Найдите корни уравнения sin(2x-п/2)=-1/2 принадлежащие…
Ответ оставил Гость
По формуле приведения через π/2 меняет sin на cos. но синус в 4 четверти отрицателен.
Отбор корней на промежутке (0;3π/2)
Для корня x = π/6 + πn,
Если
Если
Для корня
Если
Оцени ответ
shkolniku.com
(1+sin(3*p*1/2+2*x)-sin(x)^2)*1/sin(2*x)*sin(p*1/2+x)+sin(x)*cos(p-2*x) если p=-1/4 (упростите выражение)
Решение
/3*p \ 2
1 + sin|--- + 2*x| - sin (x)
\ 2 / /p \
----------------------------*sin|- + x| + sin(x)*cos(p - 2*x)
sin(2*x) \2 / $$\frac{1}{\sin{\left (2 x \right )}} \left(\sin{\left (\frac{3 p}{2} + 2 x \right )} + 1 — \sin^{2}{\left (x \right )}\right) \sin{\left (\frac{p}{2} + x \right )} + \sin{\left (x \right )} \cos{\left (p — 2 x \right )}$$
Подстановка условия[LaTeX]
((1 + sin((3*p)/2 + 2*x) - sin(x)^2)/sin(2*x))*sin(p/2 + x) + sin(x)*cos(p - 2*x) при p = -1/4
((1 + sin((3*p)/2 + 2*x) - sin(x)^2)/sin(2*x))*sin(p/2 + x) + sin(x)*cos(p - 2*x)
$$\frac{1}{\sin{\left (2 x \right )}} \left(\sin{\left (\frac{3 p}{2} + 2 x \right )} + 1 — \sin^{2}{\left (x \right )}\right) \sin{\left (\frac{p}{2} + x \right )} + \sin{\left (x \right )} \cos{\left (p — 2 x \right )}$$
((1 + sin((3*(-1/4))/2 + 2*x) - sin(x)^2)/sin(2*x))*sin((-1/4)/2 + x) + sin(x)*cos((-1/4) - 2*x)
$$\frac{1}{\sin{\left (2 x \right )}} \left(\sin{\left (\frac{3 (-1/4)}{2} + 2 x \right )} + 1 — \sin^{2}{\left (x \right )}\right) \sin{\left (\frac{(-1/4)}{2} + x \right )} + \sin{\left (x \right )} \cos{\left ((-1/4) — 2 x \right )}$$
((1 + sin((3*(-1)/4)/2 + 2*x) - sin(x)^2)/sin(2*x))*sin(-1/8 + x) + sin(x)*cos(-1/4 - 2*x)
$$\frac{1}{\sin{\left (2 x \right )}} \left(\sin{\left (2 x + \frac{- \frac{3}{4}}{2} 1 \right )} + 1 — \sin^{2}{\left (x \right )}\right) \sin{\left (x — \frac{1}{8} \right )} + \sin{\left (x \right )} \cos{\left (- 2 x — \frac{1}{4} \right )}$$
cos(1/4 + 2*x)*sin(x) + (1 - sin(x)^2 + sin(-3/8 + 2*x))*sin(-1/8 + x)/sin(2*x)
$$\frac{\sin{\left (x — \frac{1}{8} \right )}}{\sin{\left (2 x \right )}} \left(- \sin^{2}{\left (x \right )} + \sin{\left (2 x — \frac{3}{8} \right )} + 1\right) + \sin{\left (x \right )} \cos{\left (2 x + \frac{1}{4} \right )}$$
/ 2 / 3*p\\ / p\
|1 - sin (x) + sin|2*x + ---||*sin|x + -|
\ \ 2 // \ 2/
cos(p - 2*x)*sin(x) + -----------------------------------------
sin(2*x) $$\frac{\sin{\left (\frac{p}{2} + x \right )}}{\sin{\left (2 x \right )}} \left(- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1\right) + \sin{\left (x \right )} \cos{\left (p — 2 x \right )}$$
Численный ответ[LaTeX]
cos(p - 2*x)*sin(x) + (1.0 - sin(x)^2 + sin((3*p)/2 + 2*x))*sin(p/2 + x)/sin(2*x)Рациональный знаменатель
[LaTeX]
/ p\ / 3*p\ 2 / p\ / p\
sin|x + -|*sin|2*x + ---| - sin (x)*sin|x + -| + cos(p - 2*x)*sin(x)*sin(2*x) + sin|x + -|
\ 2/ \ 2 / \ 2/ \ 2/
------------------------------------------------------------------------------------------
sin(2*x) $$\frac{1}{\sin{\left (2 x \right )}} \left(- \sin^{2}{\left (x \right )} \sin{\left (\frac{p}{2} + x \right )} + \sin{\left (x \right )} \sin{\left (2 x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (\frac{p}{2} + x \right )} \sin{\left (\frac{3 p}{2} + 2 x \right )} + \sin{\left (\frac{p}{2} + x \right )}\right)$$
Объединение рациональных выражений[LaTeX]
/ 2 /3*p + 4*x\\ /p + 2*x\
|1 - sin (x) + sin|---------||*sin|-------| + cos(p - 2*x)*sin(x)*sin(2*x)
\ \ 2 // \ 2 /
--------------------------------------------------------------------------
sin(2*x) $$\frac{1}{\sin{\left (2 x \right )}} \left(\left(- \sin^{2}{\left (x \right )} + \sin{\left (\frac{1}{2} \left(3 p + 4 x\right) \right )} + 1\right) \sin{\left (\frac{1}{2} \left(p + 2 x\right) \right )} + \sin{\left (x \right )} \sin{\left (2 x \right )} \cos{\left (p — 2 x \right )}\right)$$
Общее упрощение[LaTeX]
/ 2 / 3*p\\ / p\
|1 - sin (x) + sin|2*x + ---||*sin|x + -| + cos(p - 2*x)*sin(x)*sin(2*x)
\ \ 2 // \ 2/
------------------------------------------------------------------------
sin(2*x) $$\frac{1}{\sin{\left (2 x \right )}} \left(\left(- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1\right) \sin{\left (\frac{p}{2} + x \right )} + \sin{\left (x \right )} \sin{\left (2 x \right )} \cos{\left (p — 2 x \right )}\right)$$
Собрать выражение[LaTeX]
/ / p\ /p \ /p \\
| sin|x + -| sin|- - x| sin|- + 3*x||
sin(p - x) sin(p - 3*x) |cos(p + x) \ 2/ cos(2*p + 3*x) \2 / \2 /|
---------- - ------------ + |---------- + ---------- - -------------- + ---------- + ------------|*csc(2*x)
2 2 \ 2 2 2 4 4 / $$\left(\frac{1}{4} \sin{\left (\frac{p}{2} — x \right )} + \frac{1}{2} \sin{\left (\frac{p}{2} + x \right )} + \frac{1}{4} \sin{\left (\frac{p}{2} + 3 x \right )} + \frac{1}{2} \cos{\left (p + x \right )} — \frac{1}{2} \cos{\left (2 p + 3 x \right )}\right) \csc{\left (2 x \right )} — \frac{1}{2} \sin{\left (p — 3 x \right )} + \frac{1}{2} \sin{\left (p — x \right )}$$
[LaTeX]
/ p\ / 3*p\ 2 / p\ / p\
sin|x + -|*sin|2*x + ---| - sin (x)*sin|x + -| + cos(p - 2*x)*sin(x)*sin(2*x) + sin|x + -|
\ 2/ \ 2 / \ 2/ \ 2/
------------------------------------------------------------------------------------------
sin(2*x) $$\frac{1}{\sin{\left (2 x \right )}} \left(- \sin^{2}{\left (x \right )} \sin{\left (\frac{p}{2} + x \right )} + \sin{\left (x \right )} \sin{\left (2 x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (\frac{p}{2} + x \right )} \sin{\left (\frac{3 p}{2} + 2 x \right )} + \sin{\left (\frac{p}{2} + x \right )}\right)$$
Общий знаменатель[LaTeX]
/ p\ / 3*p\ 2 / p\ / p\
sin|x + -|*sin|2*x + ---| - sin (x)*sin|x + -| + sin|x + -|
\ 2/ \ 2 / \ 2/ \ 2/
----------------------------------------------------------- + cos(p - 2*x)*sin(x)
sin(2*x) $$\frac{1}{\sin{\left (2 x \right )}} \left(- \sin^{2}{\left (x \right )} \sin{\left (\frac{p}{2} + x \right )} + \sin{\left (\frac{p}{2} + x \right )} \sin{\left (\frac{3 p}{2} + 2 x \right )} + \sin{\left (\frac{p}{2} + x \right )}\right) + \sin{\left (x \right )} \cos{\left (p — 2 x \right )}$$
Тригонометрическая часть[LaTeX]
/ 2 / 3*p\\ /p \
|1 - sin (x) + sin|2*x + ---||*sin|- + x|
\ \ 2 // \2 /
cos(p - 2*x)*sin(x) + -----------------------------------------
sin(2*x) $$\frac{\sin{\left (\frac{p}{2} + x \right )}}{\sin{\left (2 x \right )}} \left(- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1\right) + \sin{\left (x \right )} \cos{\left (p — 2 x \right )}$$
Раскрыть выражение[LaTeX]
/ /p\ /p\ \ / 2 /3*p\ /3*p\ \
|cos(x)*sin|-| + cos|-|*sin(x)|*|1 - sin (x) + cos(2*x)*sin|---| + cos|---|*sin(2*x)|
\ \2/ \2/ / \ \ 2 / \ 2 / /
(cos(p)*cos(2*x) + sin(p)*sin(2*x))*sin(x) + -------------------------------------------------------------------------------------
2*cos(x)*sin(x) $$\frac{1}{2 \sin{\left (x \right )} \cos{\left (x \right )}} \left(\sin{\left (\frac{p}{2} \right )} \cos{\left (x \right )} + \sin{\left (x \right )} \cos{\left (\frac{p}{2} \right )}\right) \left(\sin{\left (\frac{3 p}{2} \right )} \cos{\left (2 x \right )} — \sin^{2}{\left (x \right )} + \sin{\left (2 x \right )} \cos{\left (\frac{3 p}{2} \right )} + 1\right) + \left(\sin{\left (p \right )} \sin{\left (2 x \right )} + \cos{\left (p \right )} \cos{\left (2 x \right )}\right) \sin{\left (x \right )}$$
www.kontrolnaya-rabota.ru
(1+sin(3*p*1/2+2*x)-sin(x)^2)*1/(sin(2*x)*sin(p*1/2+x)+sin(x)*cos(p-2*x)) если p=3 (упростите выражение)
Решение
/3*p \ 2
1 + sin|--- + 2*x| - sin (x)
\ 2 /
-----------------------------------------
/p \
sin(2*x)*sin|- + x| + sin(x)*cos(p - 2*x)
\2 / $$\frac{\sin{\left (\frac{3 p}{2} + 2 x \right )} + 1 — \sin^{2}{\left (x \right )}}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Подстановка условия[LaTeX]
(1 + sin((3*p)/2 + 2*x) - sin(x)^2)/(sin(2*x)*sin(p/2 + x) + sin(x)*cos(p - 2*x)) при p = 3
(1 + sin((3*p)/2 + 2*x) - sin(x)^2)/(sin(2*x)*sin(p/2 + x) + sin(x)*cos(p - 2*x))
$$\frac{\sin{\left (\frac{3 p}{2} + 2 x \right )} + 1 — \sin^{2}{\left (x \right )}}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
(1 + sin((3*(3))/2 + 2*x) - sin(x)^2)/(sin(2*x)*sin((3)/2 + x) + sin(x)*cos((3) - 2*x))
$$\frac{\sin{\left (\frac{3 (3)}{2} + 2 x \right )} + 1 — \sin^{2}{\left (x \right )}}{\sin{\left (x \right )} \cos{\left ((3) — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{(3)}{2} + x \right )}}$$
(1 + sin((3*3)/2 + 2*x) - sin(x)^2)/(sin(2*x)*sin(3/2 + x) + sin(x)*cos(3 - 2*x))
$$\frac{\sin{\left (2 x + \frac{9}{2} 1 \right )} + 1 — \sin^{2}{\left (x \right )}}{\sin{\left (x \right )} \cos{\left (- 2 x + 3 \right )} + \sin{\left (2 x \right )} \sin{\left (x + \frac{3}{2} \right )}}$$
(1 - sin(x)^2 + sin(9/2 + 2*x))/(cos(-3 + 2*x)*sin(x) + sin(2*x)*sin(3/2 + x))
$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (2 x + \frac{9}{2} \right )} + 1}{\sin{\left (x \right )} \cos{\left (2 x — 3 \right )} + \sin{\left (2 x \right )} \sin{\left (x + \frac{3}{2} \right )}}$$
2 / 3*p\
1 - sin (x) + sin|2*x + ---|
\ 2 /
-----------------------------------------
/ p\
cos(p - 2*x)*sin(x) + sin(2*x)*sin|x + -|
\ 2/$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Численный ответ[LaTeX]
(1.0 - sin(x)^2 + sin((3*p)/2 + 2*x))/(cos(p - 2*x)*sin(x) + sin(2*x)*sin(p/2 + x))Рациональный знаменатель
[LaTeX]
2 / 3*p\
1 - sin (x) + sin|2*x + ---|
\ 2 /
-----------------------------------------
/ p\
cos(p - 2*x)*sin(x) + sin(2*x)*sin|x + -|
\ 2/$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Объединение рациональных выражений[LaTeX]
2 /3*p + 4*x\
1 - sin (x) + sin|---------|
\ 2 /
-------------------------------------------
/p + 2*x\
cos(p - 2*x)*sin(x) + sin|-------|*sin(2*x)
\ 2 / $$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{1}{2} \left(3 p + 4 x\right) \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{1}{2} \left(p + 2 x\right) \right )}}$$
Общее упрощение[LaTeX]
2 / 3*p\
1 - sin (x) + sin|2*x + ---|
\ 2 /
-----------------------------------------
/ p\
cos(p - 2*x)*sin(x) + sin(2*x)*sin|x + -|
\ 2/$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Собрать выражение[LaTeX]
/ 3*p\
2*sin|2*x + ---|
1 cos(2*x) \ 2 /
- ------------------------------------------------------- - ------------------------------------------------------- - -------------------------------------------------------
/p \ /p \ /p \ /p \ /p \ /p \
- cos|- - x| - sin(p - x) + cos|- + 3*x| + sin(p - 3*x) - cos|- - x| - sin(p - x) + cos|- + 3*x| + sin(p - 3*x) - cos|- - x| - sin(p - x) + cos|- + 3*x| + sin(p - 3*x)
\2 / \2 / \2 / \2 / \2 / \2 / $$- \frac{2 \sin{\left (\frac{3 p}{2} + 2 x \right )}}{\sin{\left (p — 3 x \right )} — \sin{\left (p — x \right )} — \cos{\left (\frac{p}{2} — x \right )} + \cos{\left (\frac{p}{2} + 3 x \right )}} — \frac{\cos{\left (2 x \right )}}{\sin{\left (p — 3 x \right )} — \sin{\left (p — x \right )} — \cos{\left (\frac{p}{2} — x \right )} + \cos{\left (\frac{p}{2} + 3 x \right )}} — \frac{1}{\sin{\left (p — 3 x \right )} — \sin{\left (p — x \right )} — \cos{\left (\frac{p}{2} — x \right )} + \cos{\left (\frac{p}{2} + 3 x \right )}}$$
2 /3*p \
1 - sin (x) + sin|--- + 2*x|
\ 2 /
-----------------------------------------
/p \
sin(x)*cos(p - 2*x) + sin(2*x)*sin|- + x|
\2 /$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Общий знаменатель[LaTeX]
2 / 3*p\
1 - sin (x) + sin|2*x + ---|
\ 2 /
-----------------------------------------
/ p\
cos(p - 2*x)*sin(x) + sin(2*x)*sin|x + -|
\ 2/$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Тригонометрическая часть[LaTeX]
2 / 3*p\
1 - sin (x) + sin|2*x + ---|
\ 2 /
-----------------------------------------
/p \
cos(p - 2*x)*sin(x) + sin(2*x)*sin|- + x|
\2 /$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Комбинаторика[LaTeX]
2 / 3*p\
1 - sin (x) + sin|2*x + ---|
\ 2 /
-----------------------------------------
/ p\
cos(p - 2*x)*sin(x) + sin(2*x)*sin|x + -|
\ 2/$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Раскрыть выражение[LaTeX]
2 /3*p\ /3*p\
1 - sin (x) + cos(2*x)*sin|---| + cos|---|*sin(2*x)
\ 2 / \ 2 /
--------------------------------------------------------------------------------------------
/ /p\ /p\ \
(cos(p)*cos(2*x) + sin(p)*sin(2*x))*sin(x) + 2*|cos(x)*sin|-| + cos|-|*sin(x)|*cos(x)*sin(x)
\ \2/ \2/ / $$\frac{\sin{\left (\frac{3 p}{2} \right )} \cos{\left (2 x \right )} — \sin^{2}{\left (x \right )} + \sin{\left (2 x \right )} \cos{\left (\frac{3 p}{2} \right )} + 1}{2 \left(\sin{\left (\frac{p}{2} \right )} \cos{\left (x \right )} + \sin{\left (x \right )} \cos{\left (\frac{p}{2} \right )}\right) \sin{\left (x \right )} \cos{\left (x \right )} + \left(\sin{\left (p \right )} \sin{\left (2 x \right )} + \cos{\left (p \right )} \cos{\left (2 x \right )}\right) \sin{\left (x \right )}}$$
www.kontrolnaya-rabota.ru
