Радиус шара как найти: Калькулятор расчета радиуса шара через объем

Содержание

Как узнать радиус шара зная его объем. Шар и сфера, объем шара, площадь сферы, формулы

Как узнать радиус шара зная его объем. Шар и сфера, объем шара, площадь сферы, формулы

Определение.

Сфера (поверхность шара ) — это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение.

Шар — это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение. Радиус сферы (шара) (R) — это расстояние от центра сферы (шара)

O к любой точке сферы (поверхности шара).

Определение. Диаметр сферы (шара) (D) — это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

Формула. Объём шара :

V =4π R 3 =1π D 3
36

Формула. Площадь поверхности сферы через радиус или диаметр:

S = 4π R 2 = π D 2

Уравнение сферы

1. Уравнение сферы с радиусом R и центром в начале декартовой системе координат :

x 2 + y 2 + z 2 = R 2

2. Уравнение сферы с радиусом R и центром в точке с координатами (x 0 , y 0 , z 0) в декартовой системе координат :

(x — x 0) 2 + (y — y 0) 2 + (z — z 0) 2 = R 2

Определение. Диаметрально противоположными точками называются любые две точки на поверхности шара (сфере), которые соединены диаметром.

Основные свойства сферы и шара

1. Все точки сферы одинаково удалены от центра.

2. Любое сечение сферы плоскостью является окружностью.

3. Любое сечение шара плоскостью есть кругом.

4. Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности.

5. Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы или кругов для шара.

6. Через любые две точки, кроме диаметрально противоположных точек, можно провести только одну большую окружность для сферы или большой круг для шара.

7. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух диаметрально противоположных точках.

8. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары

пересекаются , а в плоскости пересечения образуется круг.


Секущая, хорда, секущая плоскость сферы и их свойства

Определение. Секущая сферы — это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) — это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость — это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость — это секущая плоскость, проходящая через центр сферы или шара, сеченме образует соответственно большую окружность и большой круг . Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Любая хорда, проходящая через центр сферы (шара) является диаметром.

Хорда является отрезком секущей прямой.

Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

d

Расстояние m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m

Местом сечения секущей плоскости на сфере всегда будет малая окружность , а на шаре местом сечения будет малый круг . Малая окружность и малый круг имеют свои центры, не совпадающих с центром сферы (шара). Радиус r такого круга можно найти по формуле:

r = √R 2 — m 2 ,

Где R — радиус сферы (шара), m — расстояние от центра шара до секущей плоскости.

Определение. Полусфера (полушар) — это половина сферы (шара), которая образуется при ее сечении диаметральной плоскостью.

Касательная, касательная плоскость к сфере и их свойства

Определение. Касательная к сфере — это прямая, которая касается сферы только в одной точке.

Определение.

Касательная плоскость к сфере — это плоскость, которая соприкасается со сферой только в одной точке.

Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

Определение. Сегмент шара — это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.

Формула. Площадь внешней поверхности сегмента сферы с высотой h через радиус сферы R:

S = 2π Rh

Шар — это геометрическое тело вращения, образованное путем вращения круга или полукруга вокруг его диаметра. Также шар — это пространство, ограниченное сферической поверхностью. Существует множество реальных сферических объектов и связанных с ними задач, для решения которых требуется определить объем шара.

Шар и сфера

Круг — самая древняя геометрическая фигура, и античные ученые придавали ей сакральное значение. Круг — это символ нескончаемого времени и пространства, символ Вселенной и бытия. По мнению Пифагора, круг — прекраснейшая из фигур. В трехмерном пространстве окружность превращается в сферу, такую же идеальную, космическую и прекрасную, как и круг.

Сфера по-древнегречески означает «мяч». Сфера представляет собой поверхность, образованную бесконечным множеством точек, равноудаленных от центра фигуры. Пространство, ограниченное сферой, и есть шар. Шар — идеальная геометрическая фигура, форму которой принимают многие реальные объекты. К примеру, в реальной жизни форму шара имеют пушечные ядра, подшипники или мячи, в природе — капли воды, кроны деревьев или ягоды, в космосе — звезды, метеоры или планеты.

Объем шара

Определение объема сферической фигуры — сложная задача, ведь такое геометрическое тело нельзя разбить на кубы или треугольные призмы, формулы объемов которых уже известны. Современная наука позволяет вычислить объем шара при помощи определенного интеграла, однако каким образом была выведена формула объема в Древней Греции, когда об интегралах еще никто не слышал? Архимед вычислил объем шара при помощи конуса и цилиндра, так как формулы объемов этих фигур были уже определены древнегреческим философом и математиком Демокритом.

Архимед представил половину шара при помощи одинаковых конуса и цилиндра, при этом радиус каждой фигуры был равен ее высоте R = h. Античный ученый представил конус и цилиндр разбитыми на бесконечное количество маленьких цилиндров. Архимед понял, что если из объема цилиндра Vc вычесть объем конуса Vk, он получит объем одной полусферы Vsh:

0,5 Vsh = Vc − Vk

Объем конуса вычисляется по простой формуле:

Vk = 1/3 × So × h,

но зная, что So в данном случае — это площадь круга, а h = R, то формула трансформируется в:

Vk = 1/3 × pi × R × R 2 = 1/3 pi × R 3

Объем цилиндра вычисляется по формуле:

Vc = pi × R 2 × h,

но считая, что высота цилиндра равна его радиусу, мы получаем:

Vc = pi × R 3 .

Используя эти формулы, Архимед получил:

0,5 Vsh = pi × R 3 — 1/3 pi × R 3 или Vsh = 4/3 pi × R 3

Современное определение формулы объема шара выводится из интеграла от площади сферической поверхности, однако результат остается все тем же

Vsh = 4/3 pi × R 3

Расчет объема шара может понадобиться как в реальной жизни, так и при решении абстрактных задач. Для вычисления объема шара при помощи онлайн-калькулятора вам понадобится узнать всего один параметр на выбор: диаметр или радиус сферы. Рассмотрим пару примеров.

Примеры из жизни

Пушечные ядра

Допустим, вы хотите узнать, сколько чугуна необходимо для отливки пушечного ядра шестифутового калибра. Вы знаете, что диаметр такого ядра составляет 9,6 сантиметров. Введите это число в ячейку калькулятора «Диаметр», и вы получите ответ в виде

Таким образом, для выплавки пушечного ядра заданного калибра вам понадобится 463 кубических сантиметров или 0,463 литра чугуна.

Воздушные шары

Пусть вам любопытно, сколько воздуха необходимо для накачки воздушного шара идеальной сферической формы. Вы знаете, что радиус выбранного шарика составляет 10 см. Вбейте это значение в ячейку калькулятора «Радиус» и вы получите результат

Это означает, что для накачки одного такого шара вам понадобится 4188 кубических сантиметров или 4,18 литров воздуха.

Заключение

Необходимость определения объема шара может возникнуть в самых разных ситуациях: от абстрактных школьных задач до научных изысканий и производственных вопросов. Для решения вопросов любой сложности используйте наш онлайн-калькулятор, который мгновенно представит вам точный результат и необходимые математические выкладки.

Многие тела, которые мы встречаем в жизни или о которых слышали, имеют шарообразную форму, например футбольный мяч, падающая капля воды во время дождя или наша планета. В связи с этим является актуальным рассмотрение вопроса, как находить объем шара.

Фигура шар в геометрии

Перед тем как ответить на вопрос, шара, рассмотрим подробнее это тело. Некоторые люди путают его со сферой. Внешне они действительно похожи, однако шар — это заполненный внутри объект, сфера же представляет собой лишь внешнюю оболочку шара бесконечно малой толщины.

С точки зрения геометрии шар можно представить совокупностью точек, причем те из них, которые лежат на его поверхности (они образуют сферу), находятся на одинаковом расстоянии от центра фигуры. Это расстояние называют радиусом. По сути, радиус — это единственный параметр, с помощью которого можно описать любые свойства шара, такие как площадь его поверхности или объем.

На рисунке ниже приведен пример шара.

Если внимательно посмотреть на этот идеальный круглый объект, то можно догадаться, как его получить из обычного круга. Для этого достаточно вращать эту плоскую фигуру вокруг оси, совпадающей с его диаметром.

Одним из известных древних литературных источников, в котором достаточно подробно рассматриваются свойства этой объемной фигуры, является труд греческого философа Евклида — «Элементы».

Площадь поверхности и объем

Рассматривая вопрос, как находить объем шара, помимо этой величины, следует привести формулу для его площади, поскольку оба выражения можно связать друг с другом, как будет показано ниже.

Итак, чтобы вычислить объем шара, следует применить одну из следующих двух формул:

  • V = 4/3 *pi * R3;
  • V = 67/16 * R3.

Здесь R — радиус фигуры. Первая из приведенных формул является точной, однако, чтобы воспользоваться этим преимуществом, необходимо использовать соответствующее число знаков после запятой для числа pi. Второе выражение дает вполне хороший результат, отличаясь от первого всего на 0,03 %. Для ряда практических задач этой точности более чем достаточно.

Равна этой величине для сферы, то есть выражается формулой S = 4 * pi * R2. Если отсюда выразить радиус, а затем подставить его в первую формулу для объема, тогда получим: R = √ (S / (4 * pi)) = > V = S / 3 * √ (S / (4 * pi)).

Таким образом, мы рассмотрели вопросы, как найти объем шара через радиус и через площадь его поверхности. Эти выражения можно с успехом применять на практике. Далее в статье приведем пример их использования.

Задача с каплей дождя

Вода, когда находится в невесомости, приобретает форму шарообразной капли. Связано это с наличием сил поверхностного натяжения, которые стремятся минимизировать площадь поверхности. Шар, в свою очередь, обладает наименьшим ее значением среди всех геометрических фигур с одинаковой массой.

Во время дождя падающая капля воды находится в невесомости, поэтому ее формой является шар (здесь пренебрегаем силой сопротивления воздуха).

Необходимо определить объем, площадь поверхности и радиус этой капли, если известно, что ее масса составляет 0,05 грамма.

Объем определить просто, для этого следует поделить известную массу на плотность H 2 O (ρ = 1 г/см 3). Тогда V = 0,05 / 1 = 0,05 см 3 .

Зная, как найти объем шара, следует выразить из формулы радиус и подставить полученное значение, имеем: R = ∛ (3 * V / (4 * pi)) = ∛ (3 * 0,05 / (4 * 3,1416)) = 0,2285 см.

Теперь значение радиуса подставляем в выражение для площади поверхности фигуры, получаем: S = 4 * 3,1416 * 0,22852 = 0,6561 см 2 .

Таким образом, зная, как находить объем шара, мы получили ответы на все вопросы задачи: R = 2,285 мм, S = 0,6561 см 2 и V = 0,05 см 3 .

Радиус шара (обозначается как r или R) – это отрезок, который соединяет центр шара с любой точкой на его поверхности. Как и в случае круга, радиус шара является важной величиной, которая необходима для нахождения диаметра шара, длины окружности, площади поверхности и/или объема.

Но радиус шара можно найти и по данному значению диаметра, длины окружности и другой величины. Используйте формулу, в которую можно подставить данные значения.

Шаги

Формулы для вычисления радиуса

    Вычислите радиус по диаметру. Радиус равен половине диаметра, поэтому используйте формулу г = D/2 . Эта такая же формула, которая используется при вычислении радиуса и диаметра круга.

  • Например, дан шар с диаметром 16 см. Радиус этого шара: r = 16/2 = 8 см . Если диаметр равен 42 см, то радиус равен 21 см (42/2=21).
  • Вычислите радиус по длине окружности. Используйте формулу: r = C/2π . Так как длина окружности C = πD = 2πr, то разделите формулу для вычисления длины окружности на 2π и получите формулу для нахождения радиуса.

    • Например, дан шар с длиной окружности 20 см. Радиус этого шара: r = 20/2π = 3,183 см .
    • Такая же формула используется при вычислении радиуса и длины окружности круга.
  • Вычислите радиус по объему шара. Используйте формулу: r = ((V/π)(3/4)) 1/3 . Объем шара вычисляется по формуле V = (4/3)πr 3 . Обособив r на одной стороне уравнения, вы получите формулу ((V/π)(3/4)) 3 = г, то есть для вычисления радиуса объем шара делим на π, результат умножаем на 3/4, а полученный результат возводим в степень 1/3 (или извлекаем кубический корень).

    • Например, дан шар с объемом 100 см 3 . Радиус этого шара вычисляется так:
      • ((V/π)(3/4)) 1/3 = r
      • ((100/π)(3/4)) 1/3 = r
      • ((31,83)(3/4)) 1/3 = r
      • (23,87) 1/3 = r
      • 2,88 см = r
  • Вычислите радиус по площади поверхности. Используйте формулу: г = √(A/(4 π)) . Площадь поверхности шара вычисляется по формуле А = 4πr 2 . Обособив r на одной стороне уравнения, вы получите формулу √(A/(4π)) = r, то есть, чтобы вычислить радиус, нужно извлечь квадратный корень из площади поверхности, деленной на 4π. Вместо того чтобы извлекать корень, выражение (A/(4π)) можно возвести в степень 1/2.

    • Например, дан шар с площадью поверхности 1200 см 3 . Радиус этого шара вычисляется так:
      • √(A/(4π)) = r
      • √(1200/(4π)) = r
      • √(300/(π)) = r
      • √(95,49) = r
      • 9,77 см = r

    Определение основных величин

    1. Запомните основные величины, которые имеют отношение к вычислению радиуса шара. Радиус шара – это отрезок, который соединяет центр шара с любой точкой на его поверхности. Радиус шара можно вычислить по данным значениям диаметра, длины окружности, объема или площади поверхности.

      Воспользуйтесь значениями данных величин, чтобы найти радиус. Радиус можно вычислить по данным значениям диаметра, длины окружности, объема и площади поверхности. Более того, указанные величины можно найти по данному значению радиуса. Чтобы вычислить радиус, просто преобразуйте формулы для нахождения указанных величин. Ниже приведены формулы (в которых присутствует радиус) для вычисления диаметра, длины окружности, объема и площади поверхности.

    Нахождение радиуса по расстоянию между двумя точками

    1. Найдите координаты (х,у,z) центра шара. Радиус шара равен расстоянию между его центром и любой точкой, лежащей на поверхности шара. Если известны координаты центра шара и любой точки, лежащей на его поверхности, можно найти радиус шара по специальной формуле, вычислив расстояние между двумя точками. Сначала найдите координаты центра шара. Имейте в виду, что так как шар является трехмерной фигурой, то точка будет иметь три координаты (х,у,z), а не две (х,у).

      • Рассмотрим пример. Дан шар с центром с координатами (4,-1,12) . Воспользуйтесь этими координатами, чтобы найти радиус шара.
    2. Найдите координаты точки, лежащей на поверхности шара. Теперь нужно найти координаты (х,у,z) любой точки, лежащей на поверхности шара. Так как все точки, лежащие на поверхности шара, расположены на одинаковом расстоянии от центра шара, для вычисления радиуса шара можно выбрать любую точку.

      • В нашем примере допустим, что некоторая точка, лежащая на поверхности шара, имеет координаты (3,3,0) . Вычислив расстояние между этой точкой и центром шара, вы найдете радиус.
    3. Вычислите радиус по формуле d = √((x 2 — x 1) 2 + (y 2 — y 1) 2 + (z 2 — z 1) 2). Узнав координаты центра шара и точки, лежащей на его поверхности, вы можете найти расстояние между ними, которое равно радиусу шара. Расстояние между двумя точками вычисляется по формуле d = √((x 2 — x 1) 2 + (y 2 — y 1) 2 + (z 2 — z 1) 2), где d – расстояние между точками, (x 1 ,y 1 ,z 1) – координаты центра шара, (x 2 ,y 2 ,z 2) – координаты точки, лежащей на поверхности шара.

      • В рассматриваемом примере вместо (x 1 ,y 1 ,z 1) подставьте (4,-1,12), а вместо (x 2 ,y 2 ,z 2) подставьте (3,3,0):
        • d = √((x 2 — x 1) 2 + (y 2 — y 1) 2 + (z 2 — z 1) 2)
        • d = √((3 — 4) 2 + (3 — -1) 2 + (0 — 12) 2)
        • d = √((-1) 2 + (4) 2 + (-12) 2)
        • d = √(1 + 16 + 144)
        • d = √(161)
        • d = 12,69 . Это искомый радиус шара.
    4. Имейте в виду, что в общих случаях r = √((x 2 — x 1) 2 + (y 2 — y 1) 2 + (z 2 — z 1) 2). Все точки, лежащие на поверхности шара, расположены на одинаковом расстоянии от центра шара. Если в формуле для нахождения расстояния между двумя точками «d» заменить на «r», получится формула для вычисления радиуса шара по известным координатам (x 1 ,y 1 ,z 1) центра шара и координатам (x 2 ,y 2 ,z 2) любой точки, лежащей на поверхности шара.

      • Возведите обе стороны этого уравнения в квадрат, и получите r 2 = (x 2 — x 1) 2 + (y 2 — y 1) 2 + (z 2 — z 1) 2 . Отметьте, что это уравнение соответствует уравнению сферы r 2 = x 2 + y 2 + z 2 с центром с координатами (0,0,0).
    • Не забывайте про порядок выполнения математических операций. Если вы не помните этот порядок, а ваш калькулятор умеет работать с круглыми скобками, пользуйтесь ими.
    • В этой статье рассказывается о вычислении радиуса шара. 1/3 — извлечение кубического корня.

      Источники:

      • диаметр это

      Окружностью называется геометрическая фигура на плоскости, которая состоит из всех точек этой плоскости находящихся на одинаковом расстоянии от заданной точки. Заданная точка при этом называется центром окружности , а расстояние, на котором точки окружности находятся от её центра – радиусом окружности . Область плоскости ограниченная окружностью называется кругом.Существует несколько методов расчёта диаметра окружности , выбор конкретного зависти от имеющихся первоначальных данных.

      Инструкция

      Видео по теме

      При проведении построений различных геометрических фигур иногда требуется определить их характеристики: длину, ширину, высоту и так далее. Если речь идет о круге или окружности, то часто приходится определять их диаметр. Диаметр представляет собой отрезок прямой, который соединяет две наиболее удаленных друг от друга точки, расположенные на окружности.

      Вам понадобится

      • — измерительная линейка;
      • — циркуль;
      • — калькулятор.

      Инструкция

      В самом простом случае определите диаметр по формуле D = 2R, где R – радиус окружности с центром в точке О. Такая удобна, если вы вычерчиваете круг с заранее оговоренным . Например, если при построении фигуры вы установите раствор ножек циркуля равным 50 мм, то диаметр круга, полученного в результате, будет равен удвоенному радиусу, то есть 100 мм.

      Если вам известна длина окружности, составляющей внешнюю границу круга, то используйте для определения диаметра формулу:

      D = L / p, где
      L – длина окружности;
      p – число «пи», равное приблизительно 3,14.

      Например, если длина 180 мм, то диаметр будет равняться приблизительно: D = 180 / 3,14 = 57,3 мм.

      Если вы имеете предварительно вычерченный круг с радиусом, диаметром и длиной окружности, то для приблизительного диаметра используйте и измерительную линейку . Сложность заключается в том, чтобы найти на

      Полная площадь шара.

      Как найти площадь и объем шара. Секущая, хорда, секущая плоскость сферы и их свойства

      Словари. Энциклопедии. История. Литература. Русский язык » Религия » Полная площадь шара. Как найти площадь и объем шара. Секущая, хорда, секущая плоскость сферы и их свойства

      Мы даем здесь очень простой, хотя и не совсем строгий вывод формулы для площади сферической поверхности; по своей идее он очень близок к методам интегрального исчисления. Итак, пусть дан некоторый шар радиуса R. Выделим на его поверхности какую-либо малую область (рис. 412) и рассмотрим пирамиду или конус с вершиной в центре шара О, имеющие эту область своим основанием; строго говоря, мы лишь условно говорим о конусе или пирамиде, так как основание не плоское, а сферическое. Но при малых размерах основания по сравнению с радиусом шара оно будет весьма мало отличаться от плоского (так, например, при измерении не очень большого земельного участка пренебрегают тем, что он лежит не на плоскости, а на сфере).

      Тогда, обозначая через площадь этого участка — основание «пирамиды», найдем ее объем как произведение одной трети высоты на площадь основания (высотой служит радиус шара):

      Если теперь всю поверхность шара разложить на очень большое число N таких малых областей , тем самым объем шара на N объемов «пирамид», имеющих эти области своими основаниями, то весь объем представится суммой

      где последняя сумма равна полной поверхности шара:

      Итак, объем шара равен одной трети произведения его радиуса на площадь поверхности. Отсюда для площади поверхности имеем формулу

      Последний результат формулируется так:

      Площадь поверхности шара равна учетверенной площади его большого круга.

      Приведенный вывод пригоден и для площади поверхности сектора шара (имеем в виду только основание, т. е. сферическую поверхность, или «шапочки»; см. рис. 409). И в этом случае объем сектора равен одной трети произведения радиуса шара на площадь его сферического основания:

      откуда находим для площади шапочки формулу

      Шаровым поясом (см. рис. 408) называют сферическую поверхность шарового слоя. Чтобы вычислить площадь поверхности шарового пояса, находим разность поверхностей двух сферических шапочек:

      где — высота слоя. Итак, площадь поверхности шарового пояса для данного шара зависит только от высоты соответствующего слоя, но не от его положения на шаре.

      Задача. Боковая поверхность конуса, описанного вокруг шара, имеет площадь, равную полуторной площади поверхности шара. Найти высоту конуса, если радиус шара равен .

      Решение. Введем для удобства угол а между высотой и образующей конуса (рис. 413). Найдем для высоты, радиуса основания и образующей конуса выражения

      Мы даем здесь очень простой, хотя и не совсем строгий вывод формулы для площади сферической поверхности; по своей идее он очень близок к методам интегрального исчисления. Итак, пусть дан некоторый шар радиуса R. Выделим на его поверхности какую-либо малую область (рис. 412) и рассмотрим пирамиду или конус с вершиной в центре шара О, имеющие эту область своим основанием; строго говоря, мы лишь условно говорим о конусе или пирамиде, так как основание не плоское, а сферическое. Но при малых размерах основания по сравнению с радиусом шара оно будет весьма мало отличаться от плоского (так, например, при измерении не очень большого земельного участка пренебрегают тем, что он лежит не на плоскости, а на сфере).

      Тогда, обозначая через площадь этого участка — основание «пирамиды», найдем ее объем как произведение одной трети высоты на площадь основания (высотой служит радиус шара):

      Если теперь всю поверхность шара разложить на очень большое число N таких малых областей , тем самым объем шара на N объемов «пирамид», имеющих эти области своими основаниями, то весь объем представится суммой

      где последняя сумма равна полной поверхности шара:

      Итак, объем шара равен одной трети произведения его радиуса на площадь поверхности. Отсюда для площади поверхности имеем формулу

      Последний результат формулируется так:

      Площадь поверхности шара равна учетверенной площади его большого круга.

      Приведенный вывод пригоден и для площади поверхности сектора шара (имеем в виду только основание, т. е. сферическую поверхность, или «шапочки»; см. рис. 409). И в этом случае объем сектора равен одной трети произведения радиуса шара на площадь его сферического основания:

      откуда находим для площади шапочки формулу

      Шаровым поясом (см. рис. 408) называют сферическую поверхность шарового слоя. Чтобы вычислить площадь поверхности шарового пояса, находим разность поверхностей двух сферических шапочек:

      где — высота слоя. Итак, площадь поверхности шарового пояса для данного шара зависит только от высоты соответствующего слоя, но не от его положения на шаре.

      Задача. Боковая поверхность конуса, описанного вокруг шара, имеет площадь, равную полуторной площади поверхности шара. Найти высоту конуса, если радиус шара равен .

      Решение. Введем для удобства угол а между высотой и образующей конуса (рис. 413). Найдем для высоты, радиуса основания и образующей конуса выражения

      Имея при себе всего одну формулу и зная изначально, чему равен диаметр или радиус, можно с лёгкостью вычислить площадь поверхности шара. Формула будет иметь вид S =4πR2 , где число «пи» умножается на 4, затем на радиус шара в квадратной степени. Но перед непосредственными вычислениями следует сразу разобраться в терминах.

      Трактовка значений

      Это следует знать:

      • Шар – геометрический объект, получившийся в результате вращательных полукруговых движений вокруг центра. Любая точка поверхности шара находится на одинаковом расстоянии от центра.
      • Сфера – не то же самое, что шар. Если тот является объёмным объектом и включает в себя внутреннее пространство, то сфера – это лишь поверхность данного объекта и имеет только свою площадь. Иными словами – нельзя сказать, что сфера имеет такой-то объём, в отличие от шара.
      • Число «пи» — это постоянное число, равное отношению длины окружности к её диаметру. В сокращённом виде его принято обозначать числом, равным 3,14. Но на самом деле, после тройки идёт больше тысячи цифр!
      • Радиус шара равен ½ его диаметру . Точный диаметр можно вычислить с использованием нескольких плоских и ровных предметов. Нужно лишь зажать шар между этими предметами, которые зажимают шар и расположены перпендикулярно друг к другу, а затем измерить получившийся диаметр.
      • Квадратная степень обозначается в виде двойки и означает то, что это число надо умножить на само себя один раз. Если бы степень числа была в виде тройки, то умножать на само себя нужно было бы два раза. Записав выражение на бумаге, можно понять, почему используются именно двойка и тройка, а не единица и двойка.
      • Объём – величина, обозначающая размер в пространстве, занимающее объектом. От диаметра зависит объём шара. Формула будет равна четырём трети, умноженным на число «пи» и вновь умноженным на его радиус в кубе.
      • Площадь – величина, обозначающая размер поверхности объекта, но не внутреннего пространства.

      Занимательные факты

      Это интересно:

      1. У числа «пи» есть собственные фан-клубы по всему миру. Члены общества пытаются запомнить как можно больше знаков из этого числа, а также пытаются разгадать вселенские тайны, сокрытые в числе.
      2. Площадь суши Земли составляет всего 29,2 % от её общей поверхности. Точное число площади сложно назвать из-за неравномерного рельефа Земли, такие как впадины и горы.
      3. Знания о формуле площади шара можно применять и в быту. Также этими знаниями можно подавлять соперника в споре.

      Продемонстрировав объём своих знаний в области геометрии, можно изначально заставить вас уважать, а ремонтникам и продавцам можно дать понять, что вас просто так не обмануть.

      Применение формулы

      Рассмотрим на примере, как вычислить площадь круглого шара , диаметр которого равен 50 см. Следуя формуле, нужно 50 разделить на два (чтобы получить радиус), возвести полученное число в квадрат и умножить всё это дело сначала на 4, затем на 3,14. В итоге получим число в 7 850 квадратных сантиметров.

      Формула вычисления площади применяется не только среди учителей в школе и научных сотрудников в лаборатории. Данная формула может пригодиться обычному маляру. Ведь если шар большой, а краски мало, то возникает вопрос – хватит ли ему этой смеси, чтобы покрасить весь объект. И это далеко не единственный бытовой случай, где может пригодиться формула.

      Формула вычисления объёма может пригодиться и строительной бригаде, что делает ремонт. И неважно, какой это объект – промышленное здание, небольшой дом или обычная квартира. Этим и отличаются профессионалы – они умеют применять свои знания на практике.

      Но как быть, если не представляется возможным измерить объект? Такой вопрос может возникнуть в случае огромных размеров объекта или его недосягаемости. В этом случае могут помочь электронные технологии, в основе работы которых лежит сканирование пространства определёнными частотами и лазерами. С современными технологиями необязательно знать все формулы наизусть. Достаточно иметь подключение к интернету и зайти на любой онлайн-калькулятор.

      Принято считать, что первый, кто нашёл и вывел формулу объёма и площади шара, был Архимед . Это величайший древнегреческий учёный, живший за 300 лет до нашей эры. Он был не только математиком, но и физиком, и инженером. Он один из первых людей, кто попытался «оцифровать» окружающий нас мир. Его теоремы и труды используются по сей день.

      Именно Архимед определил границы числа «пи» и обозначил их, не имея никаких современных гаджетов. Сам Архимед очень гордился найденной формулой, с помощью которой вычисляется объём шара. Его потомки в честь этого изобразили на его могильном камне цилиндр и шар.

      Если бы каким-то чудом он переродился в наше время, то он сразу же смог бы преобразить этот мир и вывести его на новый уровень.

      Видео

      На примере этого видео вам будет легко понять, как найти площадь поверхности шара.

      Определение.

      Сфера (поверхность шара ) — это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

      Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

      Определение.

      Шар — это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

      Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

      Определение. Радиус сферы (шара) (R) — это расстояние от центра сферы (шара) O к любой точке сферы (поверхности шара).

      Определение. Диаметр сферы (шара) (D) — это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

      Формула. Объём шара :

      V =4π R 3 =1π D 3
      36

      Формула. Площадь поверхности сферы через радиус или диаметр:

      S = 4π R 2 = π D 2

      Уравнение сферы

      1. Уравнение сферы с радиусом R и центром в начале декартовой системе координат :

      x 2 + y 2 + z 2 = R 2

      2. Уравнение сферы с радиусом R и центром в точке с координатами (x 0 , y 0 , z 0) в декартовой системе координат :

      (x — x 0) 2 + (y — y 0) 2 + (z — z 0) 2 = R 2

      Определение. Диаметрально противоположными точками называются любые две точки на поверхности шара (сфере), которые соединены диаметром.

      Основные свойства сферы и шара

      1. Все точки сферы одинаково удалены от центра.

      2. Любое сечение сферы плоскостью является окружностью.

      3. Любое сечение шара плоскостью есть кругом.

      4. Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности.

      5. Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы или кругов для шара.

      6. Через любые две точки, кроме диаметрально противоположных точек, можно провести только одну большую окружность для сферы или большой круг для шара.

      7. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух диаметрально противоположных точках.

      8. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары пересекаются , а в плоскости пересечения образуется круг.


      Секущая, хорда, секущая плоскость сферы и их свойства

      Определение. Секущая сферы — это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

      Определение. Хорда сферы (шара) — это отрезок, соединяющий две точки сферы (поверхности шара).

      Определение. Секущая плоскость — это плоскость, которая пересекает сферу.

      Определение. Диаметральная плоскость — это секущая плоскость, проходящая через центр сферы или шара, сеченме образует соответственно большую окружность и большой круг . Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

      Любая хорда, проходящая через центр сферы (шара) является диаметром.

      Хорда является отрезком секущей прямой.

      Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

      d

      Расстояние m между секущей плоскостью и центром сферы всегда меньше радиуса R:

      m

      Местом сечения секущей плоскости на сфере всегда будет малая окружность , а на шаре местом сечения будет малый круг . Малая окружность и малый круг имеют свои центры, не совпадающих с центром сферы (шара). Радиус r такого круга можно найти по формуле:

      r = √R 2 — m 2 ,

      Где R — радиус сферы (шара), m — расстояние от центра шара до секущей плоскости.

      Определение. Полусфера (полушар) — это половина сферы (шара), которая образуется при ее сечении диаметральной плоскостью.

      Касательная, касательная плоскость к сфере и их свойства

      Определение. Касательная к сфере — это прямая, которая касается сферы только в одной точке.

      Определение. Касательная плоскость к сфере — это плоскость, которая соприкасается со сферой только в одной точке.

      Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

      Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

      Определение. Сегмент шара — это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.

      Формула. Площадь внешней поверхности сегмента сферы с высотой h через радиус сферы R:

      S = 2π Rh

      Калькулятор радиуса сферы-Cuemath

      Калькулятор радиуса сферы — это бесплатный онлайн-инструмент, который помогает найти радиус сферы.

      Что такое калькулятор радиуса сферы?

      «Калькулятор радиуса сферы» — это бесплатный онлайн-инструмент, который вычисляет радиус сферы, когда заданы другие измерения. Калькулятор радиуса сферы дает вам радиус сферы в течение нескольких секунд.

      Калькулятор радиуса сферы

      ПРИМЕЧАНИЕ. Вводите числа, состоящие только из трех цифр.

      Как пользоваться калькулятором радиуса сферы?

      Выполните шаги, указанные ниже, чтобы найти радиус сферы.

      • Шаг 1 : Выберите вариант из раскрывающегося списка для ввода значений диаметра, площади поверхности или объема сферы.
      • Шаг 2 : Введите значение параметра, выбранного вами на первом шаге, и нажмите « Вычислить », чтобы найти радиус сферы.
      • Шаг 3 : Нажмите « Сбросить », чтобы очистить поля и ввести новое значение.

      Как рассчитать радиус сферы?

      Расстояние от центра до любой точки на окружности сферы называется радиусом. Мы знаем, что размер сферы меняется, когда изменяется длина радиуса. Теперь давайте посмотрим, как найти радиус сферы, когда известны другие измерения. Когда диаметр сферы известен, формула, используемая для радиуса сферы:

      Радиус = Диаметр / 2

      Когда указана площадь поверхности, для радиуса сферы используется следующая формула:

      Радиус = ⎷[Площадь поверхности / (4 π)]

      формула, используемая для радиуса сферы:

      Радиус =  ³⎷[3 * Объем / (4 π)]

      Давайте рассмотрим следующий пример, чтобы лучше понять это.

      Хотите найти сложные математические решения за считанные секунды?

      Воспользуйтесь нашим бесплатным онлайн-калькулятором, чтобы решить сложные вопросы. С Cuemath находите решения простыми и легкими шагами.

      Записаться на бесплатный пробный урок

      Решенные примеры на калькуляторе радиуса сферы

      Пример 1:

      Если диаметр сферы равен 7 единицам, найдите радиус.

      Решение:  

      Диаметр = 7 единиц

      Радиус = диаметр / 2

      = (7/2) единиц

      = 3,5 единицы

      Пример 2:

      Если диаметр сферы равен 8 единиц, найдите радиус.

      Решение:  

      Диаметр = 8 единиц

      Радиус = диаметр / 2

      = (8/2) единиц

      = 4 единицы

      Пример 3:

      Если диаметр шара 21 единица найдите радиус .

      Решение:  

      Диаметр = 21 единица

      Радиус = диаметр / 2

      = (21/2) единицы

      = 10,5 единицы

      можно использовать соответствующую формулу, чтобы найти радиус, если поверхность дана площадь и объем сферы.

      Теперь воспользуйтесь нашим онлайн-калькулятором радиуса и найдите радиус сферы для следующих размеров:

      • Диаметр = 15 единиц
      • Площадь поверхности = 100 единиц

      ☛ Статьи по теме:
      • Сфера
      • Площадь поверхности сферы
      • Объем сферы

      ☛ Математические калькуляторы:

      Как найти радиус сферы

      Все ресурсы по геометрии среднего уровня

      8 диагностических тестов 250 практических тестов Вопрос дня Карточки Learn by Concept

      Intermediate Geometry Help » Твердая геометрия » Сферы » Как найти радиус сферы

       Если объем сферы равен , какова приблизительная длина ее диаметра?

       

      Возможные ответы:

      Правильный ответ:

      Объяснение:

      Правильный ответ: 6,12 фута.

       

      Подставьте значение  в уравнение так, чтобы 0002 Затем разделите обе части на  , чтобы получить

       

      Затем возьмите корень 3 rd с обеих сторон, чтобы получить 3,06 фута для радиуса. Наконец, вы должны умножить на 2 с обеих сторон, чтобы получить диаметр. Таким образом,

      Сообщить об ошибке

      Объем сферы равен . Каков его радиус?

      Возможные ответы:

      Правильный ответ:

      Объяснение:

      Формула объема сферы: 

      Единственная данная информация в задаче – это окончательный объем сферы. Если объем равен , формулу объема можно использовать для расчета радиуса сферы.

      В этом случае радиус — единственная неизвестная переменная, для которой нужно найти решение.

      Сообщить об ошибке

      Площадь сферы составляет . Каков его радиус?

      Возможные ответы:

      Правильный ответ:

      Объяснение:

      Единственная предоставленная информация — это площадь .

      К этой задаче можно подойти «назад», где формула площади для сферы может быть использована для определения радиуса. Это возможно, потому что формула для площади  , где  (радиус) — это то, что мы ищем. После замены площади на , цель состоит в том, чтобы найти , получив ее саму по одну сторону от знака равенства.

       

      Сообщить об ошибке

      Если объем сферы равен , каков точный радиус сферы?

      Возможные ответы:

      Правильный ответ:

      Объяснение:

      Напишите формулу объема сферы:

      Подставьте данный объем и найдите радиус .

      Начните с умножения каждой части уравнения на :

      Теперь разделите каждую часть уравнения на :

      Наконец, извлеките кубический корень из каждой части уравнения:

      Ошибка

      Учитывая объем сферы есть, каков радиус?

      Возможные ответы:

      Правильный ответ:

      Объяснение:

      Уравнение объема сферы:

      , где  – длина радиуса сферы.

      Подставьте заданный объем и решите, чтобы рассчитать радиус сферы:

       

      Сообщить об ошибке

      Если объем сферы равен , каков радиус сферы?

      Возможные ответы:

      Правильный ответ:

      Объяснение:

      Формула объема сферы:

      , где  – радиус сферы.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *