Решите уравнение 2 х: Помогите решить уравнение: (2-x)²-x(x+1.5)=4 — Школьные Знания.com

Содержание

Уравнения в целых числах (диофантовы уравнения) / math5school.ru

 

 

Немного теории

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

xn + yn = zn

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

  • способ перебора вариантов;

  • применение алгоритма Евклида;

  • представление чисел в виде непрерывных (цепных) дробей;

  • разложения на множители;

  • решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

  • метод остатков;

  • метод бесконечного спуска.

 

Задачи с решениями

1. Решить в целых числах уравнение x2 – xy – 2y2 = 7.

Решение

Запишем уравнение в виде (x – 2y)(x + y) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2y = 7, x + y = 1;

2) x – 2y = 1, x + y = 7;

3) x – 2y = –7, x + y = –1;

4) x – 2y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

 

2. Решить в целых числах уравнение:

а) 20х + 12у = 2013;

б) 5х + 7у = 19;

в) 201х – 1999у = 12.

Решение

а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

Ответ: решений нет.

 

б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

x0 = 1, y0 = 2.

Тогда

5x0 + 7y0 = 19,

откуда

5(х – x0) + 7(у – y0) = 0,

5(х – x0) = –7(у – y0).

Поскольку числа 5 и 7 взаимно простые, то

х – x0 = 7k, у – y0 = –5k.

Значит, общее решение:

х = 1 + 7k, у = 2 – 5k,

где k – произвольное целое число.

Ответ: (1+7k; 2–5k), где k – целое число.

 

в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел

x0 = 1273·12 = 15276, y0 = 128·12 = 1536

является решением уравнения 201х – 1999у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,

или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),

х = 1283 + 1999n, у = 129 + 201n, где n – целое число.

Ответ: (1283+1999n, 129+201n), где n – целое число.

 

3. Решить в целых числах уравнение:

а) x3 + y3 = 3333333;

б) x3 + y3 = 4(x2y + xy2 + 1).

Решение

а) Так как x3 и y3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе «Делимость целых чисел и остатки»), то x3 + y3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

 

б) Перепишем исходное уравнение в виде (x + y)3 = 7(x2y + xy2) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

 

4. Решить

а) в простых числах уравнение х

2 – 7х – 144 = у2 – 25у;

б) в целых числах уравнение x + y = x2 – xy + y2.

Решение

а) Решим данное уравнение как квадратное относительно переменной у. Получим

у = х + 9 или у = 16 – х.

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х имеем

2 х 16, 2 у 16.

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

 

б) Рассмотрим данное уравнение как квадратное уравнение относительно x:

x2 – (y + 1)x + y2 – y = 0. 

Дискриминант этого уравнения равен –3y2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

 

5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x2 + y2 + z2 = x3 + y3 + z3 ?

Решение

Попробуем подбирать такие тройки, где у = –z. Тогда y3 и z3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид

x2 + 2y2 = x3

или, иначе,

x2(x–1) = 2y2.

Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n

2+1. Подставляя в x2(x–1) = 2y2 такое число, после несложных преобразований получаем:

y = xn = n(2n2+1) = 2n3+n.

Все тройки, полученные таким образом, имеют вид (2n2+1; 2n3+n; –2n3– n).

Ответ: существует.

 

6. Найдите такие целые числа x, y, z, u, что x2 + y2 + z2 + u2 = 2xyzu.

Решение

Число x2 + y2 + z2 + u2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.

Если все четыре числа x, y, z, u нечётны, то x2 + y2 + z2 + u2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.

Если ровно два из чисел x, y, z, u нечётны, то x2 + y2 + z2 + u

2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.

Поэтому все числа x, y, z, u чётны. Тогда можно записать, что

x = 2x1, y = 2y1, z = 2z1, u = 2u1,

и исходное уравнение примет вид

x12 + y12 + z12 + u12 = 8x1y1z1u1.

Теперь заметим, что (2k + 1)2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x1, y1, z1, u1 нечётны, то x12 + y12 + z12 + u12 не делится на 8. А если ровно два из этих чисел нечётно, то x12 + y12 + z12 + u12 не делится даже на 4.

Значит,

x1 = 2x2, y1 = 2y2, z1 = 2z2, u1 = 2u2,

и мы получаем уравнение

x22 + y22 + z22 + u22 = 32x2y2z2u2.

Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2n при всех натуральных n, что возможно лишь при x = y = z = u = 0.

Ответ: (0; 0; 0; 0).

 

7. Докажите, что уравнение

(х – у)3 + (y – z)3 + (z – x)3 = 30

не имеет решений в целых числах.

Решение

Воспользуемся следующим тождеством:

(х – у)3 + (y – z)3 + (z – x)3 = 3(х – у)(y – z)(z – x).

Тогда исходное уравнение можно записать в виде

(х – у)(y – z)(z – x) = 10.

Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде

abc = 10.

Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.

 

8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у2.

Решение

Очевидно, что

если х = 1, то у2 = 1,

если х = 3, то у2 = 9.

Этим случаям соответствуют следующие пары чисел:

х1 = 1, у1 = 1;

х2 = 1, у2 = –1;

х3 = 3, у3 = 3;

х4 = 3, у4 = –3.

Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как

5! + 6! + . . . + х! = 10n,

можем записать, что

1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.

Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.

Ответ: (1; 1), (1; –1), (3; 3), (3; –3).

 

9. Решите следующую систему уравнений в натуральных числах:

a3 – b3 – c3 = 3abc,  a2 = 2(b + c).

Решение

Так как

3abc > 0, то a3 > b3 + c3;

таким образом имеем

b

Складывая эти неравенства, получим, что

b + c

С учётом последнего неравенства, из второго уравнения системы получаем, что

a2

Но второе уравнение системы также показывает, что а – чётное число. Таким образом, а = 2, b = c = 1.

Ответ: (2; 1; 1)

 

10. Найти все пары целых чисел х и у, удовлетворяющих уравнению х2 + х = у4 + у3 + у2 + у.

Решение

Разложив на множители обе части данного уравнения, получим:

х(х + 1) = у(у + 1)(у2 + 1),

или

х(х + 1) = (у2 + у)(у2 + 1)

Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:

х1 = 0, у1 = 0;

х2 = 0, у2 = –1;

х3 = –1, у3 = 0;

х4 = –1, у4 = –1.

Произведение (у2 + у)(у2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х5 = 5, х6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:

х5 = 5, у5 = 2;

х6 = –6, у6 = 2.

Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)

 

Задачи без решений

1. Решить в целых числах уравнение:

а) ху = х + у + 3;

б) х2 + у2 = х + у + 2.

 

2. Решить в целых числах уравнение:

а) х3 + 21у2 + 5 = 0;

б) 15х2 – 7у2 = 9.

 

3. Решить в натуральных числах уравнение:

а) 2х + 1 = у2;

б) 3·2х + 1 = у2.

 

4. Доказать, что уравнение х3 + 3у3 + 9z3 = 9xyz в рациональных числах имеет единственное решение

x = y = z = 0.

 

5. Доказать, что уравнение х2 + 5 = у3 в целых числах не имеет решений.

 

Уравнение. 2-й класс

Тип урока: урок введения новых знаний.

Цель: дать учащимся новое математическое понятие «уравнение».

Задачи:

  • Образовательная: сформировать представление об уравнении, решение уравнений;
  • Развивающая: развивать умение сравнивать, анализировать; совершенствовать вычислительные навыки;
  • Воспитательная: формировать культуру общения в классом коллективе.

Оборудование урока:

  1. Учебник Математика 2 класс 1 часть М.И. Моро и др.
  2. Мультимедийный проектор, компьютер, презентация. 

Ход урока

I.

Самоопределение к деятельности. 

Психологический настрой: Покажите вашу прямую спинку, покажите правую руку, умные глазки. Подарите мне и друг другу добрые улыбки.

С новой темой познакомится класс.

Сегодня узнаем мы без сомнения

«Имя» этого выражения: х+4=12.

II.

Актуализация знаний и фиксация затруднений в деятельности.

– А сейчас нас ждет интересная работа – устный счет.

Назовите действия и компоненты. (Слайд 2)

  • 30 + 7 = 37
  • 47 – 5 = 42

Найдите значения выражений. (Слайд 3)

  • 32 + 2 =
  • 13 + 20 =
  • 40 – 7 =
  • 53 – 20 =
  • х + 3 = 33

– Со всеми выражениями справились? (Нет)

– Чем отличается последнее выражение?

III.

Постановка учебной задачи. 

Такое выражение называется – уравнением. Умеем ли мы решать уравнение? (Нет) (Слайд 4)

Чему будем учиться на уроке? (Решать уравнения, составить алгоритм решения уравнений)

IV.

Построение проекта выхода из проблемной ситуации, затруднения. 

Давайте разберемся, что же такое уравнение. Прочтите выражения. (Слайд 5)

  • … — 4 = 6
  • 2 + … = 8
  • … + 3 = 7
  • 9 — … = 5

– Что объединяет эти выражения? (Это примеры с неизвестным)

– Что нужно знать, чтобы решить их? (Необходимо знать состав чисел, название действий, название компонентов, нахождение неизвестных компонентов)

– Чтобы открыть новое, нам необходимо хорошо повторить то, что мы уже знаем.

1С + 2С = СУММА   У – В = Р
1С = СУММА – 2С   У = Р + В
2С = СУММА – 1С   В = У — Р

Вывод: чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое. (Слайд 6)

Чтобы найти уменьшаемое, надо к разности прибавить вычитаемое. (Слайд 7)

Чтобы найти вычитаемое, надо из уменьшаемого вычесть разность.

– В математике принято вместо отсутствующего компонента писать буквы латинского алфавита:

х (икс), а (а), b (бе) c (це) и другие. (Слайд 8)

Попробуем сделать вывод из всего сказанного.

Вывод: уравнение – это … (х + 3 = 33) равенство, содержащее … (х + 3 = 33) неизвестное число, которое надо найти. (Слайд 9)

Что надо сделать с неизвестным числом? ( Его надо найти)

– Как обозначается неизвестное число? (Латинскими буквами)

– Молодцы, ваша работа достойна похвалы. А сейчас проверьте себя, прочтите в учебнике на странице 68.

– Давайте составим алгоритм решения уравнения. (Слайд 10)

Алгоритм решения уравнений:

  1. Прочитай уравнение.
  2. Назови действие, компоненты.
  3. Вспомни, как найти неизвестный компонент.
  4. Запиши и вычисли.
  5. Проверь.

V.

Первичное закрепление учебного материала.

А теперь давайте решать уравнения. Что нам поможет сделать это? (Алгоритм) (Слайд 11)

VI. Самостоятельная работа.

– Пользуясь алгоритмом, решите самостоятельно уравнения на стр. 68 №1.

Вариант 1. Верхнюю строку.

Вариант 2. Нижнюю строку.

– Взаимопроверка работы. (Слайды 12, 13)

VII.

Включение новых знаний в систему и повторение.

Из данных выражений найдите уравнения и запишите их номера: (Слайды 14, 15)

  1. 8 – 4 = 4
  2. 6 – х = 4
  3. 12 + х = 20
  4. а – 6
  5. а – 6 = 18
  6. 13 – 1 = 12
  7. 10 + у
  8. 10 + у = 23

VIII.

Рефлексия деятельности.

– Назовите тему урока, над которой работали сегодня.

– Какую цель ставили перед собой?

– Выполнили?

– Так что такое уравнение?

2 класс — уравнения. Как решить уравнение, примеры

Дата публикации: .

Составление уравнений

1. Составь уравнение с числами 12, 34 и переменной x.

2. Составь уравнение с числами 7, 31 и переменной a.

3. Составь уравнение с числами 8, 54 и переменной b.

4. Составь уравнение с числами 5, 15 и переменной y.

5. Составь уравнение с числами 6, 24 и переменной c.

6. Составь уравнение с числами 3, 18 и переменной d.

7. Составь уравнение, используя рисунок.

а)
б)

9. Составь уравнения к текстовым задачам и реши их.

а) Бабушка к празднику испекла 20 пирожков. Гости съели 16 пирожков. Сколько пирожков осталось после праздника?

б) По плану автомобильный салон должен продать 34 автомобиля в месяц. К середине месяца было продано 19 автомобилей. Сколько автомобилей необходимо продать до конца месяца?

в) В оздоровительный лагерь приехало отдыхать 15 групп детей, но лагерь может принять ещё 8 групп. Сколько всего групп детей может принять лагерь?

Решение уравнений

1. Реши уравнения.

34 — х = 20х + 20 = 48у — 7 = 1245 — 18 = x
6 + x = 3832 — y = 13x + 5 = 47y — 18 = 35
82 — y = 6729 — x = 22y + 47 = 59y + 53 = 78

2. Заданы выражения: с + 12 и с — 12. Определи значение этих выражений при с = 34; c = 45; с = 59; c = 78.

3. Определи уравнения, в которых ответ равен 7.

19 — х = 10х + 5 = 12у — 5 = 2у = 77 — 7

4. Реши задачи, составив уравнения.

а) Длина школьного забора составляет 74 метра. Маляр покрасил 45 метров. Сколько метров забора осталось покрасить?

б) Расстояние от города до склада с песком составляет 93 км. До обеда грузовая машина, груженная песком, преодолела 56 км. Сколько километров ей надо преодолеть после обеда?

в) По плану заготовители должны собрать 30 кг клюквы. До обеда было собрано 19 кг клюквы. Сколько килограмм ягод необходимо собрать до конца рабочего дня?

г) В течении месяца механик отремонтировал 67 мотоциклов. Сколько мотоциклов ему осталось отремонтировать, если в начале месяца в мастерской находилось 77 мотоциклов?

ОГЭ по математике | Задание 21

Задание 21 из ОГЭ по математике открывает вторую часть экзаменационного билета, предназначенную для оценки углубленных знаний девятиклассников. За его выполнение начисляется 2 балла. Если будет допущена вычислительная ошибка или описка, но при этом логика решения сохранится, то будет начислен 1 балл.

В данном случае нужно решить уравнение (обычно кубическое или биквадратное), неравенство, систему уравнений или неравенств, алгебраическое выражение. Большой выбор разновидностей примеров несколько усложняет подготовку. Алгоритм решения зависит от того, с каким видом придется столкнуться, универсальных рекомендаций в этом случае нет. Наиболее распространенный вариант — уравнение, так что изучению этого раздела математики следует уделить побольше времени.

Что нужно знать?

Перед экзаменом повторите еще раз следующие темы:

  • сокращение дробей;
  • уравнения и их системы;
  • неравенства;
  • преобразования рациональных выражений.

Секреты успеха

Несмотря на то, что вторая часть билета сложнее первой, справиться с заданием вполне реально, для этого не нужно дополнительных знаний, достаточно внимательно изучить школьный курс алгебры. Обязательно потренируйтесь перед экзаменом в решении заданий такого типа.

Во время тестирования постарайтесь быстро выполнить задачи первой части, чтобы для сложных разновидностей осталось больше времени.

При изучении условия обратите внимание на поставленный вопрос. Распространенная ошибка — приступать к вычислениям, не поняв до конца, какой ответ требуется.

В решении можно использовать методы введения новых переменных, разложения на множители, а также иные стандартные приемы, которые были изучены на уроках алгебры.

Обязательно проверяйте каждый свой шаг. В процессе преобразований выражений есть большой риск «потерять» минус, перепутать цифру, допустить ошибку в подсчетах. В таком случае, даже если все остальные шаги будут выполнены верно, ответ получится неправильный. В таком случае за выполнение задания будет начислен всего один балл вместо двух. Чтобы избежать такой обидной промашки, не пренебрегайте проверками каждого совершенного действия и окончательного результата.

Мы желаем вам плодотворной подготовки и легкой сдачи ОГЭ!

Algebra Calculator Tutorial — MathPapa

Это учебное пособие о том, как использовать Algebra Calculator , пошаговый калькулятор для алгебры.

Решение уравнений

Сначала перейдите на главную страницу Калькулятора алгебры. В текстовом поле калькулятора вы можете ввести математическую задачу, которую хотите вычислить.

Например, попробуйте ввести уравнение 3x + 2 = 14 в текстовое поле.

После того, как вы введете выражение, Калькулятор алгебры распечатает пошаговое объяснение того, как решить 3x + 2 = 14.


Примеры

Чтобы увидеть больше примеров задач, которые понимает калькулятор алгебры, посетите Страница примеров. Вы можете попробовать их прямо сейчас.

Математические символы

Если вы хотите создать свои собственные математические выражения, вот некоторые символы, которые понимает Калькулятор алгебры:

+ (Дополнение)
(вычитание)
* (умножение)
/ (Отдел)
^ (экспонента: «в степени»)


Построение графика

Для построения графика уравнения введите уравнение, которое начинается с «y =» или «x =». 2.


Вычисление выражений

Калькулятор алгебры может вычислять выражения, содержащие переменную x.

Чтобы оценить выражение, содержащее x, введите выражение, которое вы хотите оценить, затем знак @ и значение, которое вы хотите вставить для x. Например, команда 2x @ 3 вычисляет выражение 2x для x = 3, что равно 2 * 3 или 6.

Калькулятор алгебры также может вычислять выражения, содержащие переменные x и y.Чтобы оценить выражение, содержащее x и y, введите выражение, которое вы хотите оценить, затем знак @ и упорядоченную пару, содержащую ваше значение x и значение y. Вот пример вычисления выражения xy в точке (3,4): xy @ (3,4).

Проверка ответов для решения уравнений

Так же, как калькулятор алгебры можно использовать для вычисления выражений, Калькулятор алгебры также можно использовать для проверки ответов на решение уравнений, содержащих x.

В качестве примера предположим, что мы решили 2x + 3 = 7 и получили x = 2. Если мы хотим вставить 2 обратно в исходное уравнение, чтобы проверить нашу работу, мы можем сделать это: 2x + 3 = 7 @ 2. Поскольку ответ правильный, в калькуляторе алгебры отображается зеленый знак равенства.

Если вместо этого мы попробуем значение, которое не работает, скажем, x = 3 (попробуйте 2x + 3 = 7 @ 3), вместо этого калькулятор алгебры покажет красный знак «не равно».

Чтобы проверить ответ на систему уравнений, содержащую x и y, введите два уравнения, разделенных точкой с запятой, за которыми следует знак @ и упорядоченную пару, содержащую ваше значение x и значение y.Пример: x + y = 7; х + 2у = 11 @ (3,4).


Режим планшета

Если вы используете планшет, например iPad, войдите в режим планшета, чтобы отобразить сенсорную клавиатуру.


Статьи по теме

Вернуться к калькулятору алгебры »

Как найти набор решений

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или другие ваши авторские права, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту. Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в виде ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например, мы требуем а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Решение линейных уравнений с нулевым Солнцем, Без Солнца и «Все-x» Солнцем

Purplemath

Есть три типа решений, которые могут вызвать путаницу.Мы рассмотрим по одному примеру каждого из них, и я объясню различия. Затем мы поработаем над смесью типов уравнений, чтобы вам было удобнее различать типы решений.

Чтобы решить это уравнение, мне сначала нужно упростить левую часть, взяв «минус» в скобки и объединив «похожие» термины:

MathHelp.com

5 — (3 x + 4)

5 — 1 (3 x ) — 1 (+4)

5 — 3 x — 4

5 — 4 — 3 x

1-3 x

Теперь я могу решить обычным способом:

1–3x = 1
-1 -1
————
-3x = 0
— —
-3-3

х = 0

Является ли « x = 0″ допустимым решением? Да, действительно, потому что ноль — допустимое число.Дело не в том, что решение — «ничто»; дело в том, что решение — это «что-то», а это «что-то» равно нулю. Итак, мой ответ:


Студенты, как правило, могут привыкнуть к тому, что ноль является решением уравнения, но разница между решением «ноль» (это решение является числовым значением) и «ничего» (возможно, является физической мерой чего-то вроде «без яблок» или «нет денег») может вызвать недоумение.

Убедитесь, что вы понимаете, что «ноль» сам по себе не является «ничем». Ноль — это числовое значение, которое (в «реальной жизни» или в контексте словесной проблемы) может означать , что «ничего» чего-то или другого нет, но сам ноль — реальная вещь; это существует; это что-то».


  • Решить 11 + 3
    x -7 = 6 x + 5-3 x

Сначала объедините одинаковые термины; затем решите:

Гм… подожди минутку …

С каких это пор четыре когда-либо равно пяти? Никогда! Существует ли какое-нибудь возможное значение x , которое «исправит» это уравнение, чтобы оно говорило что-то, имеющее смысл? Будет ли любое значение x когда-либо заставить это уравнение работать?

Нет; это просто невозможно. Я выполнил все свои шаги правильно, но эти шаги привели к тому, что уравнение (а) не содержало переменных и (б) не имело смысла.Поскольку не существует значения x , которое заставило бы это уравнение работать, то это уравнение не имеет решения. Вот мой ответ на это упражнение:

.

Вот логика для приведенного выше примера: когда вы пытаетесь решить уравнение, вы исходите из (неустановленного) предположения, что на самом деле — это решение. Когда вы в конечном итоге получаете бессмыслицу (например, бессмысленное уравнение «4 = 5» выше), это означает, что ваше первоначальное предположение (а именно, что исходное уравнение действительно имело решение) было неверным; на самом деле решения нет.Поскольку утверждение «4 = 5» совершенно неверно, и с момента нет значения x, которое когда-либо могло бы сделать его истинным , то это уравнение не имеет решения.

Advisory: этот ответ полностью отличается от ответа на первое упражнение в верхней части этой страницы, где было , значение x , что будет работать (это значение решения равно нулю). Не путайте эти две очень разные ситуации : «решение существует и имеет нулевое значение» никоим образом не то же самое, что «никакого значения решения не существует вообще».

И не путайте приведенное выше уравнение типа «без решения» со следующим типом уравнения:

  • Решить 6
    x + 5-2 x = 4 + 4 x + 1

Сначала я объединю похожие термины; тогда решу:

Для предыдущего уравнения я получил «5 = 4», и не было значения x , которое могло бы сделать уравнение истинным. Этот результат противоположен этому. Для этого уравнения существует ли какое-либо возможное значение x , которое могло бы сделать приведенное выше утверждение ложным? Нет; 5 — это , всегда будет равно 5. Фактически, поскольку в последней строке вычислений нет « x », значение x явно не имеет отношения к уравнению; x может быть чем угодно, и уравнение останется верным. Итак, решение:

Это решение также может быть указано как «все действительные числа», «все действительные числа», «вся числовая строка», «(–∞, + ∞)» или « x ∈ & reals;» (последнее означает « x является членом набора действительных чисел»).Вы должны ожидать увидеть некоторые вариации в жаргоне от одного учебника к другому, поэтому не удивляйтесь различиям в форматировании.

Обратите внимание, что, если бы я решил уравнение вычитанием 5 из любой части исходного уравнения, я бы получил:

Другими словами, я бы получил еще одно тривиально верное утверждение. Я также мог бы вычесть 4 x с любой стороны, или я мог бы разделить обе стороны приведенного выше уравнения на 4, или я мог бы разделить на 4, а затем вычесть x с любой стороны, или я мог бы вычесть и 4 x , и 5 с обеих сторон исходного уравнения.Каждый из них — это еще один способ получить другой тривиально верный результат, например «0 = 0». Но независимо от конкретных предпринятых шагов результат (тривиально верное уравнение) всегда будет одним и тем же, и решение останется тем же: «все x ».

Поскольку (как я перечислил выше) существует множество способов прийти к одному и тому же выводу для этого типа уравнения, вы не должны удивляться, если для уравнений «все действительные числа» или «без решения» вы не используйте те же шаги, что и некоторые из ваших одноклассников.Существует бесконечно много всегда верных уравнений (например, «0 = 0») и бесконечно много бессмысленных уравнений (например, «3 = 4»), также будет много способов (правильно) прийти к этим ответам.

Основным выводом из приведенных выше примеров должны быть следующие правила:

x = 0: регулярное решение регулярного уравнения

чушь (например, 3 = 4): нет решения

тривиально верно (например, 0 = 0): решение — все действительные числа

К сожалению, хотя вы почти наверняка встретите хотя бы один из этих вопросов типа «нет решения» или «все реально» в следующем тесте (и, вероятно, также в финале), их обычно не так много в наборе домашних заданий, и ваш инструктор, вероятно, предоставил только по одному образцу каждого типа.Это не дает вам большой практики в интерпретации решений такого типа, поэтому давайте еще несколько примеров.


Сначала я умножу 3 на скобку в левой части. Тогда я решу.

3x + 12 = 3x + 11
-3x -3x
——————
12 = 11

Моя математика верна, но результат — ерунда.Двенадцать никогда не будет равняться одиннадцати. Итак, мой ответ:


  • Решите 6 — 2 (
    x + 3) = –2 x

Я буду умножать и упрощать в левой части. Тогда я решу.

6-2 (x + 3) = -2x
6 — 2x — 6 = -2x
6-6 — 2x = -2x
0 — 2x = -2x
-2x = -2x
+ 2x + 2x
———
0 = 0

Ноль всегда будет равняться нулю, и в последней строке моей работы нет даже какой-либо переменной, поэтому переменная явно не имеет значения.Это уравнение верно независимо от значения x . Итак, мой ответ:


  • Решите 2 (
    x + 1) + x = 3 ( x + 2) — 2

Мне нужно перемножить и упростить каждую часть этого уравнения.

2 (х + 1) + х = 3 (х + 2) — 2
2х + 2 + х = 3х + 6 — 2
2х + х + 2 = 3х + 4
3х + 2 = 3х + 4
-3x -3x
———————-
2 = 4

Нет; никогда не правда.


  • Решить 5
    x + 7 = 4 (2 x + 1) — 3 x -2

Мне нужно упростить правую часть, а затем посмотреть, к чему это приведет.

5x + 7 = 4 (2x + 1) — 3x — 2
5x + 7 = 8x + 4 — 3x — 2
5x + 7 = 8x — 3x + 4-2
5х + 7 = 5х + 2
-5x -5x
——————
7 = 2

Нет; никогда не правда.


Я разверну левую часть и решу.

8 (x + 2) = 2x + 16
8х + 16 = 2х + 16
-2x -2x
——————
6x + 16 = 16
-16 -16
——————
6x + 0 = 0
—— —
6 6

х = 0

Это уравнение имеет значение решения, равное нулю.


  • Решить 1,5
    x + 4 = 4 ( x + 1) — 2,5 x

Я расширяю и упрощаю в правой части, а затем решаю.

1,5x + 4 = 4 (x + 1) — 2,5x
1,5x + 4 = 4x + 4 — 2,5x
1,5x + 4 = 4x — 2,5x + 4
1.5х + 4 = 1,5х + 4
-1,5x -1,5x
———————
4 = 4

Это всегда так, поэтому мой ответ:


Я разверну левую часть и решу.

2 (x + 5) = 2x + 5
2x + 10 = 2x + 5
-2x -2x
——————
10 = 5

Нет; никогда не правда.2-3 * x- (2) = 0

Пошаговое решение:

Шаг 1:

Уравнение в конце шага 1:
 (2x  2  - 3x) - 2 = 0
 

Шаг 2:

Попытка разложить на множители путем разделения среднего члена

2.1 Факторинг 2x 2 -3x-2

Первый член 2x 2 его коэффициент равен 2.
Средний член равен -3x, его коэффициент равен -3.
Последний член, «константа», равен -2

Шаг-1: Умножьте коэффициент первого члена на константу 2 • -2 = -4

Шаг-2: Найдите два множителя -4, сумма которых равен коэффициенту среднего члена, который равен -3.

-4 + 1 =-3 Вот и все


Шаг 3: Перепишите полиномиальное разделение двух найденных средних членов шаг 2 выше, -4 и 1
2x 2 — 4x + 1x — 2

Шаг 4: сложите первые 2 члена, вычитая одинаковые множители:
2x • (x-2)
Сложите последнее 2 члена, извлекая общие множители:
1 • (x-2)
Шаг 5: сложите четыре члена из шага 4:
(2x + 1) • (x-2)
Какое будет желаемое разложение на множители

Уравнение в конце шага 2:
 (x - 2) • (2x + 1) = 0
 

Шаг 3:

Теория — Корни продукта:

3.1 Произведение нескольких членов равно нулю.

Если произведение двух или более членов равно нулю, то хотя бы одно из членов должно быть равно нулю.

Теперь мы решим каждый член = 0 отдельно

Другими словами, мы собираемся решить столько уравнений, сколько членов есть в продукте

Любое решение для члена = 0 также решает продукт = 0.

 
Решение уравнения с одной переменной:

3.2 Решите: x-2 = 0

Добавьте 2 к обеим сторонам уравнения:
x = 2

 
Решение уравнения с одной переменной:

3.3 Решите: 2x + 1 = 0

Вычтем 1 из обеих частей уравнения:
2x = -1
Разделите обе части уравнения на 2:
x = -1/2 = -0,500

 

Дополнение: Непосредственное решение квадратного уравнения

 Непосредственное решение 2x  2  -3x-2 = 0 

Ранее мы разложили этот многочлен на множители, разделив средний член. давайте теперь решим уравнение, заполнив квадрат и используя квадратичную формулу

Парабола, поиск вершины:

4.1 Найдите вершину y = 2x 2 -3x-2

Параболы имеют самую высокую или самую низкую точку, называемую вершиной. Наша парабола открывается и, соответственно, имеет самую низкую точку (также известную как абсолютный минимум). Мы знаем это даже до того, как нанесли «y», потому что коэффициент первого члена, 2, положительный (больше нуля).

Каждая парабола имеет вертикальную линию симметрии, проходящую через ее вершину. Из-за этой симметрии линия симметрии, например, будет проходить через середину двух x-точек пересечения (корней или решений) параболы.То есть, если парабола действительно имеет два реальных решения.

Параболы могут моделировать многие реальные жизненные ситуации, например высоту над землей объекта, брошенного вверх через некоторый промежуток времени. Вершина параболы может предоставить нам информацию, например, максимальную высоту, которую может достичь объект, брошенный вверх. По этой причине мы хотим иметь возможность найти координаты вершины.

Для любой параболы Ax 2 + Bx + C координата x вершины задается как -B / (2A).В нашем случае координата x равна 0,7500

Подставив в формулу параболы 0,7500 для x, мы можем вычислить координату y:
y = 2,0 * 0,75 * 0,75 — 3,0 * 0,75 — 2,0
или y = -3,125

Парабола, Графическое изображение вершины и пересечения по оси X:

Корневой график для: y = 2x 2 -3x-2
Ось симметрии (пунктирная линия) {x} = {0,75}
Вершина в точке {x, y} = {0,75, — 3.12}
x -Перехват (корни):
Корень 1 при {x, y} = {-0,50, 0,00}
Корень 2 при {x, y} = {2.00, 0.00}

Решите квадратное уравнение, заполнив квадрат

4.2 Решение 2x 2 -3x-2 = 0, заполнив квадрат.

Разделите обе части уравнения на 2, чтобы получить 1 в качестве коэффициента первого члена:
x 2 — (3/2) x-1 = 0

Добавьте 1 к обеим сторонам уравнения:
x 2 — (3/2) x = 1

А теперь умный бит: возьмите коэффициент при x, равный 3/2, разделите его на два, получив 3/4, и возведите его в квадрат, получив 9/16

Прибавляем 9/16 к обеим частям уравнения:
В правой части имеем:
1 + 9/16 или, (1/1) + (9/16)
Общий знаменатель двух дробей равен 16. (16/16) + (9/16) дает 25/16
Таким образом, прибавляя к обеим сторонам, мы окончательно получаем:
x 2 — (3/2) x + (9/16) = 25/16

Добавление 9 / 16 завершил левую часть в виде полного квадрата:
x 2 — (3/2) x + (9/16) =
(x- (3/4)) • (x- (3/4) ) =
(x- (3/4)) 2
Вещи, которые равны одному и тому же, также равны друг другу.Поскольку
x 2 — (3/2) x + (9/16) = 25/16 и
x 2 — (3/2) x + (9/16) = (x- (3/4)) 2
тогда, согласно закону транзитивности,
(x- (3/4)) 2 = 25/16

Мы будем называть это уравнение уравнением. # 4.2.1

Принцип квадратного корня гласит, что когда две вещи равны, их квадратные корни равны.

Обратите внимание, что квадратный корень из
(x- (3/4)) 2 равен
(x- (3/4)) 2/2 =
(x- (3/4)) 1 =
x- (3/4)

Теперь, применяя принцип квадратного корня к уравнению.# 4.2.1 получаем:
x- (3/4) = √ 25/16

Добавьте 3/4 к обеим сторонам, чтобы получить:
x = 3/4 + √ 25/16

Поскольку квадратный корень имеет два значения, одно положительное, а другое отрицательное
x 2 — (3/2) x — 1 = 0
имеет два решения:
x = 3/4 + √ 25/16
или
x = 3/4 — √ 25/16

Обратите внимание, что √ 25/16 можно записать как
√ 25 / √ 16, что равно 5/4

Решите квадратное уравнение, используя квадратичную формулу

4.3 Решение 2x 2 -3x-2 = 0 по квадратичной формуле.

Согласно квадратичной формуле, x, решение для Ax 2 + Bx + C = 0, где A, B и C — числа, часто называемые коэффициентами, дается как:

— B ± √ B 2 -4AC
x = ————————
2A

В нашем случае A = 2
B = -3
C = -2

Соответственно B 2 — 4AC =
9 — (-16) =
25

Применение квадратичной формулы:

3 ± √ 25
x = —————
4

Можно ли упростить √ 25?

Да! Разложение 25 на простые множители равно
5 • 5
Чтобы можно было удалить что-либо из-под корня, должно быть 2 экземпляра этого (потому что мы берем квадрат i.е. второй корень).

√ 25 = √ 5 • 5 =
± 5 • √ 1 =
± 5

Итак, теперь мы смотрим на:
x = (3 ± 5) / 4

Два реальных решения:

x = ( 3 + √25) / 4 = (3 + 5) / 4 = 2.000

или:

x = (3-√25) / 4 = (3-5) / 4 = -0.500

Были найдены два решения :

  1. x = -1/2 = -0,500
  2. x = 2

Решение двухэтапных уравнений — ChiliMath

Нет сомнений в том, что решить двухэтапное уравнение чрезвычайно просто.Как следует из названия, двухэтапные уравнения можно решить всего за два шага. Если вы впервые сталкиваетесь с двухэтапными уравнениями, не волнуйтесь, потому что мы рассмотрим достаточно примеров, чтобы вы познакомились с процессом.

Решая уравнение в целом, мы всегда помним о том, что все, что мы делаем с одной стороной уравнения, должно быть сделано и с другой стороной, чтобы уравнение оставалось сбалансированным.

Мы знаем, что мы полностью решили двухэтапное уравнение, если переменная, обычно представленная буквой в алфавите, изолирована на одной стороне уравнения (левой или правой), а число находится на противоположной стороне.


ОБЫЧНЫЙ способ решения двухэтапного уравнения:

Примечание : Это «обычный» метод, потому что так решается большинство двухэтапных уравнений. Обратите внимание, что шаг 2 можно в качестве альтернативы заменить на шаг 3, который по сути тот же.

1) Сначала сложите или вычтите обе части линейного уравнения на одно и то же число.

2) Во-вторых, умножьте или разделите обе части линейного уравнения на одно и то же число.

3) * Вместо шага 2 всегда умножайте обе части уравнения на обратную величину коэффициента переменной.


Примеры решения двухэтапных уравнений

Пример 1: Решите приведенное ниже двухэтапное уравнение.

Как следует из названия этого линейного уравнения, для определения неизвестной переменной требуется два шага. Как правило, первый шаг заключается в том, чтобы избавиться от числа, «наиболее удаленного» от члена с решаемой переменной.Затем мы исключаем число, «ближайшее» к переменной. Число либо умножает, либо делит переменную. Его еще называют коэффициентом срока.

Здесь переменная x. Наша цель — решить x, выделив его на одной стороне уравнения. Сохранение переменной слева или справа не имеет никакого значения. Это тебе решать! В этой задаче оставим его слева, так как он уже там.

Обратите внимание на то, что на той стороне (левая часть линейного уравнения), где находится переменная, 2 — это «ближайший» к переменной x, а 5 — «самый дальний».

Это простое наблюдение позволяет нам решить, какое число удалить в первую очередь. Очевидно, это +5, потому что это больше между двумя. Противоположность +5 равна -5, это означает, что мы вычтем обе части уравнения на 5.

После исключения 5 в левой части уравнения путем вычитания обеих частей на 5, пора избавиться от числа, ближайшего к x или непосредственно связанного с ним, которое равно 2 в 2x. Поскольку 2 — это умножение переменной x, противоположная операция — деление на 2.

Разделив обе части на 2, мы получим окончательный ответ или решение данного двухшагового линейного уравнения.

Напоминаю, что это считается решенным, потому что коэффициент переменной просто положительный, +1.


Пример 2: Решите двухэтапное уравнение ниже.

Наша цель — сохранить переменную x на одной стороне уравнения. Неважно, на какой стороне, однако это «стандартная» практика — оставлять решаемую переменную в левой части.Некоторые учителя алгебры могут потребовать, чтобы переменная оставалась слева, и с этим ничего не поделаешь. Лично я не против, где вы храните переменную, левую или правую, при условии, что изолированная переменная на одной стороне уравнения имеет коэффициент +1.

Первый шаг включает удаление числа «дальше всего» от переменной x. Обратите внимание, что -3 «ближе всего» к x, а -8 «дальше». Итак, мы можем исключить -8, добавив к его противоположности, равному +8.

Второй шаг заключается в том, чтобы избавиться от числа, ближайшего к переменной x, равного -3.Поскольку -3 умножает переменную x, его противоположная операция — деление на -3. Разделив обе части на -3, мы решили линейное уравнение.

Быстрое напоминание, -3 деленное на -3 равно +1.


Пример 3: Решите приведенное ниже двухэтапное уравнение.

Вот ситуация, когда мы можем изолировать переменную x в правой части уравнения, поскольку она уже существует.

Если посмотреть на правую часть уравнения, где находится переменная, число 3 наиболее близко к x, потому что 3 делит переменную x.С другой стороны, число 26 — «дальше». Это означает, что нам придется иметь дело с +26, вычитая обе части уравнения на 26. Причина, по которой мы вычитаем, состоит в том, что аддитивная величина, обратная +26, равна -26.

Второй шаг — избавиться от знаменателя 3. Поскольку 3 делит x, противоположная операция — умножение на 3.

После умножения обеих частей на 3 мы пришли к окончательному ответу. Вы можете переписать свой окончательный ответ как x = -9.


Пример 4: Решите уравнение двух ниже.

Это может показаться многоступенчатым уравнением, но это не так. Это можно решить в два этапа. Не беспокойтесь о дробях, потому что с ними очень легко работать. В этом случае вы примените правило сложения дробей. Правило гласит, что если вы складываете две дроби с одинаковым знаменателем, просто сложите числители, а затем скопируйте общий знаменатель.

Вернемся к решению двухэтапного уравнения выше, чтобы удалить дробь в левой части, которая равна \ Large {- {3 \ over {10}}}, мы добавим \ Large {{3 \ over {10}}} к обеим сторонам уравнения.

Причина, по которой мы добавляем вместо вычитания, заключается в том, что аддитивная величина, обратная \ Large {- {3 \ over {10}}}, есть \ Large {+ {3 \ over {10}}}.

После добавления \ Large {{3 \ over {10}}} с обеих сторон на левой стороне остается только {\ Large {{2 \ over 5}}} x.

Для правой части уравнения имеем \ Large {{9 \ over {10}} + {3 \ over {10}} = {{12} \ over {10}}}.

Все, что я сказал выше, — это только первый шаг. Теперь переходим ко второму шагу. Посмотрите на коэффициент переменной x.Это \ Large {{2 \ over 5}}, что означает, что его обратное значение равно \ Large {{5 \ over 2}}.

Чтобы окончательно решить данное уравнение, мы умножим обе части уравнения на обратную величину коэффициента рассматриваемой переменной. Вот полное пошаговое решение:


Практика с рабочими листами

уравнений абсолютных значений

уравнений абсолютных значений Уравнения абсолютных значений

Выполните следующие действия, чтобы найти равенство по абсолютной величине. который содержит одно абсолютное значение:

  1. Выделите абсолютное значение на одной стороне уравнения.
  2. Число на другой стороне уравнения отрицательное? Если вы ответили утвердительно, то уравнение не имеет решения. Если вы ответили нет, переходите к шагу 3.
  3. Напишите два уравнения без абсолютных значений. Первое уравнение установит количество внутри столбцов, равное количеству на другом сторона знака равенства; второе уравнение установит количество внутри столбцы равны противоположному числу на другой стороне.
  4. Решите два уравнения.


Выполните следующие действия, чтобы найти равенство абсолютного значения. который содержит два абсолютных значения (по одному с каждой стороны уравнения):

  1. Напишите два уравнения без абсолютных значений. Первое уравнение установит количество внутри столбцов с левой стороны равным количество внутри полос с правой стороны. Второе уравнение установит количество внутри столбцов с левой стороны равным противоположному количества внутри полос с правой стороны.
  2. Решите два уравнения.

Давайте рассмотрим несколько примеров.

Пример 1: Решить | 2x — 1 | + 3 = 6

Шаг 1: Изолировать абсолютное значение | 2x — 1 | + 3 = 6

| 2x — 1 | = 3

Шаг 2: Is число на другой стороне уравнения отрицательное? Нет, это положительное число, 3, так что продолжайте шаг 3
Шаг 3: Запись два уравнения без столбцов абсолютного значения 2x — 1 = 3 2х — 1 = -3
Шаг 4: Решить оба уравнения 2x — 1 = 3

2x = 4

х = 2

2х — 1 = -3

2x = -2

х = -1


Пример 2: Решить | 3x — 6 | — 9 = -3

Шаг 1: Изолировать абсолютное значение | 3х — 6 | — 9 = -3

| 3x — 6 | = 6

Шаг 2: Is число на другой стороне уравнения отрицательное? Нет, это положительное число, 6, так что продолжайте шаг 3
Шаг 3: Запись два уравнения без столбцов абсолютных значений 3х — 6 = 6 3х — 6 = -6
Шаг 4: Решить оба уравнения 3x — 6 = 6

3x = 12

х = 4

3х — 6 = -6

3x = 0

х = 0


Пример 3: Решить | 5x + 4 | + 10 = 2

Шаг 1: Изолировать абсолютное значение | 5x + 4 | + 10 = 2

| 5x + 4 | = -8

Шаг 2: Is число на другой стороне уравнения отрицательное? Да, это отрицательное число, -8.Нет решения к этой проблеме.

Пример 4: Решить | x — 7 | = | 2x — 2 |

Шаг 1: Запись два уравнения без столбцов абсолютных значений х — 7 = 2х — 2 х — 7 = — (2х — 2)
Шаг 4: Решить оба уравнения х — 7 = 2х — 2

-x — 7 = -2

-x = 5

х = -5

х — 7 = -2x + 2

3x — 7 = 2

3x = 9

х = 3


Пример 5: Решить | x — 3 | = | x + 2 |

Шаг 1: Запись два уравнения без столбцов абсолютных значений х — 3 = х + 2 х — 3 = — (х + 2)
Шаг 4: Решить оба уравнения х — 3 = х + 2

— 3 = -2

ложное заявление

Нет решения из этого уравнения

х — 3 = -x — 2

2x — 3 = -2

2x = 1

х = 1/2

Итак, единственное решение этой проблемы — x = 1/2

Пример 6: Решить | x — 3 | = | 3 — x |

Шаг 1: Запись два уравнения без столбцов абсолютных значений х — 3 = 3 — х х — 3 = — (3 — х)
Шаг 4: Решить оба уравнения х — 3 = 3 — х

2x — 3 = 3

2x = 6

х = 3

х — 3 = — (3 — х)

х — 3 = -3 + х

-3 = -3

Все действительные числа являются решениями этого уравнения

Поскольку 3 входит в набор действительных чисел, мы просто скажем, что решение этого уравнения — все действительные числа

Как решать алгебру

y = 24 — 4x
Пояснение:

Как показано в приведенном выше примере, мы вычисляем значение переменной из одного уравнения и подставляем его в другое.

Нам дано, что

у = 24 — 4х —— (1)
2x + y / 2 = 12 —— (2)

Здесь мы выбираем уравнение (1) для вычисления значения x. Поскольку уравнение (1) уже находится в самая упрощенная форма:

(Подставляя это значение y в уравнение (2), а затем решая для x дает)

2x + (24-4x) / 2 = 12 —— (2) (∵ y = 24 — 4x)
2x + 24 / 2- 4x / 2 = 12
2x + 12 — 2x = 12
12 = 12

Вы можете подумать, что это тот же сценарий, что обсуждался выше (24 = 24).Но ждать! Вы слишком рано пытаетесь сделать вывод. В предыдущем сценарии результат 24 = 24 был получен потому, что мы поместили значение переменной в то же уравнение, что и используется для его вычисления. Здесь мы этого не сделали.

Результат 12 = 12 имеет какое-то отношение к природе системы уравнений, которую мы дано.Независимо от того, какой метод решения вы можете использовать, решение системы линейных уравнения лежат в единственной точке, где их линии пересекаются. В этом сценарии две строки в основном одинаковы (одна линия над другой. На следующем рисунке показан этот сценарий.

Такая система называется зависимой системой уравнения.И решение такой системы — это вся линия (каждая точка на линии — это точка пересечения двух линий)

Следовательно, решением данной системы уравнений является вся строка: y = 24 — 4x

Другой возможный сценарий:

Подобно этому примеру, существует другой сценарий, в котором замена одной переменной в уравнение 2 и приводит к результату, аналогичному показанному ниже:

23 = –46

или

5 = 34

Такой сценарий возникает, когда не существует решения данной системы уравнений.Т.е., когда две линии вообще не пересекаются ни в одной точке.

Следовательно, в случае такого результата, когда кажется, что ваши основные математические правила не работают, простой вывод заключается в том, что решения данной системы не существует. Такая система уравнений называется Несогласованная система .

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *