°ΠΊΠΎΠΌ минус:

Если Π’Ρ‹ ΠΈΡ‰Π΅Ρ‚Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ‚Π°ΠΊΠΈΡ… Π·Π°Π΄Π°Ρ‡, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°Π΄ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π³Π΄Π΅ сплошноС Π½Π°Π³Ρ€ΠΎΠΌΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΈ стСпСнСй, ΠΊΠ°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, , Ρ‚ΠΎ Π΄ΠΎΠ±Ρ€ΠΎ ΠΏΠΎΠΆΠ°Π»ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° занятиС «ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы Π΄Ρ€ΠΎΠ±Π΅ΠΉ со стСпСнями ΠΈ корнями» .

Если ΠΆΠ΅ Π’Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΡƒΠ·Π½Π°Ρ‚ΡŒ большС ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… синусов, косинусов, тангСнсов ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, ΠΊΠΎΠ³Π΄Π° функция ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ Π²Ρ€ΠΎΠ΄Π΅ , Ρ‚ΠΎ Π’Π°ΠΌ Π½Π° ΡƒΡ€ΠΎΠΊ «ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ простых тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ» .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄ΠΈΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· сомноТитСлСй ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… — ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, с ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΡ‹ ознакомились Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…. По ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ диффСрСнцирования произвСдСния ΠΈ Ρ‚Π°Π±Π»ΠΈΡ‡Π½ΠΎΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 6. Найти ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄ΠΈΠΌ частноС, Π΄Π΅Π»ΠΈΠΌΠΎΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ — ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. По ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ диффСрСнцирования частного, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΡ‹ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΈΠ»ΠΈ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠ»ΠΈ Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ 4, ΠΈ Ρ‚Π°Π±Π»ΠΈΡ‡Π½ΠΎΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ корня ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒΡΡ ΠΎΡ‚ Π΄Ρ€ΠΎΠ±ΠΈ Π² числитСлС, ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π½Π° .

2}x}}{{\Delta x}}\]
\[\frac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{ \left[ {\cos \left({x + \Delta x} \right) + \cos x} \right]\left[ {\cos \left({x + \Delta x} \right) — \cos x } \right]}}{{\Delta x}}\]

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ‚Ρ€ΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ \[\cos A – \cos B = – 2\sin \left( {\frac{{A + B}}{ 2}} \right)\sin \left( {\frac{{A – B}}{2}} \right)\]
\[\begin{gathered} \frac{{dy}}{{dx}} = \ mathop {\ lim} \ limits _ {\ Delta x \ to 0} \ frac {{\ left [ {\ cos \ left ( {x + \ Delta x} \ right) + \ cos x} \ right] \ left [ { — 2 \ sin \ left ( {\ frac {{x + \ Delta x + x}} {2}} \ right) \ sin \ left ( {\ frac {{x + \ Delta x — x}} { 2}} \right)} \right]}}{{\Delta x}} \\ \Rightarrow \frac{{dy}}{{dx}} = \mathop {\lim }\limits_{\Delta x \to 0} \left[ {\cos \left( {x + \Delta x} \right) + \cos x} \right] \times — \frac{{\sin \left( {\frac{{2x + \Delta x}}{2}} \right)\sin \left( {\frac{{\Delta x}}{2}} \right)}}{{\frac{{\Delta x}}{2}}} \\ \Rightarrow \frac{{dy}}{{dx}} = \mathop {\lim }\limits_{ \Delta x \to 0} \left[ {\cos \left( {x + \Delta x} \right) + \cos x} \right] \times — \mathop {\lim}\limits_{\Delta x \ Π΄ΠΎ 0} \sin \left( {\frac{{2x + \Delta x}}{2}} \right)\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin\ Π²Π»Π΅Π²ΠΎ ( {\ frac {{\ Delta x}} {2}} \ right)}} {{\ frac {{\ Delta x}} {2}}} \\ \ Rightarrow \ frac {{dy}} {{ dx}} = – \left[ {\cos \left({x + 0} \right) + \cos x} \right]\sin \left({\frac{{2x + 0}}{2}} \ right)\left( 1 \right) \\ \Π‘Ρ‚Ρ€Π΅Π»ΠΊΠ° Π²ΠΏΡ€Π°Π²ΠΎ \frac{{dy}}{{dx}} = – 2\cos x\sin x \\ \end{gathered} \] 92} + 8} \right) \\ \end{собрано} \]

⇐ ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° синуса β‡’ ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° тангСнса ⇒

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ cos(2x) – DerivativeIt

~ by Brendon


ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ‚ cos(2x) Ρ€Π°Π²Π½Π° -2sin(2x)


Как Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ cos(2x)

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π² этом постС ΠΌΡ‹ рассмотрим Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ cos(2x), ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ€Π°Π²Π½ΠΎ 92(Ρ…).

Π¦Π΅ΠΏΠ½ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ для нахоТдСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ Π±Ρ‹ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ, Ссли Π±Ρ‹ ΠΎΠ½Π° Π±Ρ‹Π»Π° ΠΏΠΎ x, Π½ΠΎ ΠΎΠ½Π° прСдставлСна ​​в Π²ΠΈΠ΄Π΅ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ выраТСния, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ Π±Ρ‹ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ, Ссли Π±Ρ‹ ΠΎΠ½ΠΎ стояло само ΠΏΠΎ сСбС.

Π’ этом случаС:

  • ΠœΡ‹ Π·Π½Π°Π΅ΠΌ, ΠΊΠ°ΠΊ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ cos(x) (ΠΎΡ‚Π²Π΅Ρ‚ -sin(x))
  • ΠœΡ‹ Π·Π½Π°Π΅ΠΌ, ΠΊΠ°ΠΊ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ 2x (ΠΎΡ‚Π²Π΅Ρ‚ 2)

Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Ρ†Π΅ΠΏΠ½ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Π½Π°ΠΌ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ cos(2x).

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ†Π΅ΠΏΠ½ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ cos(2x)

Π§Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ cos(2x), Ρ†Π΅ΠΏΠ½ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠ°ΠΊ Ссли Π±Ρ‹ ΠΎΠ½ΠΎ Π±Ρ‹Π»ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‡Π΅Ρ€Π΅Π· x, ΠΏΠΎΠΊΠ° ΠΌΡ‹ Π·Π°Ρ‚Π΅ΠΌ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ это Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π° самом Π΄Π΅Π»Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ (Π² Π΄Π°Π½Π½ΠΎΠΌ случаС производная ΠΎΡ‚ 2x).

Π”Π°Π²Π°ΠΉΡ‚Π΅ Π²Ρ‹Π·ΠΎΠ²Π΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π² Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π΅ cos, g(x), Ρ‡Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ функция ΠΈΠΌΠ΅Π΅Ρ‚ Ρ„ΠΎΡ€ΠΌΡƒ cos(x), Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠ½Π° Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ x Π² качСствС ΡƒΠ³Π»Π°, вмСсто этого ΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Ρ€ΡƒΠ³ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΎΡ‚ x (2x ) ΠΊΠ°ΠΊ ΡƒΠ³ΠΎΠ»

Если:

g(x) = 2x

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ:

cos(2x) = cos(g(x))

Π˜Ρ‚Π°ΠΊ, Ссли функция f(x) = cos(x) ΠΈ функция g(x) = 2x, Ρ‚ΠΎ функция cos(2x) ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записана ΠΊΠ°ΠΊ составная функция.

f(x) = cos(x)

f(g(x)) = cos(g(x)) (Π½ΠΎ g(x) = 2x))

f(g(x)) = cos( 2x)

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ эту ΡΠΎΡΡ‚Π°Π²Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΊΠ°ΠΊ F(x):

F(x) = f(g(x)) = cos(2x)

ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ cos(2x) (F'( x)) с использованиСм Ρ†Π΅ΠΏΠ½ΠΎΠ³ΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Π°.


Π¦Π΅ΠΏΠ½ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ:
Для Π΄Π²ΡƒΡ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ f(x) ΠΈ g(x)


Если F(x) = f(g(x))

7 Π’ΠΎΠ³Π΄Π° производная F(x) Π΅ΡΡ‚ΡŒ F'(x) = f'(g(x)).g'(x)


Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ просто ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ f(x) ΠΈ g(x) Π² Ρ†Π΅ΠΏΠ½ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ. Но ΠΏΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ ΠΌΡ‹ это сдСлаСм, ΠΊΡ€Π°Ρ‚ΠΊΠΎ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΈΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ cos.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ cos(x) ΠΏΠΎ x Ρ€Π°Π²Π½Π° -sin(x)
ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ cos(z) ΠΏΠΎ z Ρ€Π°Π²Π½Π° -sin(z)

Аналогичным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, производная ΠΎΡ‚ cos(2x) ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ 2x Ρ€Π°Π²Π½Π° -sin(2x).

ΠœΡ‹ Π±ΡƒΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ этот Ρ„Π°ΠΊΡ‚ ΠΊΠ°ΠΊ Ρ‡Π°ΡΡ‚ΡŒ Ρ†Π΅ΠΏΠ½ΠΎΠ³ΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Π°, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ cos(2x) ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ x .

Как Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ cos(2x) с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ†Π΅ΠΏΠ½ΠΎΠ³ΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Π°: ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»Π° = f'(g(x))(2) g(x) = 2x β‡’ g'(x) = 2 = (-sin(2x)).(2) f(g(x)) = cos(2x) β‡’ f'(g(x)) = -sin( 2x) = -2sin(2x)

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ†Π΅ΠΏΠ½ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, производная ΠΎΡ‚ cos(2x) Ρ€Π°Π²Π½Π° -2sin(2x)

3, просто ΠΏΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ ΠΊ синтаксису ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅: cos(2x) ΠΈΠ½ΠΎΠ³Π΄Π° записываСтся Π² ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… Π½ΠΈΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΠ°Ρ… (с ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² соотвСтствии с ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌ Π²Ρ‹ΡˆΠ΅ расчСтом).

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *