Найдите корни уравнения sin(2x-п/2)=-1/2 принадлежащие…
Ответ оставил Гость
По формуле приведения через π/2 меняет sin на cos. но синус в 4 четверти отрицателен.
Отбор корней на промежутке (0;3π/2)
Для корня x = π/6 + πn,
Если
Если
Для корня
Если
Оцени ответ
shkolniku.com
(1+sin(3*p*1/2+2*x)-sin(x)^2)*1/sin(2*x)*sin(p*1/2+x)+sin(x)*cos(p-2*x) если p=-1/4 (упростите выражение)
Решение
/3*p \ 2 1 + sin|--- + 2*x| - sin (x) \ 2 / /p \ ----------------------------*sin|- + x| + sin(x)*cos(p - 2*x) sin(2*x) \2 /
$$\frac{1}{\sin{\left (2 x \right )}} \left(\sin{\left (\frac{3 p}{2} + 2 x \right )} + 1 — \sin^{2}{\left (x \right )}\right) \sin{\left (\frac{p}{2} + x \right )} + \sin{\left (x \right )} \cos{\left (p — 2 x \right )}$$
Подстановка условия[LaTeX]
((1 + sin((3*p)/2 + 2*x) - sin(x)^2)/sin(2*x))*sin(p/2 + x) + sin(x)*cos(p - 2*x) при p = -1/4
((1 + sin((3*p)/2 + 2*x) - sin(x)^2)/sin(2*x))*sin(p/2 + x) + sin(x)*cos(p - 2*x)
$$\frac{1}{\sin{\left (2 x \right )}} \left(\sin{\left (\frac{3 p}{2} + 2 x \right )} + 1 — \sin^{2}{\left (x \right )}\right) \sin{\left (\frac{p}{2} + x \right )} + \sin{\left (x \right )} \cos{\left (p — 2 x \right )}$$
((1 + sin((3*(-1/4))/2 + 2*x) - sin(x)^2)/sin(2*x))*sin((-1/4)/2 + x) + sin(x)*cos((-1/4) - 2*x)
$$\frac{1}{\sin{\left (2 x \right )}} \left(\sin{\left (\frac{3 (-1/4)}{2} + 2 x \right )} + 1 — \sin^{2}{\left (x \right )}\right) \sin{\left (\frac{(-1/4)}{2} + x \right )} + \sin{\left (x \right )} \cos{\left ((-1/4) — 2 x \right )}$$
((1 + sin((3*(-1)/4)/2 + 2*x) - sin(x)^2)/sin(2*x))*sin(-1/8 + x) + sin(x)*cos(-1/4 - 2*x)
$$\frac{1}{\sin{\left (2 x \right )}} \left(\sin{\left (2 x + \frac{- \frac{3}{4}}{2} 1 \right )} + 1 — \sin^{2}{\left (x \right )}\right) \sin{\left (x — \frac{1}{8} \right )} + \sin{\left (x \right )} \cos{\left (- 2 x — \frac{1}{4} \right )}$$
cos(1/4 + 2*x)*sin(x) + (1 - sin(x)^2 + sin(-3/8 + 2*x))*sin(-1/8 + x)/sin(2*x)
$$\frac{\sin{\left (x — \frac{1}{8} \right )}}{\sin{\left (2 x \right )}} \left(- \sin^{2}{\left (x \right )} + \sin{\left (2 x — \frac{3}{8} \right )} + 1\right) + \sin{\left (x \right )} \cos{\left (2 x + \frac{1}{4} \right )}$$
/ 2 / 3*p\\ / p\ |1 - sin (x) + sin|2*x + ---||*sin|x + -| \ \ 2 // \ 2/ cos(p - 2*x)*sin(x) + ----------------------------------------- sin(2*x)
$$\frac{\sin{\left (\frac{p}{2} + x \right )}}{\sin{\left (2 x \right )}} \left(- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1\right) + \sin{\left (x \right )} \cos{\left (p — 2 x \right )}$$
Численный ответ[LaTeX]
cos(p - 2*x)*sin(x) + (1.0 - sin(x)^2 + sin((3*p)/2 + 2*x))*sin(p/2 + x)/sin(2*x)Рациональный знаменатель
[LaTeX]
/ p\ / 3*p\ 2 / p\ / p\ sin|x + -|*sin|2*x + ---| - sin (x)*sin|x + -| + cos(p - 2*x)*sin(x)*sin(2*x) + sin|x + -| \ 2/ \ 2 / \ 2/ \ 2/ ------------------------------------------------------------------------------------------ sin(2*x)
$$\frac{1}{\sin{\left (2 x \right )}} \left(- \sin^{2}{\left (x \right )} \sin{\left (\frac{p}{2} + x \right )} + \sin{\left (x \right )} \sin{\left (2 x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (\frac{p}{2} + x \right )} \sin{\left (\frac{3 p}{2} + 2 x \right )} + \sin{\left (\frac{p}{2} + x \right )}\right)$$
Объединение рациональных выражений[LaTeX]
/ 2 /3*p + 4*x\\ /p + 2*x\ |1 - sin (x) + sin|---------||*sin|-------| + cos(p - 2*x)*sin(x)*sin(2*x) \ \ 2 // \ 2 / -------------------------------------------------------------------------- sin(2*x)
$$\frac{1}{\sin{\left (2 x \right )}} \left(\left(- \sin^{2}{\left (x \right )} + \sin{\left (\frac{1}{2} \left(3 p + 4 x\right) \right )} + 1\right) \sin{\left (\frac{1}{2} \left(p + 2 x\right) \right )} + \sin{\left (x \right )} \sin{\left (2 x \right )} \cos{\left (p — 2 x \right )}\right)$$
Общее упрощение[LaTeX]
/ 2 / 3*p\\ / p\ |1 - sin (x) + sin|2*x + ---||*sin|x + -| + cos(p - 2*x)*sin(x)*sin(2*x) \ \ 2 // \ 2/ ------------------------------------------------------------------------ sin(2*x)
$$\frac{1}{\sin{\left (2 x \right )}} \left(\left(- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1\right) \sin{\left (\frac{p}{2} + x \right )} + \sin{\left (x \right )} \sin{\left (2 x \right )} \cos{\left (p — 2 x \right )}\right)$$
Собрать выражение[LaTeX]
/ / p\ /p \ /p \\ | sin|x + -| sin|- - x| sin|- + 3*x|| sin(p - x) sin(p - 3*x) |cos(p + x) \ 2/ cos(2*p + 3*x) \2 / \2 /| ---------- - ------------ + |---------- + ---------- - -------------- + ---------- + ------------|*csc(2*x) 2 2 \ 2 2 2 4 4 /
$$\left(\frac{1}{4} \sin{\left (\frac{p}{2} — x \right )} + \frac{1}{2} \sin{\left (\frac{p}{2} + x \right )} + \frac{1}{4} \sin{\left (\frac{p}{2} + 3 x \right )} + \frac{1}{2} \cos{\left (p + x \right )} — \frac{1}{2} \cos{\left (2 p + 3 x \right )}\right) \csc{\left (2 x \right )} — \frac{1}{2} \sin{\left (p — 3 x \right )} + \frac{1}{2} \sin{\left (p — x \right )}$$
[LaTeX]
/ p\ / 3*p\ 2 / p\ / p\ sin|x + -|*sin|2*x + ---| - sin (x)*sin|x + -| + cos(p - 2*x)*sin(x)*sin(2*x) + sin|x + -| \ 2/ \ 2 / \ 2/ \ 2/ ------------------------------------------------------------------------------------------ sin(2*x)
$$\frac{1}{\sin{\left (2 x \right )}} \left(- \sin^{2}{\left (x \right )} \sin{\left (\frac{p}{2} + x \right )} + \sin{\left (x \right )} \sin{\left (2 x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (\frac{p}{2} + x \right )} \sin{\left (\frac{3 p}{2} + 2 x \right )} + \sin{\left (\frac{p}{2} + x \right )}\right)$$
Общий знаменатель[LaTeX]
/ p\ / 3*p\ 2 / p\ / p\ sin|x + -|*sin|2*x + ---| - sin (x)*sin|x + -| + sin|x + -| \ 2/ \ 2 / \ 2/ \ 2/ ----------------------------------------------------------- + cos(p - 2*x)*sin(x) sin(2*x)
$$\frac{1}{\sin{\left (2 x \right )}} \left(- \sin^{2}{\left (x \right )} \sin{\left (\frac{p}{2} + x \right )} + \sin{\left (\frac{p}{2} + x \right )} \sin{\left (\frac{3 p}{2} + 2 x \right )} + \sin{\left (\frac{p}{2} + x \right )}\right) + \sin{\left (x \right )} \cos{\left (p — 2 x \right )}$$
Тригонометрическая часть[LaTeX]
/ 2 / 3*p\\ /p \ |1 - sin (x) + sin|2*x + ---||*sin|- + x| \ \ 2 // \2 / cos(p - 2*x)*sin(x) + ----------------------------------------- sin(2*x)
$$\frac{\sin{\left (\frac{p}{2} + x \right )}}{\sin{\left (2 x \right )}} \left(- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1\right) + \sin{\left (x \right )} \cos{\left (p — 2 x \right )}$$
Раскрыть выражение[LaTeX]
/ /p\ /p\ \ / 2 /3*p\ /3*p\ \ |cos(x)*sin|-| + cos|-|*sin(x)|*|1 - sin (x) + cos(2*x)*sin|---| + cos|---|*sin(2*x)| \ \2/ \2/ / \ \ 2 / \ 2 / / (cos(p)*cos(2*x) + sin(p)*sin(2*x))*sin(x) + ------------------------------------------------------------------------------------- 2*cos(x)*sin(x)
$$\frac{1}{2 \sin{\left (x \right )} \cos{\left (x \right )}} \left(\sin{\left (\frac{p}{2} \right )} \cos{\left (x \right )} + \sin{\left (x \right )} \cos{\left (\frac{p}{2} \right )}\right) \left(\sin{\left (\frac{3 p}{2} \right )} \cos{\left (2 x \right )} — \sin^{2}{\left (x \right )} + \sin{\left (2 x \right )} \cos{\left (\frac{3 p}{2} \right )} + 1\right) + \left(\sin{\left (p \right )} \sin{\left (2 x \right )} + \cos{\left (p \right )} \cos{\left (2 x \right )}\right) \sin{\left (x \right )}$$
www.kontrolnaya-rabota.ru
(1+sin(3*p*1/2+2*x)-sin(x)^2)*1/(sin(2*x)*sin(p*1/2+x)+sin(x)*cos(p-2*x)) если p=3 (упростите выражение)
Решение
/3*p \ 2 1 + sin|--- + 2*x| - sin (x) \ 2 / ----------------------------------------- /p \ sin(2*x)*sin|- + x| + sin(x)*cos(p - 2*x) \2 /
$$\frac{\sin{\left (\frac{3 p}{2} + 2 x \right )} + 1 — \sin^{2}{\left (x \right )}}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Подстановка условия[LaTeX]
(1 + sin((3*p)/2 + 2*x) - sin(x)^2)/(sin(2*x)*sin(p/2 + x) + sin(x)*cos(p - 2*x)) при p = 3
(1 + sin((3*p)/2 + 2*x) - sin(x)^2)/(sin(2*x)*sin(p/2 + x) + sin(x)*cos(p - 2*x))
$$\frac{\sin{\left (\frac{3 p}{2} + 2 x \right )} + 1 — \sin^{2}{\left (x \right )}}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
(1 + sin((3*(3))/2 + 2*x) - sin(x)^2)/(sin(2*x)*sin((3)/2 + x) + sin(x)*cos((3) - 2*x))
$$\frac{\sin{\left (\frac{3 (3)}{2} + 2 x \right )} + 1 — \sin^{2}{\left (x \right )}}{\sin{\left (x \right )} \cos{\left ((3) — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{(3)}{2} + x \right )}}$$
(1 + sin((3*3)/2 + 2*x) - sin(x)^2)/(sin(2*x)*sin(3/2 + x) + sin(x)*cos(3 - 2*x))
$$\frac{\sin{\left (2 x + \frac{9}{2} 1 \right )} + 1 — \sin^{2}{\left (x \right )}}{\sin{\left (x \right )} \cos{\left (- 2 x + 3 \right )} + \sin{\left (2 x \right )} \sin{\left (x + \frac{3}{2} \right )}}$$
(1 - sin(x)^2 + sin(9/2 + 2*x))/(cos(-3 + 2*x)*sin(x) + sin(2*x)*sin(3/2 + x))
$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (2 x + \frac{9}{2} \right )} + 1}{\sin{\left (x \right )} \cos{\left (2 x — 3 \right )} + \sin{\left (2 x \right )} \sin{\left (x + \frac{3}{2} \right )}}$$
2 / 3*p\ 1 - sin (x) + sin|2*x + ---| \ 2 / ----------------------------------------- / p\ cos(p - 2*x)*sin(x) + sin(2*x)*sin|x + -| \ 2/
$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Численный ответ[LaTeX]
(1.0 - sin(x)^2 + sin((3*p)/2 + 2*x))/(cos(p - 2*x)*sin(x) + sin(2*x)*sin(p/2 + x))Рациональный знаменатель
[LaTeX]
2 / 3*p\ 1 - sin (x) + sin|2*x + ---| \ 2 / ----------------------------------------- / p\ cos(p - 2*x)*sin(x) + sin(2*x)*sin|x + -| \ 2/
$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Объединение рациональных выражений[LaTeX]
2 /3*p + 4*x\ 1 - sin (x) + sin|---------| \ 2 / ------------------------------------------- /p + 2*x\ cos(p - 2*x)*sin(x) + sin|-------|*sin(2*x) \ 2 /
$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{1}{2} \left(3 p + 4 x\right) \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{1}{2} \left(p + 2 x\right) \right )}}$$
Общее упрощение[LaTeX]
2 / 3*p\ 1 - sin (x) + sin|2*x + ---| \ 2 / ----------------------------------------- / p\ cos(p - 2*x)*sin(x) + sin(2*x)*sin|x + -| \ 2/
$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Собрать выражение[LaTeX]
/ 3*p\ 2*sin|2*x + ---| 1 cos(2*x) \ 2 / - ------------------------------------------------------- - ------------------------------------------------------- - ------------------------------------------------------- /p \ /p \ /p \ /p \ /p \ /p \ - cos|- - x| - sin(p - x) + cos|- + 3*x| + sin(p - 3*x) - cos|- - x| - sin(p - x) + cos|- + 3*x| + sin(p - 3*x) - cos|- - x| - sin(p - x) + cos|- + 3*x| + sin(p - 3*x) \2 / \2 / \2 / \2 / \2 / \2 /
$$- \frac{2 \sin{\left (\frac{3 p}{2} + 2 x \right )}}{\sin{\left (p — 3 x \right )} — \sin{\left (p — x \right )} — \cos{\left (\frac{p}{2} — x \right )} + \cos{\left (\frac{p}{2} + 3 x \right )}} — \frac{\cos{\left (2 x \right )}}{\sin{\left (p — 3 x \right )} — \sin{\left (p — x \right )} — \cos{\left (\frac{p}{2} — x \right )} + \cos{\left (\frac{p}{2} + 3 x \right )}} — \frac{1}{\sin{\left (p — 3 x \right )} — \sin{\left (p — x \right )} — \cos{\left (\frac{p}{2} — x \right )} + \cos{\left (\frac{p}{2} + 3 x \right )}}$$
2 /3*p \ 1 - sin (x) + sin|--- + 2*x| \ 2 / ----------------------------------------- /p \ sin(x)*cos(p - 2*x) + sin(2*x)*sin|- + x| \2 /
$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Общий знаменатель[LaTeX]
2 / 3*p\ 1 - sin (x) + sin|2*x + ---| \ 2 / ----------------------------------------- / p\ cos(p - 2*x)*sin(x) + sin(2*x)*sin|x + -| \ 2/
$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Тригонометрическая часть[LaTeX]
2 / 3*p\ 1 - sin (x) + sin|2*x + ---| \ 2 / ----------------------------------------- /p \ cos(p - 2*x)*sin(x) + sin(2*x)*sin|- + x| \2 /
$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Комбинаторика[LaTeX]
2 / 3*p\ 1 - sin (x) + sin|2*x + ---| \ 2 / ----------------------------------------- / p\ cos(p - 2*x)*sin(x) + sin(2*x)*sin|x + -| \ 2/
$$\frac{- \sin^{2}{\left (x \right )} + \sin{\left (\frac{3 p}{2} + 2 x \right )} + 1}{\sin{\left (x \right )} \cos{\left (p — 2 x \right )} + \sin{\left (2 x \right )} \sin{\left (\frac{p}{2} + x \right )}}$$
Раскрыть выражение[LaTeX]
2 /3*p\ /3*p\ 1 - sin (x) + cos(2*x)*sin|---| + cos|---|*sin(2*x) \ 2 / \ 2 / -------------------------------------------------------------------------------------------- / /p\ /p\ \ (cos(p)*cos(2*x) + sin(p)*sin(2*x))*sin(x) + 2*|cos(x)*sin|-| + cos|-|*sin(x)|*cos(x)*sin(x) \ \2/ \2/ /
$$\frac{\sin{\left (\frac{3 p}{2} \right )} \cos{\left (2 x \right )} — \sin^{2}{\left (x \right )} + \sin{\left (2 x \right )} \cos{\left (\frac{3 p}{2} \right )} + 1}{2 \left(\sin{\left (\frac{p}{2} \right )} \cos{\left (x \right )} + \sin{\left (x \right )} \cos{\left (\frac{p}{2} \right )}\right) \sin{\left (x \right )} \cos{\left (x \right )} + \left(\sin{\left (p \right )} \sin{\left (2 x \right )} + \cos{\left (p \right )} \cos{\left (2 x \right )}\right) \sin{\left (x \right )}}$$
www.kontrolnaya-rabota.ru