Решение матриц умножение матриц: Онлайн калькулятор. Умножение матриц

Транспонирование матриц. Умножение матриц.

К оглавлению

I. Транспонирование матриц

Транспонирование матриц – переход от матрицы  А  к матрице, в которой строки и столбцы поменялись местами с сохранением порядка.

Пример 1. Составить транспонированную матрицу, полученную из А:

Решение: Поменяем местами строки и столбцы, сохраняя порядок:

Примеры для самостоятельного решения:

Составить из исходной матрицы транспонированную матрицу:

II. Умножение матриц

Пример 1. Рассмотрим для начала простейший пример, когда необходимо найти произведение двух матриц  А  и  В  размером  2´2, если

Решение:

Элементы матрицы  С  находятся по следующему алгоритму:

Элемент матрицы  С, стоящий на первой строке, в первом столбце находится как сумма произведений первой строки матрицы  

А на первый столбец матрицы  В.

Элемент матрицы  С, стоящий на первой строке, во втором столбце находится как сумма произведений первой строки матрицы  А на второй столбец матрицы  В.

Элемент матрицы  С, стоящий на второй строке, в первом столбце находится как сумма произведений второй строки матрицы  А на первый столбец матрицы  В.

Элемент матрицы  С, стоящий на второй строке, во втором столбце находится как сумма произведений второй строки матрицы  А на второй столбец матрицы  В.

Таким образом, мы получили

То есть мы получили, что

Пример 2. Найдем результат произведения двух матриц

Решение:

то есть мы должны получить матрицу размера  3´3.

Пример 3. В предыдущем примере мы рассмотрели случай умножения матрицы  А  на матрицу  В, а в данном примере рассмотрим случай произведения матрицы  В  на  А.

Решение:

Пример 4. Найти произведение двух матриц:

Решение: В первом случае найдем произведение:

Во втором случае найдем произведение:

Пример 5. Вычислить значение многочлена  от матрицы

Решение. В многочлен  подставим вместо  х  матрицу  А, вместо числа 3 используем матрицу  3Е, где  Е – единичная матрица 2-го порядка

Теперь получим окончательный результат

III. Примеры для самостоятельного решения

I. Найти произведение матриц:

II. Найти значение многочлена  от матрицы А

К оглавлению

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DeepMind с помощью ИИ ускорила умножение матриц

06. 10.2022 Богдан Каминский

#DeepMind#Искусственный Интеллект

Лаборатория DeepMind использовала ИИ AlphaZero для решения фундаментальной математической задачи в информатике и побила рекорд, установленный более 50 лет назад. Об этом пишет Technology Review.

Речь идет об умножении матриц. Это важнейший тип вычислений, лежащий в основе различных приложений, от отображения изображений на экране до моделирования сложных физических процессов.

Несмотря на широкое распространение метода, он все еще недостаточно изучен. Матрица — это сетка чисел, которая может представлять собой что угодно. Базовая техника перемножений двух таких объектов преподается в средней школе.

Однако все усложняется при попытке найти более быстрый метод решения задачи. По словам ученых, вариантов перемножения двух матриц может быть больше, чем атомов во Вселенной.

«Количество возможных действий почти бесконечно», — сказал инженер DeepMind Томас Хьюберт.

Подход исследователей заключается в превращении задания в своего рода настольную игру под названием TensorGame. Доска представляет собой задачу на умножение, а каждый ход направлен на ее решение. Таким образом, серия предпринятых действий к конечной цели представляет собой алгоритм.

Затем ученые обучили играть в эту игру новую версию AlphaZero, названную AlphaTensor. Аналогично шахматам или Го искусственный интеллект изучал лучшие серии шагов при умножении матриц. За победу с минимальным количеством ходов AlphaTensor получал вознаграждение.

«Мы превратили это в игру — наш любимый вид фреймворка», — сказал Хьюберт.

Главный результат исследователей состоит в ускорении решения данной задачи. Например, базовый школьный метод умножения матриц четыре на четыре состоит из 64 шагов. Самый быстрый способ решения задачи в 1969 году открыл немецкий математик Фолькер Штрассен: он состоит из 49 ходов. AlphaTensor справился за 47 шагов.

По словам исследователей, система DeepMind превосходит лучшие существующие алгоритмы для более чем 70 различных размеров матриц. Их впечатлило количество различных правильных алгоритмов, которые нашел AlphaTensor для каждой задачи.

«Удивительно, что существует по меньшей мере 14 000 способов умножения матриц четыре на четыре», — говорит Хусейн Фаузи, научный сотрудник DeepMind.

После поиска самых быстрых алгоритмов в теории команда использовала AlphaTensor для поиска алгоритмов на графических процессорах Nvidia V100 и Google TPU. Согласно результатам тестирования, программа нашла верные решения на 10-20% быстрее, чем при помощи стандартных методов на аналогичных чипах.

По словам исследователей, это также имеет фундаментальное значение для самого машинного обучения. Ускорение вычисления может оказать большое влияние на тысячи повседневных компьютерных задач, сократив расходы и сэкономив энергию.

В будущем DeepMind планирует использовать AlphaTensor для поиска других типов алгоритмов.

Напомним, в июле ИИ-лаборатория заявила, что системе AlphaFold предсказала структуры более 200 млн белков. Это почти все известные науке соединения, обнаруженные в растениях, бактериях и животных.

В мае DeepMind представила визуальную языковую модель с 80 млрд параметров.

Подписывайтесь на новости ForkLog в Telegram: ForkLog AI — все новости из мира ИИ!

Нашли ошибку в тексте? Выделите ее и нажмите CTRL+ENTER

Рассылки ForkLog: держите руку на пульсе биткоин-индустрии!

Итоги недели Итоги недели + главные новости по будням

4. Умножение матриц

Важно: Мы можем перемножать матрицы, только если количество столбцов в первой матрице совпадает с количеством строк во второй матрице.

Пример 1

а) Умножение матрицы 2 × 3 на матрицу 3 × 4 возможно и дает в качестве ответа матрицу 2 × 4.

b) Умножение матрицы 7 × 1 на матрицу 1 × 2 допустимо; это дает матрицу 7 × 2

c) Матрица 4 × 3, умноженная на матрицу 2 × 3, НЕвозможна.

Как умножить 2 матрицы

Сначала мы используем буквы, чтобы понять, что происходит. После этого мы увидим пример с числами.

В качестве примера возьмем обычную матрицу 2 × 3, умноженную на матрицу 3 × 2.

`[(a,b,c),(d,e,f)][(u,v),(w,x),(y,z)]`

Ответом будет матрица 2 × 2.

Умножаем и складываем элементы следующим образом. Мы работаем через 1-й строки первой матрицы, умножая на 1-й столбец второй матрицы, элемент за элементом. Мы добавить полученных продуктов. Наш ответ занимает позицию a 11 (вверху слева) матрицы ответов.

Проделываем аналогичный процесс для 1-й строки первой матрицы и 2-го столбца второй матрицы. Результат помещается в позицию a 12 .

Теперь о 2-й -й строке первой матрицы и 1-м -м столбце второй матрицы. Результат помещается в позицию а 21 .

Наконец, делаем 2-ю строку первой матрицы и 2-й столбец второй матрицы.

Результат помещается в позицию a 22 .

Таким образом, результат умножения двух наших матриц выглядит следующим образом:

`[(a,b,c),(d,e,f)][(u,v),(w,x),(y,z)]` `=[(au+bw+cy,av +bx+cz),(du+ew+fy,dv+ex+fz)]`

Теперь давайте рассмотрим числовой пример.

Пользователи телефона

ПРИМЕЧАНИЕ. Если вы разговариваете по телефону, вы можете прокручивать любые широкие матрицы на этой странице вправо или влево, чтобы увидеть все выражение.

Пример 2

Умножить:

`((0,-1,2),(4,11,2))((3,-1),(1,2),(6,1))`

Ответить

Это 2×3 умножить на 3×2, что даст нам 2×2 отвечать.

`((0,-1,2),(4,11,2)) ((3,-1),(1,2),(6,1))`

`=((0xx3+ — 1xx1 + 2xx6,0xx-1+ -1xx2 + 2xx1), (4xx3+11xx1+2xx6,4xx -1 + 11xx2 + 2xx1))`

` = ((0-1+12,0-2+2), (12+11+12,-4+22+2))`

` = ((11,0),(35,20)) `

Наш ответ — матрица 2×2.

Умножение матриц 2 × 2

Процесс одинаков для матрицы любого размера. Мы умножаем на строк первой матрицы и на столбцов второй матрицы, элемент за элементом. Затем мы добавляем продукты:

`((a,b),(c,d))((e,f),(g,h))` `=((ae+bg,af+bh),(ce+dg,cf+dh ))`

В этом случае мы умножаем матрицу 2 × 2 на матрицу 2 × 2 и в результате получаем матрицу 2 × 2.

Пример 3

Умножить:

`((8,9),(5,-1))((-2,3),(4,0))`

Ответить

` ((8,9),(5,-1))((-2,3),(4,0)) `

`= ((8 xx -2+9xx4,8xx3+9xx0),( 5xx-2+ -1xx4,5xx3 + -1xx0))`

` = ((-16+36,24+0),(-10+ -4,15 + 0)) `

` = ((20 ,24),(-14,15)) `

Матрицы и системы одновременных линейных уравнений

Теперь мы видим, как написать систему линейных уравнений, используя матричное умножение.

Пример 4

Система уравнений

−3 х + y = 1

6 х — 3 у = -4

можно записать как:

`((-3,1),(6,-3))((x),(y))=((1),(-4))`

Матрицы идеально подходят для компьютерного решения задач, потому что компьютеры легко формируют массивы . Мы можем опустить алгебраические символы. Компьютеру для решения системы требуются только первая и последняя матрицы, как мы увидим в разделе «Матрицы и линейные уравнения».

Примечание 1 — Обозначение

Уход с записью умножение матриц.

Следующие выражения имеют различных значения:

AB это умножение матриц

A × B является произведением перекрестного , которое возвращает вектор

A * B используется в компьютерной записи, но не на бумаге

А B Произведение точек , которое возвращает скаляр .

[Дополнительную информацию о векторных и скалярных величинах см. в главе «Вектор».]

Примечание 2. Коммутативность умножения матриц

`AB = BA`?

Давайте посмотрим, так ли это на примере.

Пример 5

Если

`А=((0,-1,2),(4,11,2))`

и

`В=((3,-1),(1,2),(6,1))`

найти AB и ВА.

Ответить

Мы выполнили AB выше, и ответ был:

`AB = ((0,-1,2),(4,11,2)) ((3,-1),(1,2), (6,1))`

` = ( (11,0),(35,20) )`

Теперь BA равно (3 × 2)(2 × 3), что даст 3 × 3:

`BA= ((3,-1),(1,2),(6,1))((0,-1,2),(4,11,2))`

`= ((0 -4,-3-11,6-2),(0+8,-1+22,2+4),(0+4,-6+11,12+2))`

` = (( -4,-14,4),(8,21,6),(4,5,14)) `

Итак, в этом случае AB НЕ равно BA.

На самом деле, для большинства матриц нельзя изменить порядок умножения и получить тот же результат.

В общем случае при перемножении матриц перестановочный закон не выполняется, т.е. AB BA . Есть два общих исключения из этого:

  • Матрица идентичности: IA = AI = A .
  • обратная матрица: A -1 А = АА -1 = I.

В следующем разделе мы узнаем, как найти обратную матрицу.

Пример 6. Умножение на матрицу идентичности

Учитывая, что

`А=((-3,1,6),(3,-1,0),(4,2,5))`

найти AI .

Ответить

`AI = ((-3,1,6),(3,-1,0),(4,2,5)) ((1,0,0),(0,1,0),(0 ,0,1))`

`=((-3+0+0,0+1+0,0+0+6),(3+0+0,0+ -1+0,0+0 +0),(4+0+0,0+2+0,0+0+5))`

`=((-3,1,6),(3,-1,0),(4,2,5))`

`=A`

Мы видим, что умножение на единичную матрицу не изменить значение исходной матрицы.

То есть

АИ = А

Упражнения

1. Если возможно, найдите BA и AB .

`А=((-2,1,7),(3,-1,0),(0,2,-1))`

`В=(4\\-1\\\5)`

Ответить

`BA=(4\ \ -1\ \ \ 5)((-2,1,7),(3,-1,0),(0,2,-1))`

`=(-8+(-3)+0\ \ \ 4+1+10\ \ \ 28+0+(-5))`

`=(-11\ \ 15\ \ 23)`

AB невозможно. (3 × 3) × (1 × 3).

2. Определить, если B = A -1 , учитывая:

`А=((3,-4),(5,-7))`

`В=((7,4),(5,3))`

Ответить

Если B = A -1 , то `AB = I`.

`AB=((3,-4),(5,-7))((7,4),(5,3))`

`=((21-20,12-12),( 35-35,20-21))`

`=((1,0),(0,-1))`

` !=I`

Итак, B НЕ является обратным A.

3. При изучении движения электронов, одна из спиновых матриц Паули равна

`s=((0,-j),(j,0))`

где

`j=sqrt(-1)`

Покажите, что с 2 = I.

[Если вы никогда раньше не видели j , перейдите в раздел, посвященный комплексным числам].

92+0))`

`= ((1,0),(0,1))`

`=I`

4. Оцените следующее матричное умножение, которое используется при управлении движением роботизированного механизма .

`( (cos\ 60° ,-sin\ 60° ,0),(sin\ 60°, cos\ 60°,0),(0,0,1))((2),(4),( 0))`

Ответить

`( (cos\ 60° ,-sin\ 60° ,0),(sin\ 60°, cos\ 60°,0),(0,0,1))((2),(4),( 0))`

`=((2(0,5)-4(0,866)+0),(2(0,866)+4(0,5)+0),(0+0+0))`

`= ((-2. 464),(3.732),(0))`

Интерпретация этого заключается в том, что рука робота перемещается из позиции (2, 4, 0) в позицию (-2,46, 3,73, 0). То есть это движется в x-y плоскость, но ее высота остается равной z = 0 . Матрица 3 × 3, содержащая sin и Значения cos говорят ему, на сколько градусов двигаться.

Интерактивы Matrix Multiplication

  • Другие примеры умножения матриц
  • Интерактивные операции с матрицами

linear алгебра — Решение для X в простой системе матричных уравнений.

Задавать вопрос

спросил

Изменено 9 лет, 10 месяцев назад

Просмотрено 4к раз

$\begingroup$

Я пытаюсь решить для X в этой простой системе матричных уравнений:

$$\begin{bmatrix}7 & 7\\2 & 4\\\end{bmatrix} — X\begin{bmatrix}5 & — 1\\6 & -4\\\end{bmatrix} = E $$, где $E$ — единичная матрица.

Если я умножу $X$ на $\begin{bmatrix}5 & -1\\6 & -4\\\end{bmatrix}$, я получу следующую систему:

$$\begin{bmatrix}5x_1 & -1x_2\\6x_3 & -4x_4\\\end{bmatrix}$$

Вычитая это из $\begin{bmatrix}7 и 7\\2 & 4\\\end{bmatrix}$ я получаю $\begin {bmatrix}7 — 5x_1 и 7 + 1x_2\\2 — 6x_3 и 4 + 4x_4\\\end{bmatrix} = \begin{bmatrix}1 & 0\\0 & 1\\\end{bmatrix}$

Что дает мне:

$7-5x_1 = 1$

$7+1x_2 = 0$

$2-6x_3 = 0$

$4+4x_4 = 1$

Это неправильные ответы, кто-нибудь может мне помочь?

Спасибо!

  • линейная алгебра
  • матрицы

$\endgroup$

4

$\begingroup$

$$\begin{bmatrix}7 и 7\\2 & 4\\\end{bmatrix} — X\begin{bmatrix}5 & -1\\6 & -4\\\end{bmatrix} = I $$, где $I$ — единичная матрица.

Подсказка: вспомните, как будет выглядеть умножение на $X$: $X$ будет матрицей $2\times 2$, если для этого уравнения нужно задать умножение и сложение матриц.

Итак, если $X = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$, то $$X\begin{bmatrix}5 & -1\\6 & -4 \end{bmatrix } = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}\begin{bmatrix} 5 & -1 \\ 6 & -4\end{bmatrix} = \begin{bmatrix}5x_1+6x_2&- x_1-4x_2\\5x_3+6x_4&-x_3-4x_4\end{bmatrix}$$

$\endgroup$

7

$\begingroup$

Поскольку $\begin{pmatrix}7&7\\2&4\end{pmatrix}-X\begin{pmatrix}5&-1\\6&-4\end{pmatrix}=\begin{pmatrix}1&0\\0&1\end {pmatrix}$, получаем:
$\begin{pmatrix}6&7\\2&3\end{pmatrix}=\begin{pmatrix}5x_1+6x_2&-x_1-4x_2\\5x_3+6x_4&-x_3-4x_4\end{pmatrix }$, где $X=\begin{pmatrix}x_1&x_2\\x_3&x_4\end{pmatrix}$.
Теперь вы можете умножить обе части уравнения на $\frac{1}{-14}\begin{pmatrix}-4&1\\-6&5\end{pmatrix}$ =(inverse of $\begin{pmatrix}5&- 1\\6&-4\end{pmatrix}$), чтобы найти:
$X=\frac{1}{-14}\begin{pmatrix}6&7\\2&3\end{pmatrix}\begin{pmatrix}- 4&1\\-6&5\end{pmatrix}=\frac{1}{-14}\begin{pmatrix}-66&41\\-26&17\end{pmatrix}$.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *