Решить уравнение квадратное уравнение с дробями: Дробные рациональные уравнения — урок. Алгебра, 8 класс.

Решить уравнение в виде дроби – Telegraph

Решить уравнение в виде дроби

Скачать файл — Решить уравнение в виде дроби

Продолжаем разговор про решение уравнений. В этой статье мы подробно остановимся на рациональных уравнениях и принципах решения рациональных уравнений с одной переменной. Сначала разберемся, уравнения какого вида называются рациональными, дадим определение целых рациональных и дробных рациональных уравнений, приведем примеры. Дальше получим алгоритмы решения рациональных уравнений, и, конечно же, рассмотрим решения характерных примеров со всеми необходимыми пояснениями. В начале 8 класса на уроках алгебры начинается всестороннее изучение рациональных выражений. А вскоре, естественно, начинают встречаться уравнения, содержащие рациональные выражения в своих записях. Такие уравнения назвали рациональными. Сформулируем озвученную информацию в виде определения рациональных уравнений. Рациональные уравнения — это уравнения, обе части которого являются рациональными выражениями. Рациональными уравнениями называют уравнения, в левой части которого находится рациональное выражение, а в правой — нуль. Отталкиваясь от озвученных определений, приведем несколько примеров рациональных уравнений. Из показанных примеров видно, что рациональные уравнения, как, впрочем, и уравнения других видов, могут быть как с одной переменной, так и с двумя, тремя и т. В следующих пунктах мы будем говорить о решении рациональных уравнений с одной переменной. Решение уравнений с двумя переменными и их большим числом заслуживают отдельного внимания. Помимо деления рациональных уравнений по количеству неизвестных переменных, их еще разделяют на целые и дробные. Рациональное уравнение называют целым , если и левая, и правая его части являются целыми рациональными выражениями. Если хотя бы одна из частей рационального уравнения является дробным выражением, то такое уравнение называется дробно рациональным или дробным рациональным. Понятно, что целые уравнения не содержат деления на переменную, напротив, дробные рациональные уравнения обязательно содержат деление на переменную или переменную в знаменателе. Завершая этот пункт, обратим внимание на то, что известные к этому моменту линейные уравнения и квадратные уравнения являются целыми рациональными уравнениями. Одним из основных подходов к решению целых уравнений является их сведение к равносильным алгебраическим уравнениям. Это можно сделать всегда, выполнив следующие равносильные преобразования уравнения: В результате получается алгебраическое уравнение, которое равносильно исходному целому уравнению. Так в самых простых случаях решение целых уравнений сводятся к решению линейных или квадратных уравнений, а в общем случае — к решению алгебраического уравнения степени n. Для наглядности разберем решение примера. Сведем решение этого целого уравнения к решению равносильного ему алгебраического уравнения. И, во-вторых, преобразуем выражение, образовавшееся в левой части, в многочлен стандартного вида, выполнив необходимые действия с многочленами: Для полной уверенности выполним проверку найденных корней уравнения. Сначала проверяем корень 6 , подставляем его вместо переменной x в исходное целое уравнение: Степенью целого уравнения называют степень равносильного ему алгебраического уравнения. На этом можно бы было закончить с решением целых рациональных уравнений, если бы ни одно но…. Как известно, решение алгебраических уравнений степени выше второй сопряжено со значительными сложностями, а для уравнений степени выше четвертой вообще не существует общих формул корней. Поэтому для решения целых уравнений третьей, четвертой и более высоких степеней часто приходится прибегать к другим методам решения. В таких случаях иногда выручает подход к решению целых рациональных уравнений, основанный на методе разложения на множители. При этом придерживаются следующего алгоритма: Приведенный алгоритм решения целого уравнения через разложение на множители требует детального разъяснения на примере. Нахождение их корней по известным формулам корней через дискриминант не составляет труда, корни равны. Они являются искомыми корнями исходного уравнения. Для решения целых рациональных уравнений также бывает полезен метод введения новой переменной. В некоторых случаях он позволяет переходить к уравнениям, степень которых ниже, чем степень исходного целого уравнения. Сведение данного целого рационального уравнения к алгебраическому уравнению является, мягко говоря, не очень хорошей идеей, так как в этом случае мы придем к необходимости решения уравнения четвертой степени, не имеющего рациональных корней. Поэтому, придется поискать другой способ решения. Теперь переходим ко второй части метода введения новой переменной, то есть, к проведению обратной замены. По формуле корней квадратного уравнения находим корни первого уравнения. Вообще, когда мы имеем дело с целыми уравнениями высоких степеней, всегда надо быть готовым к поиску нестандартного метода или искусственного приема для их решения. Сначала будет полезно разобраться, как решать дробно рациональные уравнения вида , где p x и q x — целые рациональные выражения. А дальше мы покажем, как свести решение остальных дробно рациональных уравнений к решению уравнений указанного вида. В основе одного из подходов к решению уравнения лежит следующее утверждение: Этому заключению соответствует следующий алгоритм решения дробно рационального уравнения. Разберем пример применения озвученного алгоритма при решении дробного рационального уравнения. К решению дробного рационального уравнения можно подходить с немного другой позиции. То есть, можно придерживаться такого алгоритма решения дробно рационального уравнения: Во-вторых, находим ОДЗ переменной x для исходного уравнения. Остается проверить, входят ли найденные на первом шаге корни в ОДЗ. Следовательно, исходное дробно рациональное уравнение имеет два корня. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ. Три из этих уравнений линейные и одно — квадратное, их мы умеем решать. С найденными корнями достаточно легко выполнить их проверку на предмет того, не обращается ли при них в нуль знаменатель дроби, находящейся в левой части исходного уравнения, а определить ОДЗ, напротив, не так просто, так как для этого придется решать алгебраическое уравнение пятой степени. Поэтому, откажемся от нахождения ОДЗ в пользу проверки корней. Найдите корни дробного рационального уравнения. Это уравнение равносильно совокупности двух уравнений: Проверять, не обращается ли в нуль знаменатель при найденных значениях x , достаточно неприятно. А определить область допустимых значений переменной x в исходном уравнении достаточно просто. Поэтому, будем действовать через ОДЗ. Еще полезным будет отдельно остановиться на случаях, когда в дробном рациональном уравнении вида в числителе находится число, то есть, когда p x представлено каким-либо числом. При этом если это число отлично от нуля, то уравнение не имеет корней, так как дробь равна нулю тогда и только тогда, когда ее числитель равен нулю; если это число нуль, то корнем уравнения является любое число из ОДЗ. Так как в числителе дроби, находящейся в левой части уравнения, отличное от нуля число, то ни при каких x значение этой дроби не может равняться нулю. Следовательно, данное уравнение не имеет корней. В числителе дроби, находящейся в левой части данного дробного рационального уравнения, находится нуль, поэтому значение этой дроби равно нулю для любого x , при котором она имеет смысл. Другими словами, решением этого уравнения является любое значение x из ОДЗ этой переменной. Осталось определить эту область допустимых значений. Таким образом, дробно рациональное уравнение имеет бесконечно много решений, которыми являются любые числа, кроме нуля и минус пяти. Наконец, пришло время поговорить о решении дробных рациональных уравнений произвольного вида. Забегая вперед, скажем, что их решение сводится к решению уравнений уже знакомого нам вида. Также мы знаем, что можно любое рациональное выражение преобразовать в рациональную дробь , тождественно равную этому выражению. Выявить и не включать в ответ посторонние корни можно, либо выполнив проверку, либо проверив их принадлежность ОДЗ исходного уравнения. Выполнить действия с дробями и многочленами в левой части уравнения, тем самым преобразовав ее в рациональную дробь вида. Выявить и исключить посторонние корни, что делается посредством их подстановки в исходное уравнение или посредством проверки их принадлежности ОДЗ исходного уравнения. Для большей наглядности покажем всю цепочку решения дробных рациональных уравнений: Давайте рассмотрим решения нескольких примеров с подробным пояснением хода решения, чтобы прояснить приведенный блок информации. Будем действовать в соответствии с только что полученным алгоритмом решения. И сначала перенесем слагаемые из правой части уравнения в левую, в результате переходим к уравнению. На втором шаге нам нужно преобразовать дробное рациональное выражение в левой части полученного уравнения к виду дроби. Для этого выполняем приведение рациональных дробей к общему знаменателю и упрощаем полученное выражение: Так мы приходим к уравнению. Для этого можно сделать проверку или найти ОДЗ переменной x исходного уравнения. Теперь покажем, как последний пункт алгоритма выполняется через ОДЗ. Нам требуется решить дробно рациональное уравнение, пройдем все шаги алгоритма. Во-первых, переносим слагаемое из правой части в левую, получаем. Во-вторых, преобразуем выражение, образовавшееся в левой части: На четвертом шаге остается выяснить, не является ли найденный корень посторонним для исходного дробно рационального уравнения. При его подстановке в исходное уравнение получается выражение. Очевидно, оно не имеет смысла, так как содержит деление на нуль. Откуда заключаем, что 0 является посторонним корнем. Следовательно, исходное уравнение не имеет корней. В заключение добавим, что совсем не обязательно слепо придерживаться приведенного алгоритма решения дробных рациональных уравнений, хотя он и является универсальным. Просто иногда другие равносильные преобразования уравнений позволяют прийти к результату быстрее и проще. Сначала отнять от обеих частей уравнения 7 , что приводит к уравнению. Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть,. Теперь вычитаем из обеих частей тройки: По аналогии , откуда , и дальше. Проверка показывает, что оба найденных корня являются корнями исходного дробного рационального уравнения. Охраняется законом об авторском праве. Ни одну часть сайта www. Что такое рациональные уравнения? Решение дробно рациональных уравнений. Решите дробное рациональное уравнение. Его корень очевиден — это нуль. Но можно поступить и иначе, например, так.

Решение целых и дробно рациональных уравнений

Должностные инструкции инженер конструктор

Условные буквенные обозначенияв электрических схемах

Бесплатная помощь с домашними заданиями

Учебный план школыи планирование преподавания истории

Расписание электричек наро фоминск

Добрые стихи про кошек

Идеи для квартиры своими руками фото

Как решать уравнения с дробями

Повышенный шум при работе двигателя причины

Таблица энергозатрат человека при различных видах деятельности

Томаты палка описание

Решение дробных уравнений с преобразованием в квадратные уравнения

Характеристики ниссан альмера 2015

Тест драйв хендай h2 видео

Производственные процессы бывают

Как решать уравнения с дробями. Показательное решение уравнений с дробями

До сих пор мы решали только уравнения целые относительно неизвестного, то есть уравнения, в которых знаменатели (если таковые имелись) не содержали неизвестное.

Часто приходится решать уравнения, содержащие неизвестное в знаменателях: такие уравнения называются дробными.

Чтобы решить это уравнение, умножим обе его части на то есть на многочлен, содержащий неизвестное. Будет ли новое уравнение равносильно данному? Чтобы ответить на вопрос, решим это уравнение.

Умножив обе части его на , получим:

Решив это уравнение первой степени, найдём:

Итак, уравнение (2) имеет единственный корень

Подставив его в уравнение (1), получим:

Значит, является корнем и уравнения (1).

Других корней уравнение (1) не имеет. В нашем примере это видно, например, из того, что в уравнении (1)

Как неизвестный делитель должен быть равен делимому 1, разделённому на частное 2, то есть

Итак, уравнения (1) и (2) имеют единственный корень Значит, они равносильны.

2. Решим теперь такое уравнение:

Простейший общий знаменатель: ; умножим на него все члены уравнения:

После сокращения получим:

Раскроем скобки:

Приведя подобные члены, будем иметь:

Решив это уравнение, найдём:

Подставив в уравнение (1), получим:

В левой части получили выражения, не имеющие смысла.

Значит, корнем уравнения (1) не является. Отсюда следует, что уравнения (1) и неравносильны.

Говорят в этом случае, что уравнение (1) приобрело посторонний корень.

Сравним решение уравнения (1) с решением уравнений, рассмотренных нами раньше (см. § 51). При решении этого уравнения нам пришлось выполнить две такие операции, которые раньше не встречались: во-первых, мы умножили обе части уравнения на выражение, содержащее неизвестное (общий знаменатель), и, во-вторых, мы сокращали алгебраические дроби на множители, содержащие неизвестное.

Сравнивая уравнение (1) с уравнением (2), мы видим, что не все значения х, допустимые для уравнения (2), являются допустимыми для уравнения (1).

Именно числа 1 и 3 не являются допустимыми значениями неизвестного для уравнения (1), а в результате преобразования они стали допустимыми для уравнения (2). Одно из этих чисел оказалось решением уравнения (2), но, разумеется, решением уравнения (1) .оно быть не может. Уравнение (1) решений не имеет.

Этот пример показывает, что при умножении обеих частей уравнения на множитель, содержащий неизвестное, и при сокращении алгебраических дробей может получиться уравнение, неравносильное данному, а именно: могут появиться посторонние корни.

Отсюда делаем такой вывод. При решении уравнения, содержащего неизвестное в знаменателе, полученные корни надо проверять подстановкой в первоначальное уравнение. Посторонние корни надо отбросить.

Приглашаем тебя на урок о том, решать уравнения с дробями.Скорее всего, тебе уже приходилось сталкиваться с такими уравнениями в прошлом, так что на этом уроке нам предстоит повторить и обобщить те сведения, которые тебе известны.

Больше уроков на сайте

Дробно-рациональным называется уравнение, в котором есть рациональные дроби, то есть переменная в знаменателе. Скорее всего, тебе уже приходилось сталкиваться с такими уравнениями в прошлом, так что на этом уроке нам предстоит повторить и обобщить те сведения, которые тебе известны.

Сначала я предлагаю обратиться к предыдущему уроку данной темы – к уроку «Решение квадратных уравнений». На том уроке был рассмотрен пример решения дробно-рационального уравнения. Рассмотрим его

Решение этого уравнения выполнено в несколько этапов:

  • Преобразование уравнения, содержащего рациональные дроби.
  • Переход к целому уравнению и упрощение его;
  • Решение квадратного уравнения.

Через первые 2 этапа необходимо пройти при решении любого дробно-рационального уравнения. Третий этап – необязателен, так как уравнение, полученное в результате упрощений, может быть не квадратным, а линейным; решать линейное уравнение – намного проще. Есть еще один важный этап при решении дробно-рационального уравнения. Он будет виден при решении следующего уравнения.

что следует сделать в первую очередь? – Конечно же, привести дроби к общему знаменателю. И очень важным является найти именно наименьший общий знаменатель, иначе, далее, в процессе решения, уравнение будет усложнено.

Тут заметим, что знаменатель последней дроби можно разложить на множители у и у+2 . Вот именно это произведение и будет общим знаменателем в данном уравнении. Теперь нужно определить дополнительные множители для каждой из дробей. Вернее, для последней дроби такой множитель не понадобится, так как ее знаменатель равен общему. Вот теперь, когда все дроби имеют одинаковые знаменатели, можно перейти к целому уравнению, составленному из одних числителей. Но необходимо cделать одно замечание, о том, что найденное значение неизвестной не может обращать в ноль ни один из знаменателей . Это – ОДЗ: у≠0, у≠2 . На этом окончен первый из описанных ранее этапов решения и переходим ко второму – упрощаем полученное целое уравнение. Для этого – раскрываем скобки, переносим все слагаемые в одну часть уравнения и приводим подобные. Выполни это самостоятельно и проверь – верны ли мои вычисления, в которых получено уравнение 3у 2 – 12у = 0.
Это уравнение – квадратное, оно записано в стандартном виде, и один из его коэффициентов равен нулю.

Решение дробно-рациональных уравнений

Справочное пособие

Рациональные уравнения – это уравнения, в которых и левая, и правая части являются рациональными выражениями.

(Напомним: рациональными выражениями называют целые и дробные выражения без радикалов, включающие действия сложения, вычитания, умножения или деления — например: 6x; (m – n)2; x/3y и т.п.)

Дробно-рациональные уравнения, как правило, приводятся к виду:

Где P (x ) и Q (x ) – многочлены.

Для решения подобных уравнений умножить обе части уравнения на Q(x), что может привести к появлению посторонних корней. Поэтому, при решении дробно-рациональных уравнений необходима проверка найденных корней.

Рациональное уравнение называется целым, или алгебраическим, если в нем нет деления на выражение, содержащее переменную.

Примеры целого рационального уравнения:

5x – 10 = 3(10 – x)

3x
— = 2x – 10
4

Если в рациональном уравнении есть деление на выражение, содержащее переменную (x), то уравнение называется дробно-рациональным.

Пример дробного рационального уравнения:

15
x + — = 5x – 17
x

Дробные рациональные уравнения обычно решаются следующим образом:

1) находят общий знаменатель дробей и умножают на него обе части уравнения;

2) решают получившееся целое уравнение;

3) исключают из его корней те, которые обращают в ноль общий знаменатель дробей.

Примеры решения целых и дробных рациональных уравнений.

Пример 1. Решим целое уравнение

x – 1 2x 5x
— + — = —.
2 3 6

Решение:

Находим наименьший общий знаменатель. Это 6. Делим 6 на знаменатель и полученный результат умножаем на числитель каждой дроби. Получим уравнение, равносильное данному:

3(x – 1) + 4x 5х
—— = —

6 6

Поскольку в левой и правой частях одинаковый знаменатель, его можно опустить. Тогда у нас получится более простое уравнение:

3(x – 1) + 4x = 5х.

Решаем его, раскрыв скобки и сведя подобные члены:

3х – 3 + 4х = 5х

3х + 4х – 5х = 3

Пример решен.

Пример 2. Решим дробное рациональное уравнение

x – 3 1 x + 5
— + — = —.
x – 5 x x(x – 5)

Находим общий знаменатель. Это x(x – 5). Итак:

х 2 – 3х x – 5 x + 5
— + — = —
x(x – 5) x(x – 5) x(x – 5)

Теперь снова освобождаемся от знаменателя, поскольку он одинаковый для всех выражений. Сводим подобные члены, приравниваем уравнение к нулю и получаем квадратное уравнение:

х 2 – 3x + x – 5 = x + 5

х 2 – 3x + x – 5 – x – 5 = 0

х 2 – 3x – 10 = 0.

Решив квадратное уравнение, найдем его корни: –2 и 5.

Проверим, являются ли эти числа корнями исходного уравнения.

При x = –2 общий знаменатель x(x – 5) не обращается в нуль. Значит, –2 является корнем исходного уравнения.

При x = 5 общий знаменатель обращается в нуль, и два выражения из трех теряют смысл. Значит, число 5 не является корнем исходного уравнения.

Ответ: x = –2

Ещё примеры

Пример 1.

x 1 =6, x 2 = — 2,2.

Ответ:-2,2;6.

Пример 2.

Мы уже научились решать квадратные уравнения. Теперь распространим изученные методы на рациональные уравнения.

Что такое рациональное выражение? Мы уже сталкивались с этим понятием. Рациональными выражениями называются выражения, составленные из чисел, переменных, их степеней и знаков математических действий.

Соответственно, рациональными уравнениями называются уравнения вида: , где — рациональные выражения.

Раньше мы рассматривали только те рациональные уравнения, которые сводятся к линейным. Теперь рассмотрим и те рациональные уравнения, которые сводятся и к квадратным.

Пример 1

Решить уравнение: .

Решение:

Дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель не равен 0.

Получаем следующую систему:

Первое уравнение системы — это квадратное уравнение. Прежде чем его решать, поделим все его коэффициенты на 3. Получим:

Получаем два корня: ; .

Поскольку 2 никогда не равно 0, то необходимо, чтобы выполнялись два условия: . Поскольку ни один из полученных выше корней уравнения не совпадает с недопустимыми значениями переменной, которые получились при решении второго неравенства, они оба являются решениями данного уравнения.

Ответ: .

Итак, давайте сформулируем алгоритм решения рациональных уравнений:

1. Перенести все слагаемые в левую часть, чтобы в правой части получился 0.

2. Преобразовать и упростить левую часть, привести все дроби к общему знаменателю.

3. Полученную дробь приравнять к 0, по следующему алгоритму: .

4. Записать те корни, которые получились в первом уравнении и удовлетворяют второму неравенству, в ответ.

Давайте рассмотрим еще один пример.

Пример 2

Решить уравнение: .

Решение

В самом начале перенесем все слагаемые в левую сторону, чтобы справа остался 0. Получаем:

Теперь приведем левую часть уравнения к общему знаменателю:

Данное уравнение эквивалентно системе:

Первое уравнение системы — это квадратное уравнение.

Коэффициенты данного уравнения: . Вычисляем дискриминант:

Получаем два корня: ; .

Теперь решим второе неравенство: произведение множителей не равно 0 тогда и только тогда, когда ни один из множителей не равен 0.

Необходимо, чтобы выполнялись два условия: . Получаем, что из двух корней первого уравнения подходит только один — 3.

Ответ: .

На этом уроке мы вспомнили, что такое рациональное выражение, а также научились решать рациональные уравнения, которые сводятся к квадратным уравнениям.

На следующем уроке мы рассмотрим рациональные уравнения как модели реальных ситуаций, а также рассмотрим задачи на движение.

Список литературы

  1. Башмаков М.И. Алгебра, 8 класс. — М.: Просвещение, 2004.
  2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра, 8. 5-е изд. — М.: Просвещение, 2010.
  3. Никольский С.М., Потапов М.А., Решетников Н.Н., Шевкин А.В. Алгебра, 8 класс. Учебник для общеобразовательных учреждений. — М.: Просвещение, 2006.
  1. Фестиваль педагогических идей «Открытый урок» ().
  2. School.xvatit.com ().
  3. Rudocs.exdat.com ().

Домашнее задание

§ 1 Целое и дробное рациональные уравнение

В этом уроке разберем такие понятия, как рациональное уравнение, рациональное выражение, целое выражение, дробное выражение. Рассмотрим решение рациональных уравнений.

Рациональным уравнением называют уравнение, в котором левая и правая части являются рациональными выражениями.

Рациональные выражения бывают:

Дробные.

Целое выражение составлено из чисел, переменных, целых степеней с помощью действий сложения, вычитания, умножения, а также деления на число, отличное от нуля.

Например:

В дробных выражениях есть деление на переменную или выражение с переменной. Например:

Дробное выражение не при всех значениях входящих в него переменных имеет смысл. Например, выражение

при х = -9 не имеет смысла, так как при х = -9 знаменатель обращается в нуль.

Значит, рациональное уравнение может быть целым и дробным.

Целое рациональное уравнение — это рациональное уравнение, в котором левая и правая части — целые выражения.

Например:

Дробное рациональное уравнение — это рациональное уравнение, в котором или левая, или правая части — дробные выражения.

Например:

§ 2 Решение целого рационального уравнения

Рассмотрим решение целого рационального уравнения.

Например:

Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него дробей.

Для этого:

1. найдем общий знаменатель для знаменателей 2, 3, 6. Он равен 6;

2. найдем дополнительный множитель для каждой дроби. Для этого общий знаменатель 6 делим на каждый знаменатель

дополнительный множитель для дроби

дополнительный множитель для дроби

3. умножим числители дробей на соответствующие им дополнительные множители. Таким образом, получим уравнение

которое равносильно данному уравнению

Слева раскроем скобки, правую часть перенесем налево, изменив знак слагаемого при переносе на противоположный.

Приведем подобные члены многочлена и получим

Видим, что уравнение линейное.

Решив его, найдем, что х = 0,5.

§ 3 Решение дробного рационального уравнения

Рассмотрим решение дробного рационального уравнения.

Например:

1.Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него рациональных дробей.

Найдем общий знаменатель для знаменателей х + 7 и х — 1.

Он равен их произведению (х + 7)(х — 1).

2.Найдем дополнительный множитель для каждой рациональной дроби.

Для этого общий знаменатель (х + 7)(х — 1) делим на каждый знаменатель. Дополнительный множитель для дроби

равен х — 1,

дополнительный множитель для дроби

равен х+7.

3.Умножим числители дробей на соответствующие им дополнительные множители.

Получим уравнение (2х — 1)(х — 1) = (3х + 4)(х + 7), которое равносильно данному уравнению

4.Слева и справа умножим двучлен на двучлен и получим следующее уравнение

5. Правую часть перенесем налево, изменив знак каждого слагаемого при переносе на противоположный:

6.Приведем подобные члены многочлена:

7.Можно обе части разделить на -1. Получим квадратное уравнение:

8.Решив его, найдем корни

Так как в уравнении

левая и правая части — дробные выражения, а в дробных выражениях при некоторых значениях переменных знаменатель может обратиться в нуль, то необходимо проверить, не обращается ли в нуль при найденных х1 и х2 общий знаменатель.

При х = -27 общий знаменатель (х + 7)(х — 1) не обращается в нуль, при х = -1 общий знаменатель также не равен нулю.

Следовательно, оба корня -27 и -1 являются корнями уравнения.

При решении дробного рационального уравнения лучше сразу указать область допустимых значений. Исключить те значения, при которых общий знаменатель обращается в нуль.

Рассмотрим еще один пример решения дробного рационального уравнения.

Например, решим уравнение

Знаменатель дроби правой части уравнения разложим на множители

Получим уравнение

Найдем общий знаменатель для знаменателей (х — 5), х, х(х — 5).

Им будет выражение х(х — 5).

теперь найдем область допустимых значений уравнения

Для этого общий знаменатель приравняем к нулю х(х — 5) = 0.

Получим уравнение, решив которое, найдем, что при х = 0 или при х = 5 общий знаменатель обращается в нуль.

Значит, х = 0 или х = 5 не могут быть корнями нашего уравнения.

Теперь можно найти дополнительные множители.

Дополнительным множителем для рациональной дроби

дополнительным множителем для дроби

будет (х — 5),

а дополнительный множитель дроби

Числители умножим на соответствующие дополнительные множители.

Получим уравнение х(х — 3) + 1(х — 5) = 1(х + 5).

Раскроем скобки слева и справа, х2 — 3х + х — 5 = х + 5.

Перенесем слагаемые справа налево, изменив знак переносимых слагаемых:

Х2 — 3х + х — 5 — х — 5 = 0

И после приведения подобных членов получим квадратное уравнение х2 — 3х — 10 = 0. Решив его, найдем корни х1 = -2; х2 = 5.

Но мы уже выяснили, что при х = 5 общий знаменатель х(х — 5) обращается в нуль. Следовательно, корнем нашего уравнения

будет х = -2.

§ 4 Краткие итоги урока

Важно запомнить:

При решении дробных рациональных уравнений надо поступить следующим образом:

1.Найти общий знаменатель дробей входящих в уравнение. При этом если знаменатели дробей можно разложить на множители, то разложить их на множители и затем найти общий знаменатель.

2.Умножить обе части уравнения на общий знаменатель: найти дополнительные множители, умножить числители на дополнительные множители.

3.Решить получившееся целое уравнение.

4.Исключить из его корней те, которые обращают в нуль общий знаменатель.

Список использованной литературы:

  1. Макарычев Ю.Н., Н. Г. Миндюк, Нешков К.И., Суворова С.Б. / Под редакцией Теляковского С.А. Алгебра: учебн. для 8 кл. общеобразоват. учреждений. — М.: Просвещение, 2013.
  2. Мордкович А.Г. Алгебра. 8 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. — М.: Мнемозина.
  3. Рурукин А. Н. Поурочные разработки по алгебре: 8 класс.- М.: ВАКО, 2010.
  4. Алгебра 8 класс: поурочные планы по учебнику Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, С.Б. Суворовой / Авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. -Волгоград: Учитель, 2005.

РЕШЕНИЕ КВАДРАТИЧНЫХ УРАВНЕНИЙ


Примечание:

  • Квадратное уравнение — это полиномиальное уравнение второй степени.
  • U-образный график квадратичного уравнения называется параболой.
  • Квадратное уравнение имеет два решения. Либо два различных реальных решения, одно двойное действительное решение или два мнимых решения.
  • Существует несколько методов решения квадратного уравнения:
    1. Факторинг
    2. Завершение квадрата
    3. Квадратичная формула
    4. График
  • Все методы начинаются с установки уравнения равным нулю.


Найдите x в следующем уравнении.

Пример 1:

Уравнение уже обнулено.

Если вы забыли, как обращаться с дробями, нажмите «Дроби» для обзора.

Удалите все дроби, записав уравнение в эквивалентной форме без дробных коэффициентов. В этой задаче это можно сделать умножив обе части уравнения на 2,


Метод 1: Факторинг

Уравнение не легко факторизуется. Поэтому, мы не будем использовать этот метод.


Способ 2: Заполнение квадрата

Добавьте 10 к обеим частям уравнения


Добавьте к обеим частям уравнения:


Фактор левой части и упрощение правой части:


Возьмите квадратный корень из обеих частей уравнения:


Добавьте 16 к обеим частям уравнения:


Метод 3: квадратичная формула

Квадратичная формула

В уравнении a есть коэффициент члена, b – коэффициент члена x , а c — константа. Замените 1 на на , -32 на на b и -10 на c на квадратичную формулу и упростить.


Метод 4: График

Изобразите левую часть уравнения, и постройте график правой части уравнения. График представляет собой не что иное, как ось x. Итак, что вы будете искать где график пересекает ось х. Другой способ сказать это состоит в том, что x-перехваты являются решения этого уравнения.

На графике видно, что есть два пересечения по оси x, одно в точке 32,309506 и один на -0,309506.

Ответы 32.309506 и Эти ответы могут или могут не быть решениями исходных уравнений. Вы должны убедиться, что эти ответы — решения.


Проверьте эти ответы в исходном уравнении.


Проверьте решение x =32,309506, подставив 32,309506 в оригинал уравнение для х. Если левая часть уравнения

равна правой часть уравнения после замены, вы нашли правильный отвечать.

  • Левая сторона:
  • Правая сторона:
Так как левая часть исходного уравнения равна правой части исходное уравнение после того, как мы подставим значение 32,309506 вместо x, тогда x = 32,309506 — это решение.

Проверьте решение x = -0,309506, заменив -0,309506 в оригинале уравнение для х. Если левая часть уравнения равна правой часть уравнения после замены, вы нашли правильный отвечать.

  • Левая сторона:
  • Правая сторона:
Так как левая часть исходного уравнения равна правой части исходное уравнение после того, как мы подставим значение -0,309506 вместо x, тогда х = — 0,309506 — это решение.


Решения уравнения составляют 32,309506 и — 0,309506.


Комментарий: Вы можете использовать точные решения, чтобы разложить исходное уравнение на множители.


С


Начиная с


Продукт


Начиная с


тогда мы могли бы сказать



However the product of the first terms of the factors does not equal


Multiply


Let’s check to see if







The факторы являются , и


Если вы хотите работать с другим примером, нажмите «Пример».


Если вы хотите проверить себя, решив некоторые задачи, подобные этой например, нажмите Проблема


Если вы хотите вернуться к содержанию уравнения, нажмите Содержание

[Алгебра] [Тригонометрия]
[Геометрия] [Дифференциальные уравнения]
[Исчисление] [Комплексные переменные] [Матричная алгебра]

Домашняя страница S.O.S MATHematics


Вам нужна дополнительная помощь? Пожалуйста, разместите свой вопрос на нашем S.O.S. Математика CyberBoard.

Автор: Нэнси Маркус

Решение квадратных уравнений

  Учебники по алгебре!
   
jpg»>  
года
 
Воскресенье 19число марта
 
   
Дом
Вычисления с отрицательными числами
Решение линейных уравнений
Системы линейных уравнений
Решение линейных уравнений графически
Алгебра Выражения
Вычисление выражений и решение уравнений
Правила дробей
Факторинг квадратных трехчленов
Умножение и деление дробей
Деление десятичных дробей на целые числа
Сложение и вычитание радикалов
Вычитание дробей
Разложение многочленов на множители по группам
Наклоны перпендикулярных линий
Линейные уравнения
Корни — Радикалы 1
График линии
Сумма корней квадратного числа
Написание линейных уравнений с использованием наклона и точки
Факторинг трехчленов со старшим коэффициентом 1
Написание линейных уравнений с использованием наклона и точки
Упрощение выражений с отрицательными показателями
Решение уравнений 3
Решение квадратных уравнений
Родительские и семейные графики
Сбор похожих терминов
-й Корни
Степень частного свойства показателей
Сложение и вычитание дробей
Проценты
Решение линейных систем уравнений методом исключения
Квадратичная формула
Дроби и смешанные числа
Решение рациональных уравнений
Умножение специальных биномов
Округление чисел
Факторинг по группировке
Полярная форма комплексного числа
Решение квадратных уравнений
Упрощение сложных дробей
Алгебра
Общие журналы
Операции с числами со знаком
Умножение дробей в общем
Разделение многочленов
Многочлены
Высшие степени и переменные показатели
Решение квадратных неравенств с помощью графика знаков
Написание рационального выражения в минимальных терминах
Решение квадратных неравенств с помощью графика знаков
Решение линейных уравнений
Квадрат бинома
Свойства отрицательных показателей
Обратные функции
дроби
Вращение эллипса
Умножение чисел
Линейные уравнения
Решение уравнений с одним логарифмическим членом
Объединение операций
Эллипс
Прямые линии
Графическое отображение неравенств с двумя переменными
Решение тригонометрических уравнений
Сложение и вычитание дробей
Простые трехчлены как произведения двучленов
Соотношения и пропорции
Решение уравнений
Умножение и деление дробей 2
Рациональные числа
Разность двух квадратов
Разложение многочленов на множители по группам
Решение уравнений, содержащих рациональные выражения
Решение квадратных уравнений
Деление и вычитание рациональных выражений
Квадратные корни и действительные числа
Порядок действий
Решение нелинейных уравнений подстановкой
Формулы расстояния и средней точки
Линейные уравнения
График с использованием точек пересечения x и y
Свойства показателей степени
Решение квадратных уравнений
Решение одношаговых уравнений с использованием алгебры
Относительно простые числа
Решение квадратного неравенства с двумя решениями
Квадратика
Операции над радикалами
Факторизация разности двух квадратов
Прямые линии
Решение квадратных уравнений с помощью факторинга
Графики логарифмических функций
Упрощение выражений, включающих переменные
Добавление целых чисел
Десятичные числа
Факторинг полностью общих квадратных трехчленов
Использование шаблонов для умножения двух двучленов
Сложение и вычитание рациональных выражений с отличающимися знаменателями
Рациональные показатели
Горизонтальные и вертикальные линии
   

Вы научились решать квадратные уравнения четырьмя различными способами: свойство четных корней, разложение на множители, завершение квадрата и квадратичная формула. Свойство четных корней и факторинг ограничены некоторыми специальными уравнениями, но вы должны использовать эти методы, когда это возможно. Любое квадратное уравнение можно решить путем заполнения квадрата или с помощью квадратичной формулы. Поскольку квадратичная формула обычно быстрее, используется чаще, чем заполнение квадрата. Однако, завершение квадрата является важным навыком для изучения.

 

Методы решения ax 2 + bx + c = 0

Метод Комментарии Примеры
Свойство четных корней Используйте, когда b = 0. (х — 2) 2 = 8

х — 2 = ±

Факторинг Используйте, когда полином можно разложить на множители.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

Карта сайта