Производные высших порядков онлайн калькулятор: Калькулятор производных любого порядка

Содержание

Высшая математика | СпецКласс

Все записи: Высшая математика

18.03.2017   Дифференциальные уравнения   No comments

Уравнение Эйлера — это линейное дифференциальное уравнение с переменными коэффициентами. Решается с помощью замены переменных, которая позволяет свести исходное уравнение к линейному уравнению с постоянными коэффициентами.

Смотреть

18.03.2017   Теория вероятностей   No comments

Пример для понимания этого условия: Вероятность попадания в мишень при стрельбе из трех разных ружей равны 0.7, 0.8 и 0.9 соответственно. Найдите вероятность того, что произойдет хотя бы одно попадание в мишень.

Смотреть

18.03.2017   Школьная математика, Математический анализ   No comments

Разбор простого примера нахождения интеграла от иррациональной функции.

В следующих видео я разберу остальные случаи, которые могут вам встретиться в задачах.

Смотреть

25.10.2016   Онлайн-калькуляторы, Математический анализ   No comments

Как быстро решить предел? Воспользоваться любым онлайн-калькулятором, ибо их сейчас предоставляется невероятное множество. Но вот только не все онлайн калькуляторы вам с этим помогут.

Смотреть

17.11.2015   Теория вероятностей   No comments

В видео разбирается пример на систему двух случайных величин Х и У. Требуется найти таблицу закона распределения этой системы, математические ожидания, дисперсию, ковариацию и корреляцию.

Смотреть

17.11.2015   Теория вероятностей   No comments

Если наступление события зависит не от одной случайной величины, а от нескольких, то принято рассматривать систему случайных величин. Самый простой случай — система двух случайных величин, для которой принято находить математическое ожидание, дисперсию, среднеквадратичное отклонение, а также такие параметры, как ковариация (корреляционный момент) и корреляция.

Смотреть

26.05.2015   Мои новости, Теория вероятностей   5 комментариев

Привет всем, кто учится и готовится к экзаменам! Сегодня я представляю Вашему вниманию приложение «СпецКласс — простая подготовка к экзаменам», которые вы уже сейчас можете скачать по этой ссылке и установить на свой телефон или планшет.

Смотреть

11.11.2014   Математический анализ, Математический анализ   No comments

Если под интегралом у вас стоит арктангенс, то скорее всего вам нужно вспомнить метод интегрирования по частям. Как он работает, вы узнаете из этого видео.

Смотреть

11.11.2014   Математический анализ, Математический анализ   No comments

Гиперболические функции — это такие формулы, которые понадобятся вам раза два за всю студенческую жизнь. Но на всякий случай я разберу, как находить их производные и покажу, что это очень даже легко.

Смотреть

11.11.2014   Математический анализ, Математический анализ   No comments

Производная высших порядков — это просто! Находишь производную функции, затем находишь производную от производной, и так далее пока не надоесть! В общем, все увидите в ролике.

Смотреть

Метод вариации произвольных постоянных онлайн калькулятор. Решение линейных неоднородных дифференциальных уравнений высших порядков методом лагранжа

Метод вариации произвольных постоянных

Метод вариации произвольных постоянных для построения решения линейного неоднородного дифференциального уравнения

a n (t )z (n ) (t ) + a n − 1 (t )z (n − 1) (t ) + . .. + a 1 (t )z «(t ) + a 0 (t )z (t ) = f (t )

состоит в замене произвольных постоянных c k в общем решении

z (t ) = c 1 z 1 (t ) +

c 2 z 2 (t ) + … + c n z n (t )

соответствующего однородного уравнения

a n (t )z (n ) (t ) + a n − 1 (t )z (n − 1) (t ) + … + a 1 (t )z «(t ) + a 0 (t )z (t ) = 0

на вспомогательные функции c k (t ) , производные которых удовлетворяют линейной алгебраической системе

Определителем системы (1) служит вронскиан функций z 1 ,z 2 ,…,z n , что обеспечивает её однозначную разрешимость относительно .

Если — первообразные для , взятые при фиксированных значениях постоянных интегрирования, то функция

является решением исходного линейного неоднородного дифференциального уравнения.

Интегрирование неоднородного уравнения при наличии общего решения соответствующего однородного уравнения сводится, таким образом, к квадратурам .

Метод вариации произвольных постоянных для построения решений системы линейных дифференциальных уравнений в векторной нормальной форме

состоит в построении частного решения (1) в виде

где Z (t ) — базис решений соответствующего однородного уравнения, записанный в виде матрицы, а векторная функция , заменившая вектор произвольных постоянных, определена соотношением . Искомое частное решение (с нулевыми начальными значениями при t = t 0 имеет вид

Для системы с постоянными коэффициентами последнее выражение упрощается:

Матрица Z (t )Z − 1 (τ) называется матрицей Коши оператора L = A (t ) .

Рассмотрим теперь линейное неоднородное уравнение
. (2)
Пусть y 1 ,y 2 ,.., y n — фундаментальная система решений, а — общее решение соответствующего однородного уравнения L(y)=0 .

Аналогично случаю уравнений первого порядка, будем искать решение уравнения (2) в виде
. (3)
Убедимся в том, что решение в таком виде существует. Для этого подставим функцию в уравнение. Для подстановки этой функции в уравнение найдём её производные. Первая производная равна
. (4)
При вычислении второй производной в правой части (4) появится четыре слагаемых, при вычислении третьей производной — восемь слагаемых и так далее. Поэтому, для удобства дальнейшего счёта, первое слагаемое в (4) полагают равным нулю. С учётом этого, вторая производная равна
. (5)
По тем же, что и раньше, соображениям, в (5) также полагаем первое слагаемое равным нулю. Наконец, n-я производная равна
. (6)
Подставляя полученные значения производных в исходное уравнение, имеем
. (7)
Второе слагаемое в (7) равно нулю, так как функции y j , j=1,2,..,n, являются решениями соответствующего однородного уравнения L(y)=0. Объединяя с предыдущим, получаем систему алгебраических уравнений для нахождения функций C» j (x)
(8)
Определитель этой системы есть определитель Вронского фундаментальной системы решений y 1 ,y 2 ,. .,y n соответствующего однородного уравнения L(y)=0 и поэтому не равен нулю. Следовательно, существует единственное решение системы (8). Найдя его, получим функции C» j (x), j=1,2,…,n, а, следовательно, и C j (x), j=1,2,…,n Подставляя эти значения в (3), получаем решение линейного неоднородного уравнения.
Изложенный метод называется методом вариации произвольной постоянной или методом Лагранжа.

Пример №1 . Найдём общее решение уравнения y»» + 4y» + 3y = 9e -3 x . Рассмотрим соответствующее однородное уравнение y»» + 4y» + 3y = 0. Корни его характеристического уравнения r 2 + 4r + 3 = 0 равны -1 и -3. Поэтому фундаментальная система решений однородного уравнения состоит из функций y 1 = e — x и y 2 = e -3 x . Решение неоднородного уравнения ищем в виде y = C 1 (x)e — x + C 2 (x)e -3 x . Для нахождения производных C» 1 , C» 2 составляем систему уравнений (8)

C′ 1 ·e -x +C′ 2 ·e -3x =0
-C′ 1 ·e -x -3C′ 2 ·e -3x =9e -3x
решая которую, находим , Интегрируя полученные функции, имеем
Окончательно получим

Пример №2 . Решить линейные дифференциальные уравнения второго порядка с постоянными коэффициентами методом вариации произвольных постоянных:

y(0) =1 + 3ln3
y’(0) = 10ln3

Решение:
Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r 2 -6 r + 8 = 0
D = (-6) 2 — 4·1·8 = 4

Корни характеристического уравнения: r 1 = 4, r 2 = 2
Следовательно, фундаментальную систему решений составляют функции: y 1 =e 4x , y 2 =e 2x
Общее решение однородного уравнения имеет вид: y =C 1 ·e 4x +C 2 ·e 2x
Поиск частного решения методом вариации произвольной постоянной.
Для нахождения производных C» i составляем систему уравнений:
C′ 1 ·e 4x +C′ 2 ·e 2x =0
C′ 1 (4e 4x) + C′ 2 (2e 2x) = 4/(2+e -2x)
Выразим C» 1 из первого уравнения:
C» 1 = -c 2 e -2x
и подставим во второе. В итоге получаем:
C» 1 = 2/(e 2x +2e 4x)
C» 2 = -2e 2x /(e 2x +2e 4x)
Интегрируем полученные функции C» i:

C 1 = 2ln(e -2x +2) — e -2x + C * 1
C 2 = ln(2e 2x +1) – 2x+ C * 2

Поскольку y =C 1 ·e 4x +C 2 ·e 2x , то записываем полученные выражения в виде:
C 1 = (2ln(e -2x +2) — e -2x + C * 1) e 4x = 2 e 4x ln(e -2x +2) — e 2x + C * 1 e 4x
C 2 = (ln(2e 2x +1) – 2x+ C * 2)e 2x = e 2x ln(2e 2x +1) – 2x e 2x + C * 2 e 2x
Таким образом, общее решение дифференциального уравнения имеет вид:
y = 2 e 4x ln(e -2x +2) — e 2x + C * 1 e 4x + e 2x ln(2e 2x +1) – 2x e 2x + C * 2 e 2x
или
y = 2 e 4x ln(e -2x +2) — e 2x + e 2x ln(2e 2x +1) – 2x e 2x + C * 1 e 4x + C * 2 e 2x

Найдем частное решение при условии:
y(0) =1 + 3ln3
y’(0) = 10ln3

Подставляя x = 0, в найденное уравнение, получим:
y(0) = 2 ln(3) — 1 + ln(3) + C * 1 + C * 2 = 3 ln(3) — 1 + C * 1 + C * 2 = 1 + 3ln3
Находим первую производную от полученного общего решения:
y’ = 2e 2x (2C 1 e 2x + C 2 -2x +4 e 2x ln(e -2x +2)+ ln(2e 2x +1)-2)
Подставляя x = 0, получим:
y’(0) = 2(2C 1 + C 2 +4 ln(3)+ ln(3)-2) = 4C 1 + 2C 2 +10 ln(3) -4 = 10ln3

Получаем систему из двух уравнений:
3 ln(3) — 1 + C * 1 + C * 2 = 1 + 3ln3
4C 1 + 2C 2 +10 ln(3) -4 = 10ln3
или
C * 1 + C * 2 = 2
4C 1 + 2C 2 = 4
или
C * 1 + C * 2 = 2
2C 1 + C 2 = 2
Откуда: C 1 = 0, C * 2 = 2
Частное решение запишется как:
y = 2e 4x ·ln(e -2x +2) — e 2x + e 2x ·ln(2e 2x +1) – 2x·e 2x + 2·e 2x

Метод вариации произвольной постоянной, или метод Лагранжа — еще один способ решения линейных дифференциальных уравнений первого порядка и уравнения Бернулли.

Линейные дифференциальные уравнения первого порядка — это уравнения вида y’+p(x)y=q(x). Если в правой части стоит нуль: y’+p(x)y=0, то это — линейное однородное уравнение 1го порядка. Соответственно, уравнение с ненулевой правой частью, y’+p(x)y=q(x), — неоднородное линейное уравнение 1го порядка.

Метод вариации произвольной постоянной (метод Лагранжа) состоит в следующем:

1) Ищем общее решение однородного уравнения y’+p(x)y=0: y=y*.

2) В общем решении С считаем не константой, а функцией от икса: С=С(x). Находим производную общего решения (y*)’ и в первоначальное условие подставляем полученное выражение для y* и (y*)’. Из полученного уравнения находим функцию С(x).

3) В общее решение однородного уравнения вместо С подставляем найденное выражение С(x).

Рассмотрим примеры на метод вариации произвольной постоянной. Возьмем те же задания, что и в , сравним ход решения и убедимся, что полученные ответы совпадают.

1) y’=3x-y/x

Перепишем уравнение в стандартном виде (в отличие от метода Бернулли, где форма записи нам нужна была только для того, чтобы увидеть, что уравнение — линейное).

y’+y/x=3x (I). Теперь действуем по плану.

1) Решаем однородное уравнение y’+y/x=0. Это уравнение с разделяющимися переменными. Представляем y’=dy/dx, подставляем: dy/dx+y/x=0, dy/dx=-y/x. Обе части уравнения умножаем на dx и делим на xy≠0: dy/y=-dx/x. Интегрируем:

2) В полученном общем решении однородного уравнения будем считать С не константой, а функцией от x: С=С(x). Отсюда

Полученные выражения подставляем в условие (I):

Интегрируем обе части уравнения:

здесь С — уже некоторая новая константа.

3) В общее решение однородного уравнения y=C/x, где мы считали С=С(x), то есть y=C(x)/x, вместо С(x) подставляем найденное выражение x³+C: y=(x³+C)/x или y=x²+C/x. Получили такой же ответ, как и при решении методом Бернулли.

Ответ: y=x²+C/x.

2) y’+y=cosx.

Здесь уравнение уже записано в стандартном виде, преобразовывать не надо.

1) Решаем однородное линейное уравнение y’+y=0: dy/dx=-y; dy/y=-dx. Интегрируем:

Чтобы получить более удобную форму записи, экспоненту в степени С примем за новую С:

Это преобразование выполнили, чтобы удобнее было находить производную.

2) В полученном общем решении линейного однородного уравнения считаем С не константой, а функцией от x: С=С(x). При этом условии

Полученные выражения y и y’ подставляем в условие:

Умножим обе части уравнения на

Интегрируем обе части уравнения по формуле интегрирования по частям, получаем:

Здесь С уже не функция, а обычная константа.

3) В общее решение однородного уравнения

подставляем найденную функцию С(x):

Получили такой же ответ, как и при решении методом Бернулли.

Метод вариации произвольной постоянной применим и для решения .

y’x+y=-xy².

Приводим уравнение к стандартному виду: y’+y/x=-y² (II).

1) Решаем однородное уравнение y’+y/x=0. dy/dx=-y/x. Умножаем обе части уравнения на dx и делим на y: dy/y=-dx/x. Теперь интегрируем:

Подставляем полученные выражения в условие (II):

Упрощаем:

Получили уравнение с разделяющимися переменными относительно С и x:

Здесь С — уже обычная константа. В процессе интегрирования писали вместо С(x) просто С, чтобы не перегружать запись. А в конце вернулись к С(x), чтобы не путать С(x) с новой С.

3) В общее решение однородного уравнения y=C(x)/x подставляем найденную функцию С(x):

Получили такой же ответ, что и при решении способом Бернулли.

Примеры для самопроверки:

1. Перепишем уравнение в стандартном виде:y’-2y=x.

1) Решаем однородное уравнение y’-2y=0. y’=dy/dx, отсюда dy/dx=2y, умножаем обе части уравнения на dx, делим на y и интегрируем:

Отсюда находим y:

Выражения для y и y’ подставляем в условие (для краткости будем питать С вместо С(x) и С’ вместо C»(x)):

Для нахождения интеграла в правой части применяем формулу интегрирования по частям:

Теперь подставляем u, du и v в формулу:

Здесь С =const.

3) Теперь подставляем в решение однородного

Теоретический минимум

В теории дифференциальных уравнений существует метод, претендующий на достаточно высокую для этой теории степень универсальности.
Речь идёт о методе вариации произвольной постоянной, применимом к решению различных классов дифференциальных уравнений и их
систем. Это именно тот случай, когда теория — если вывести за скобки доказательства утверждений — минимальна, но позволяет добиваться
значительных результатов, поэтому основной акцент будет сделан на примерах.

Общую идею метода сформулировать довольно просто. Пусть заданное уравнение (систему уравнений) решить сложно или вообще непонятно,
как его решать. Однако видно, что при исключении из уравнения некоторых слагаемых оно решается. Тогда решают именно такое упрощённое
уравнение (систему), получают решение, содержащее некоторое количество произвольных констант — в зависимости от порядка уравнения (количества
уравнений в системе). Затем полагают, что константы в найденном решении в действительности константами не являются, найденное решение
подставляется в исходное уравнение (систему), получается дифференциальное уравнение (или система уравнений) для определения «констант».
Существует определённая специфика в применении метода вариации произвольной постоянной к разным задачам, но это уже частности, которые будут
продемонстрированы на примерах.

Отдельно рассмотрим решение линейных неоднородных уравнений высших порядков, т.е. уравнений вида
.
Общее решение линейного неоднородного уравнения есть сумма общего решения соответствующего однородного уравнения и частного решения
данного уравнения. Предположим, что общее решение однородного уравнения уже найдено, а именно построена фундаментальная система решений (ФСР)
. Тогда общее решение однородного уравнения равно .
Нужно найти любое частное решение неоднородного уравнения. Для этого константы считаются зависящими от переменной .
Далее нужно решить систему уравнений
.
Теория гарантирует, что у этой системы алгебраических уравнений относительно производных от функций есть единственное решение.
При нахождении самих функций константы интегрирования не появляются: ищется ведь любое одно решение.

В случае решения систем линейных неоднородных уравнений первого порядка вида

алгоритм почти не меняется. Сначала нужно найти ФСР соответствующей однородной системы уравнений, составить фундаментальную матрицу
системы , столбцы которой представляют собой элементы ФСР. Далее составляется уравнение
.
Решая систему, определяем функции , находя таким образом, частное решение исходной системы
(фундаментальная матрица умножается на столбец найденных функций ).
Прибавляем его к общему решению соответствующей системы однородных уравнений, которое строится на основе уже найденной ФСР.
Получается общее решение исходной системы.

Примеры.

Пример 1. Линейные неоднородные уравнения первого порядка .

Рассмотрим соответствующее однородное уравнение (искомую функцию обозначим ):
.
Это уравнение легко решается методом разделения переменных:

.
А теперь представим решение исходного уравнения в виде , где функцию ещё предстоит найти.
Подставляем такой вид решения в исходное уравнение:
.
Как видно, второе и третье слагаемое в левой части взаимно уничтожаются — это характерная черта метода вариации произвольной постоянной.

Вот здесь уже — действительно, произвольная постоянная. Таким образом,
.

Пример 2. Уравнение Бернулли .

Действуем аналогично первому примеру — решаем уравнение

методом разделения переменных. Получится , поэтому решение исходного уравнения ищем в виде
.
Подставляем эту функцию в исходное уравнение:
.
И снова происходят сокращения:
.
Здесь нужно не забыть удостовериться, что при делении на не теряется решение. А случаю отвечает решение исходного
уравнения . Запомним его. Итак,
.
Запишем .
Это и есть решение. При записи ответа следует также указать найденное ранее решение , так как ему не соответствует никакое конечное значение
константы .

Пример 3. Линейные неоднородные уравнения высших порядков .

Сразу заметим, что это уравнение можно решить и проще, но на нём удобно показать метод. Хотя некоторые преимущества
у метода вариации произвольной постоянной и в этом примере есть.
Итак, начинать нужно с ФСР соответствующего однородного уравнения. Напомним, что для нахождения ФСР составляется характеристическое
уравнение
.
Таким образом, общее решение однородного уравнения
.
Входящие сюда константы и предстоит варьировать. Составляем сист

Derivative Calculator: Wolfram|Alpha

WolframAlpha

Solve derivatives with Wolfram|Alpha

ddx xsin

x2

Math Input

Calculus & Sums

Больше, чем просто онлайн-решатель производных

Wolfram|Alpha — отличный калькулятор для первых, вторых и третьих производных; производные в точке; и частные производные. Узнайте, что такое производные и как Wolfram|Alpha их вычисляет. 92 x) wrt x

  • Посмотреть другие примеры »

Доступ к инструментам мгновенного обучения

Немедленная обратная связь и рекомендации с помощью пошаговых решений и генератора проблем Wolfram

Узнайте больше о:

  • Пошаговое руководство пошаговые решения »
  • Генератор задач Wolfram »

Что такое производные?

Производная — важный инструмент исчисления, представляющий бесконечно малое изменение функции по отношению к одной из ее переменных.

Для заданной функции существует много способов обозначить производную относительно . Наиболее распространены способы и . Когда производная берется раз, используется обозначение или . Они называются производными высшего порядка. Обратите внимание, что для производных второго порядка часто используется обозначение.

В точке производная определяется как . Существование этого предела не гарантируется, но если он существует, то говорят, что он дифференцируем при . Геометрически говоря, это наклон касательной в .

Например, если , то и тогда мы можем вычислить : . Производная является мощным инструментом со многими приложениями. Например, он используется для поиска локальных/глобальных экстремумов, поиска точек перегиба, решения задач оптимизации и описания движения объектов.

Как Wolfram|Alpha вычисляет производные

Wolfram|Alpha вызывает D-функцию Wolfram Languages, которая использует таблицу тождеств, намного большую, чем можно найти в стандартном учебнике по математическому анализу. Он использует известные правила, такие как линейность производной, правило произведения, правило степени, правило цепи и так далее. Кроме того, D использует менее известные правила для вычисления производной широкого спектра специальных функций. Для производных более высокого порядка определенные правила, такие как общее правило произведения Лейбница, могут ускорить вычисления. 9Константы: пи Функции: sin cosec cos tg ctg sech sec arcsin arccosec arccos arctg arcctg arcsec exp lb lg ln versin vercos haversin exsec excsc sqrt sh ch th cth csch

Функция

 

Производное максимальное число

Во время загрузки и создания может происходить замедление работы браузера.

Синтаксис формулы функции

В записи функции вы можете использовать одну переменную (всегда используйте x ), скобки, число пи ( 9 .
Вы можете использовать следующие общие функции: sqrt — квадратный корень, exp — степень экспоненты, lb — логарифм по основанию 2, lg — логарифм по основанию 10, ln — логарифм по основанию e, SIN — SINE, COS — COSINE, TG — TANGENT, CTG — COTANGENT, SEC — SECANT, COSEC — COSECANT, ARCSIN -ARCSINE, ARCSINE, 901, 901, 9013, 901, , , , , , , , , , . — арктангенс, ARCCTG — ARCCOTANGENT, ARCSEC — ARCSECANT, ARCCOSEC — ARCCOSECANT, Versin — Versine, — vercos — Vercosine, HARED -HAVERNIN — гиперболический синус, ch — гиперболический косинус, th — гиперболический тангенс, cth — гиперболический котангенс, sech — гиперболический секанс, csch — гиперболический косеканс, абс — модуль, sgn — signum (знак), log__ p — логарифм по основанию p , f.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *