Сложение числа и матрицы: Матрица (математика) — Википедия – Основные операции над матрицами (сложение, умножение, транспонирование) и их свойства.

Содержание

Сложение матриц онлайн

Сложение матриц

Сложение матриц А и В – это нахождение такой матрицы С, все элементы которой представляют собой сложенные попарно соответствующие элементы исходных матриц А и В. Складывать допускается только матрицы одинаковой размерности (допустим m × n), т.е. имеющие равное количество строк и равное количество столбцов.

Таким образом, математически сумма матриц выглядит так:

Аm×n + Bm×n = Cm×n

Каждый элемент искомой матрицы равен сумме соответствующих элементов заданных матриц:

cij = aij + bij,

где i принимает значение от 1 до m, j имеет значения от 1 до n.

Рассмотрим пример сложения двух матриц размера 2 × 3.
Даны две матрицы:

Найти сумму матриц А и В.
Решение:

Свойства сложения матриц:

  1. Коммутативность – переместительный математический закон, согласно которому результат сложения матриц не зависит от их перестановки.
    A + В = В + А
  2. Ассоциативность – сочетательный математический закон, согласно которому результат сложения матриц не зависит от последовательности расстановки скобок.
    А + (В + С) = (А + В) + С
  3. Сложение с нулевой матрицей – для любой матрицы существует нейтральный элемент, которым является нулевая матрица, сложение с которым не изменяет исходную матрицу.
    Нулевая матрица O – матрица, все элементы которой имеют нулевое значение.
    А + О = А
  4. Существование противоположной матрицы – для ненулевой матрицы А всегда существует матрица –А, суммой которых является нулевая матрица.
    А + (-А) = О
Вы также можете

в качестве элементов матрицы вводить целые и дробные числа, а также выражения с переменной x (например, в ячейку матрицы можно ввести 2x, или sin(x), или даже ((x+2)^2)/lg(x)).
Полный список доступных функций можно найти в справке.

C#: Класс «Матрица» (сложение, вычитание, умножение матриц)

 Данный класс позволяет производить некоторые операции над матрицами:

  1. Сложение матрицы А с матрицой Б
  2. Вычитание матрицы Б из матрицы А
  3. Умножение матрицы А на матрицу Б
  4. Умножение матрица А на число
  5.  Проверка матрицы А на единичность
  6. Выполнение нексольких операций над матрицами одновременно, образуя матрицу D 

Так же он содержит операторы перегрузки и скрытые поля для соблудения инкапсуляции.

 Язык программирования С#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace ConsoleApplication1
{
    class Matrix
    {
        // Скрытые поля
        private int n;
        private int[,] mass;

        // Создаем конструкторы матрицы
        public Matrix() { }
        public int N
        {
            get { return n; }
            set { if(value>0) n = value; }
        }

        // Задаем аксессоры для работы с полями вне класса Matrix
        public Matrix(int n)
        {
            this.n = n;
            mass = new int[this.n, this.n];
        }
        public int this [int i, int j]
        {
            get
            {
                return mass[i, j];
            }
            set
            {
                mass[i, j] = value;
            }
        }

        // Ввод матрицы с клавиатуры
        public void WriteMat()
        {
            for (int i = 0; i < n; i++)
            {
                for (int j = 0; j < n; j++)
                {
                    Console.WriteLine("Введите элемент матрицы {0}:{1}", i+1, j+1);
                    mass[i, j] = Convert.ToInt32(Console.ReadLine());
                }
            }
        }

        // Вывод матрицы с клавиатуры
        public void ReadMat()
        {
            for (int i = 0; i < n; i++)
            {

                for (int j = 0; j < n; j++)
                {
                    Console.Write(mass[i, j] + "\t");
                }
                Console.WriteLine();
            }
        }

        // Проверка матрицы А на единичность
        public void oneMat(Matrix a){
            int count = 0;
            for (int i = 0; i < n; i++)
            {
                for (int j = 0; j < n; j++)
                {
                    if (a[i, j] == 1 && i == j)
                    {
                        count++;
                    }
                }

            }
            if (count == a.N)


            {
                Console.WriteLine("Единичная");
            }
            else Console.WriteLine("Не единичная");
        }

        // Умножение матрицы А на число
        public static Matrix umnch(Matrix a, int ch)
        {
            Matrix resMass = new Matrix(a.N);
            for (int i = 0; i < a.N; i++)
            {
                for (int j = 0; j < a.N; j++)
                {
                    resMass[i, j] = a[i, j] * ch;
                }
            }
            return resMass;
        }

        // Умножение матрицы А на матрицу Б
        public static Matrix umn(Matrix a, Matrix b)

        {
            Matrix resMass = new Matrix(a.N);
            for (int i = 0; i < a.N; i++)
                for (int j = 0; j < b.N; j++)
                    for (int k = 0; k < b.N; k++)
                        resMass[i, j] += a[i, k]*b[k, j];

            return resMass;
        }

        // перегрузка оператора умножения
        public static Matrix operator *(Matrix a, Matrix b)
        {
            return Matrix.umn(a, b);
        }

        public static Matrix operator *(Matrix a, int b)
        {
            return Matrix.umnch(a, b);
        }

        // Метод вычитания матрицы Б из матрицы А
        public static Matrix razn(Matrix a, Matrix b)


        {
            Matrix resMass = new Matrix(a.N);
            for (int i = 0; i < a.N; i++)
            {
                for (int j = 0; j < b.N; j++)
                {
                    resMass[i, j] = a[i, j] - b[i, j];
                }
            }
            return resMass;
        }

        // Перегрузка оператора вычитания
        public static Matrix operator -(Matrix a, Matrix b)
        {
            return Matrix.razn(a, b);
        }
        public static Matrix Sum(Matrix a, Matrix b)
        {
            Matrix resMass = new Matrix(a.N);
            for (int i = 0; i < a.N; i++ )


            {
                for(int j = 0; j < b.N; j++)
                {
                    resMass[i, j] = a[i, j] + b[i, j];
                }
            }
            return resMass;
        }
        // Перегрузка сложения
        public static Matrix operator +(Matrix a, Matrix b)
        {
            return Matrix.Sum(a, b);
        }
        // Деструктор Matrix
        ~Matrix()
        {
            Console.WriteLine("Очистка");
        }

    }
    class MainProgram{

        static void Main(string[] args)
        {
            Console.WriteLine ("Введите размерность матрицы: ");


            int nn = Convert.ToInt32 (Console.ReadLine ());
            // Инициализация
            Matrix mass1 = new Matrix(nn);
            Matrix mass2 = new Matrix(nn);
            Matrix mass3 = new Matrix(nn);
            Matrix mass4 = new Matrix(nn);
            Matrix mass5 = new Matrix(nn);
            Matrix mass6 = new Matrix(nn);
            Matrix mass7 = new Matrix(nn);
            Matrix mass8 = new Matrix(nn);
            Console.WriteLine("ввод Матрица А: ");
            mass1.WriteMat();
            Console.WriteLine("Ввод Матрица B: ");
            mass2.WriteMat();

            Console.WriteLine("Матрица А: ");
            mass1.ReadMat();

            Console.WriteLine();
            Console.WriteLine("Матрица В: ");
            Console.WriteLine();
            mass2.ReadMat();

            Console.WriteLine ("Сложение матриц А и Б: ");
            mass4 = (mass1 + mass2);
            mass4.ReadMat ();

            Console.WriteLine ("Вычитание матриц А и Б: ");
            mass6 = (mass1 - mass2);
            mass6.ReadMat ();

            Console.WriteLine ("Умножение матриц А и Б: ");
            mass8 = (mass1 * mass2);
            mass8.ReadMat ();

            Console.WriteLine ("Умножение матрицы А на число 2: ");
            mass5 = (mass1 * 2);
            mass5.ReadMat ();

            Console.WriteLine ("Матрица D по формуле  D=3AB+(A-B)A: ");


            mass7 = ( (mass1 * 3) * mass2 + (mass1-mass2) * mass1);
            mass7.ReadMat ();

            Console.ReadKey();
        }
    }
}


Please enable JavaScript to view the comments powered by Disqus.

Матрицы примеры решения задач, формулы и онлайн калькуляторы

Задание. Вычислить $A B$ и $B A$, если $A=\left( \begin{array}{rr}{1} & {-1} \\ {2} & {0} \\ {3} & {0}\end{array}\right), B=\left( \begin{array}{ll}{1} & {1} \\ {2} & {0}\end{array}\right)$

Решение. Так как $A=A_{3 \times 2}$ , а $B=B_{2 \times 2}$ , то произведение возможно и результатом операции умножения будет матрица $C=C_{3 \times 2}$ , а это матрица вида $C=\left( \begin{array}{cc}{c_{11}} & {c_{12}} \\ {c_{21}} & {c_{22}} \\ {c_{31}} & {c_{32}}\end{array}\right)$ .

Вычисли элементы матрицы $C$ :

$ c_{11}=a_{11} \cdot b_{11}+a_{12} \cdot b_{21}=1 \cdot 1+(-1) \cdot 2=-1 $

$ c_{12}=a_{11} \cdot b_{12}+a_{12} \cdot b_{22}=1 \cdot 1+(-1) \cdot 0=1 $

$ c_{21}=a_{21} \cdot b_{11}+a_{22} \cdot b_{21}=2 \cdot 1+0 \cdot 2=2 $

$ c_{22}=a_{21} \cdot b_{12}+a_{22} \cdot b_{22}=2 \cdot 1+0 \cdot 0=2 $

$ c_{31}=a_{31} \cdot b_{11}+a_{32} \cdot b_{21}=3 \cdot 1+0 \cdot 2=3 $

$ c_{31}=a_{31} \cdot b_{12}+a_{32} \cdot b_{22}=3 \cdot 1+0 \cdot 0=3 $

Итак, $C=A B=\left( \begin{array}{rl}{-1} & {1} \\ {2} & {2} \\ {3} & {3}\end{array}\right)$ .

Выполним произведения в более компактном виде:

$=\left( \begin{array}{rrr}{1 \cdot 1+(-1) \cdot 2} & {1 \cdot 1+(-1) \cdot 0} \\ {2 \cdot 1+0 \cdot 2} & {2 \cdot 1+0 \cdot 0} \\ {3 \cdot 1+0 \cdot 2} & {3 \cdot 1+0 \cdot 0}\end{array}\right)=\left( \begin{array}{rr}{-1} & {1} \\ {2} & {2} \\ {3} & {3}\end{array}\right)$

Найдем теперь произведение $D=B A=B_{2 \times 2} \cdot A_{3 \times 2}$. Так как количество столбцов матрицы $B$ (первый сомножитель) не совпадает с количеством строк матрицы $A$ (второй сомножитель), то данное произведение неопределенно. Умножить матрицы в данном порядке невозможно.

Ответ. $A B=\left( \begin{array}{rr}{-1} & {1} \\ {2} & {2} \\ {3} & {3}\end{array}\right)$ . В обратном порядке умножить данные матрицы невозможно, так как количество столбцов матрицы $B$ не совпадает с количеством строк матрицы $A$ .

От действий над матрицами к пониманию их сути… / Habr

Очень уважаю людей, которые имеют смелость заявить, что они что-то не понимают. Сам такой. То, что не понимаю, — обязательно должен изучить, осмыслить, понять. Статья «Математика на пальцах», и особенно матричная запись формул, заставили меня поделиться своим небольшим, но, кажется, немаловажным опытом работы с матрицами.

Лет эдак 20 назад довелось мне изучать высшую математику в вузе, и начинали мы с матриц (пожалуй, как и все студенты того времени). Почему-то считается, что матрицы — самая лёгкая тема в курсе высшей математики. Возможно — потому, что все действия с матрицами сводятся к знанию способов расчёта определителя и нескольких формул, построенных — опять же, на определителе. Казалось бы, всё просто. Но… Попробуйте ответить на элементарный вопрос — что такое определитель, что означает число, которое вы получаете при его расчёте? (подсказка: вариант типа «определитель — это число, которое находится по определённым правилам» не является правильным ответом, поскольку говорит о методе получения, а не о самой сути определителя). Сдаётесь? — тогда читаем дальше…

Сразу хочу сказать, что я не математик ни по образованию, ни по должности. Разве что мне интересна суть вещей, и я порой пытаюсь до них «докопаться». Так же было и с определителем: нужно было разобраться со множественной регрессией, а в этом разделе эконометрики практически всё делается через… матрицы, будь они неладны. Вот и пришлось мне самому провести небольшое исследование, поскольку ни один из знакомых математиков не дал внятного ответа на поставленный вопрос, изначально звучавший как «что такое определитель». Все утверждали, что определитель — это такое число, которое особым образом посчитано, и если оно равно нулю, то… В общем, как в любом учебнике по линейной алгебре. Спасибо, проходили.

Если какую-то идею придумал один человек, то другой человек должен быть в состоянии её понять (правда, для этого порой приходится вооружаться дополнительными знаниями). Обращение к «великому и могучему» поисковику показало, что «площадь параллелограмма равна модулю определителя матрицы, образованной векторами — сторонами параллелограмма». Говоря простым языком, если матрица — это способ записи системы уравнений, то каждое уравнение в отдельности описывает вектор. Построив из точки начала координат векторы, заданные в матрице, мы таким образом зададим в пространстве некоторую фигуру. Если наше пространство одномерное, то фигура — это отрезок; если двумерное — то фигура — параллелограмм, и так далее.

Получается, что для одномерного пространства определитель — это длина отрезка, для плоскости — площадь фигуры, для трёхмерной фигуры — её объём… дальше идут n-мерные пространства, вообразить которые нам не дано. Если объём фигуры (то есть определитель для матрицы 3*3) равен нулю, то это означает, что сама фигура не является трёхмерной (она может быть при этом двухмерной, одномерной или вообще представлять собой точку). Ранг матрицы — это истинная (максимальная) размерность пространства, для которого определитель не равен нулю.

Так, с определителем почти всё понятно: он определяет «объёмность» фигуры, образованной описанными системой уравнений векторами (хотя непонятно, почему его значение не зависит от того, имеем мы дело с исходной матрицей, или с транспонированной — возможно, транспонирование — это вид аффинного преобразования?). Теперь нужно разобраться с действиями над матрицами…

Если матрица — это система уравнений (а иначе зачем нам таблица каких-то цифр, не имеющих к реальности никакого отношения?), то мы можем с ней делать разные вещи. Например, можем сложить две строки одной и той же матрицы, или умножить строку на число (то есть каждый коэффициент строки умножаем на одно и то же число). Если у нас есть две матрицы с одинаковыми размерностями, то мы их можем сложить (главное, чтобы при этом мы не сложили бульдога с носорогом — но разве математики, разрабатывая теорию матриц, думали о таком варианте развития событий?). Интуитивно понятно, тем более что в линейной алгебре иллюстрациями подобных операций являются системы уравнений.

Однако в чём смысл умножения матриц? Как я могу умножить одну систему уравнений на другую? Какой смысл будет иметь то, что я получу в этом случае? Почему для умножения матриц неприменимо переместительное правило (то есть произведение матриц В*А не то что не равно произведению А*В, но и не всегда осуществимо)? Почему, если мы перемножим матрицу на вектор-столбец, то получим вектор-столбец, а если перемножим вектор-строку на матрицу, то получим вектор-строку?

Ну, тут уж не то что Википедия, — тут даже современные учебники по линейной алгебре бессильны дать какое-либо внятное объяснение. Поскольку изучение чего-либо по принципу «вы сначала поверьте — а поймёте потом» — не для меня, копаю в глубь веков (точнее — читаю учебники первой половины XX века) и нахожу интересную фразу…

Если совокупность обычных векторов, т.е. направленных геометрических отрезков, является трёхмерным пространством, то часть этого пространства, состоящая из векторов, параллельных некоторой плоскости, является двумерным пространством, а все векторы, параллельные некоторой прямой, образуют одномерное векторное пространство.

В книгах об этом напрямую не говорится, но получается, что векторам, параллельным некоторой плоскости, необязательно лежать на этой плоскости. То есть они могут находиться в трёхмерном пространстве где угодно, но если они параллельны именно этой плоскости, то они образуют двумерное пространство… Из приходящих мне на ум аналогий — фотография: трёхмерный мир представлен на плоскости, при этом вектору, параллельному матрице (или плёнке) фотоаппарата, будет соответствовать такой же вектор на картинке (при условии соблюдении масштаба 1:1). Отображение трёхмерного мира на плоскости «убирает» одно измерение («глубину» картинки). Если я правильно понял сложные математические концепции, перемножение двух матриц как раз и представляет собой подобное отражение одного пространства в другом. Поэтому, если отражение пространства А в пространстве В возможно, то допустимость отражения пространства В в пространстве А — не гарантируется.

Любая статья заканчивается в тот момент, когда автору надоедает её писать. Поскольку я не ставил перед собой цели объять необъятное, а исключительно хотел понять суть описанных операций над матрицами и то, как именно матрицы связаны с решаемыми мной системами уравнений, я не полез в дальнейшие дебри линейной алгебры, а вернулся к эконометрике и множественной регрессии, но сделал это уже более осознанно. Понимая, что и зачем я делаю и почему только так, а не иначе. То, что у меня получилось в этом материале, можно озаглавить как «глава о сути основных операций линейной алгебры, которую почему-то забыли напечатать в учебниках». Но ведь мы же не читаем учебников, правда? Если честно, когда я учился в университете, мне очень не хватало именно понимания затронутых здесь вопросов, поэтому я надеюсь, что, изложив этот непростой материал по возможности простыми словами, я делаю доброе дело и помогаю кому-то вникнуть в саму суть матричной алгебры, переведя операции над матрицами из раздела «камлание с бубном» в раздел «практические инструменты, применяемые осознанно».

примеры с решением и объяснением

Матрицы представляют собой таблицы чисел, взаимосвязанных между собой. Над ними возможно проводить ряд разнообразных операций, о которых мы расскажем вам ниже.

Размер матрицы определяется её порядками — количеством строчек $m$ и столбцов $n$, которые в ней присутствуют. Строчки образованы элементами, стоящими на горизонтальных линиях, а столбцы — элементами, стоящими на прямых вертикальных линиях. В случае если количество строчек эквивалентно количеству столбцов — порядок рассматриваемой таблички определяется лишь одним значением $m = n$.

Замечание 1

Для любого элемента матрицы номер строчки, в которой он находится, записывается первым в индексе, а номер столбца — вторым, то есть запись $a_{ij}$ обозначает, что элемент стоит в $i$-ой строчке и в $j$-ом столбце.

Сложение и вычитание

Итак, о сложении и вычитании. Эти действия возможно проводить только с матрицами одинакового размера.

Для того чтобы осуществить эти действия, необходимо провести сложение или вычитание каждого элемента матрицы с элементом другой матрицы, стоящим на той же позиции, что элемент в первой.

В качестве примера найдём сумму $A+B$, где:

$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \\ \end{pmatrix}$

и $B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\\ \end{pmatrix}$

Сумма любого элемента новой полученной матричной таблички $A + B$ равна $a_{ij} + b_{ij}$, например, элемент с индексом $11$ равен $a_{11} + b_{11}$,а весь результат целиком выглядит так:

$A + B = \begin{pmatrix} a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+ b_{13} \\ a_{21}+ b_{21} & a_{22}+b_{22} & a_{23}+ b_{23} \\ a_{31}+ b_{31} & a_{32}+ b_{32} & a_{33} + b_{33} \\ \end{pmatrix}$

Вычитание для двух матриц $A-B$ осуществляется аналогично, но каждый элемент новой матрицы результата будет вычисляться по формуле $a_{ij} – b_{ij}$.

Обратите внимание, что сложение и вычитание для матриц возможно осуществлять только если их порядки одинаковые.

Пример 1

Решите следующие матричные примеры: $A + B$; $A – B$.

$A=\begin{pmatrix} 0 & 5 & 2 \\ 1 & -1 & 3 \\ -2 & 0 & 7 \\ \end{pmatrix}$

$B=\begin{pmatrix} 0 & 3 & 2 \\ -4 & 0 & -1 \\ 0 & 7 & -3 \\ \end{pmatrix}$

Объяснение:

Действия выполняем для каждой пары элементов $a_{ij}$ и $b_{ij}$ соответственно:

$A+B=\begin{pmatrix} 0+0 & 5+3 & 2+2 \\ 1-4 & -1+0 & 3 — 1\\ -2+0 & 0+7 & 7 — 3 \\ \end{pmatrix}=\begin{pmatrix} 0 & 8 & 4 \\ -3 & -1 & 2 \\ -2 & 7 & 4\\ \end{pmatrix}$

$A-B=\begin{pmatrix} 0-0 & 5-3 & 2-2 \\ 1+4 & -1-0 & 3 + 1\\ -2-0 & 0-7 & 7 + 3 \\ \end{pmatrix}=\begin{pmatrix} 0 & 2 & 0 \\ 5 & -1 & 4 \\ -2 & -7 & 10 \\ \end{pmatrix}$

Умножение матрицы на число

Для того чтобы произвести умножение матричной таблички на какое-либо число, нужно каждый её элемент умножить на это число, то есть любой элемент новой матрицы $C$, являющейся результатом произведения $A$ на $λ$ будет равен $с_{ij}=λ \cdot a_{ij}$.

Пример 2

Умножьте $A$ на $λ$, где $A=\begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 0 \\ 2 & 1 & 3 \\ \end{pmatrix}$, а $λ=5$:

$A \cdot λ = 5 \cdot \begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 0 \\ 2 & 1 & 3 \\ \end{pmatrix} = \begin{pmatrix} 1 \cdot 5 & 0 \cdot 5 & 2 \cdot 5 \\ -1 \cdot 5 & 3 \cdot 5 & 0 \cdot 5 \\ 2 \cdot 5 & 1\cdot 5 & 3\cdot 5 \\ \end{pmatrix} = \begin{pmatrix} 5 & 0 & 10 \\ -5 & 15 & 0 \\ 10 & 5 & 15 \\ \end{pmatrix}$.

Произведение матричных таблиц

Эта задача несколько сложнее предыдущих, но при этом в ней также нет ничего сложного.

Для осуществления умножения двух матриц $A \cdot B$ количество столбцов в $A$ должно совпадать с количеством строчек в $B$.

Математически это можно записать так:

$A_{m \times n}\cdot B_{n \times p} = С_{m \times p}$

То есть видя перемножаемые исходные матрицы можно сразу определить порядки получаемой новой. Например, если необходимо перемножить $A_{3 \times 2}$ и $B_{2 \times 3}$ — полученный результат будет иметь размер $3 \times 3$:

$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} &b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} &b_{33} \\ \end{pmatrix} = \begin{pmatrix} • & • & • \\ • & • & • \\ • & • & • \\ \end{pmatrix}= \begin{pmatrix} (a_{11}b_{11} + a_{12}b_{21}) & (a_{11}b_{12} + a_{12}b_{22}) & (a_{11}b_{13} + a_{12}b_{23}) \\ (a_{21}b_{11} + a_{22}b_{21}) & (a_{21}b_{12} + a_{22}b_{22}) & (a_{11}b_{13} + a_{22}b_{23}) \\ (a_{31}b_{11} + a_{32}b_{21}) & (a_{31}b_{12} + a_{32}b_{22}) & (a_{31}b_{13} + a_{32}b_{23}) \\ \end{pmatrix}$

Если число столбцов первого матричного множителя не совпадает с количеством строчек второго матричного множителя, то умножение выполнить невозможно.

Пример 3

Решите пример:

$A \times B = ?$, если $A=\begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 0 \\ 2 & 1 & 3 \\ \end{pmatrix}$ и $B = \begin{pmatrix} 3 & — 1 & 2 \\ -4 & 0 & 2 \\ 1 & 1 & 2 \\ \end{pmatrix}$.

$A \times B = \begin{pmatrix} (1 \cdot 3 + 0 \cdot (-4) + 2 \cdot 1) & (1 \cdot(-1) + 0 \cdot 0 + 2 \cdot 1) & (1 \cdot 2 + 0 \cdot 2 + 2 \cdot 2) \\ (-1) \cdot 3 + 3 \cdot (-4) + 0 \cdot 1) & (-1 \cdot(-1) + 3 \cdot 0 + 0 \cdot 1) & (-1 \cdot 2 + 3 \cdot 2 + 0 \cdot 2) \\ (2 \cdot 3 + 1 \cdot (-4) + 3 \cdot 1) & 2 \cdot (-1) + 1 \cdot 0 + 3 \cdot 1) & (2 \cdot 2 + 1 \cdot 2 + 3 \cdot 2) \\ \end{pmatrix} $

$A \times B= \begin{pmatrix} (3 + 0+ 2) & (-1 + 0 + 2) & (2 + 0 + 4) \\ (-3-12+0) & (1 + 0 + 0) & (-2+6+0) \\ (6-4+3) & (-2 + 0 + 3) & (4 + 2 + 6) \\ \end{pmatrix} = \begin{pmatrix} 5 & 1 & 6 \\ -15 & 1 & 4 \\ 5 & 1 & 12 \\ \end{pmatrix}$.

Нахождение определителя матрицы

Определитель матрицы обозначается как $Δ$ или $\det$.

Замечание 2

Детерминант возможно найти только для квадратных разновидностей матриц.

В простейшем случае, когда матрица состоит из всего одного элемента, её определитель равен этому элементу: $det A = |a_{11}|= a_{11}$

Вычислить определитель от матрицы порядка двух можно следуя такому правилу:

Определение 1

Определитель матрицы размера 2 равен разности произведений элементов, стоящих на главной диагонали с произведением элементов с побочной диагонали:

$\begin{array}{|cc|} a_{11}& a_{12} \\ a_{21} & a_{22} \\ \end{array} = a_{11} \cdot a_{22} – a_{12} \cdot a_{21}$

В случае если определитель матрицы задан размером $3 \times 3$, то найти его можно используя мнемонические правила: Саррюса или треугольников, также можно разложить матрицу по строчке или столбцу или воспользоваться преобразованиями Гаусса.

Для определителей большего размера можно использовать преобразования Гаусса и разложение по строчке.

Обратные матрицы

По аналогии с обычным умножением числа на обратное ему число $(1+\frac1x= 1)$, умножение обратной матрицы $A^{-1}$ на исходную матрицу даёт в результате единичную матрицу $E$.

Самый простой метод решения при поиске обратной матрицы — Жордана-Гаусса. Рядом с матрицей-подопытным кроликом записывается единичная того же размера, а затем исходная с помощью преобразований приводится к единичной, причём все выполняемые действия повторяются и с $E$.

Пример 4

Дана $A=\begin{pmatrix}{cc} 1& 2 \\ 3 & 4 \\ \end{pmatrix}$

Получить обратную матрицу.

Решение:

Пишем вместе $A$ и справа от неё соответствующего размера $E$:

$ \begin{array}{cc|cc} 1& 2 & 1& 0\\ 3 & 4& 0 & 1 \\ \end{array}$

Получаем нуль в последней строчке на первой позиции:прибавляем к ней верхнюю, умноженную на $-3$:

$ \begin{array}{cc|cc} 1& 2 & 1 & 0\\ 0 & -2 & -3 & 1 \\ \end{array}$

Теперь обнуляем последний элемент первой строчки. Для этого к верхней строчке плюсуем нижнюю:

$ \begin{array}{cc|cc} 1& 0 & -2 & 1\\ 0 & -2 & -3 & 1 \\ \end{array}$

Делим вторую на $-2$:

$ \begin{array}{cc|cc} 1& 0 & -2 & 1\\ 0 & 1& 3/2 & -1/2 \\ \end{array}$

Получили результат:

$A=\begin{pmatrix}{cc} -2& 1 \\ 3/2 & -1/2 \\ \end{pmatrix}$

Транспонирование матричных таблиц

Транспонирование — это смена строк и столбцов в матрице или определителе местами с сохранением их исходного порядка. Определитель траспонированной матричной таблички $A^T$ будет равен определителю исходной матрицы $A$.

Пример 5

Транспонируйте матрицу $A$ и проверьте себя, найдя определитель $A$ и транспонированной матричной таблички.

$A=\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ — 1 & -2 & -3\\ \end{pmatrix}$

Решение:

Применим метод Саррюса для детерминанта:

$\det A= 1 \cdot 5 \cdot (-3) + 2 \cdot 6 \cdot (-1) + 3 \cdot 4 \cdot (-2) – 2 \cdot 4 \cdot (-3) – 1 \cdot 6 \cdot (-2) – 3 \cdot 5 \cdot (-1) = -15 – 12 – 24+ 24 + 12 + 15 = 0$.

Мы получили вырожденную матрицу.

Теперь произведём транспонирование $A$, для этого повалим матрицу на её правый бок:

$A^T = \begin{pmatrix} 1 & 4 & -1 \\ 2 & 5 & -2 \\ 3 & 6 & -3 \\ \end{pmatrix}$

Найдём для $A^T$ определитель, используя то же правило:

$det A^T = 1 \cdot 5 \cdot (-3) + 4 \cdot (-2) \cdot 3 + (-1) \cdot 2 \cdot 6 – 4 \cdot 2 \cdot (-3) – 1 \cdot (-2) \cdot 6 – (- 1) \cdot 5 \cdot 3 = — 15 -24 — 12+24+12+15 = 0$.

Решение матриц ℹ️ методы решений и примеров для чайников, формулы вычислений и действий с матрицами

Онлайн алгоритм вычисления обратной матрицы

Понятие выражения

Определение гласит, что матрица — это прямоугольная таблица с заключёнными в ней числами. Её название обозначается латинскими прописными буквами (А, В). Таблицы бывают разной размерности — прямоугольной, квадратной, а также в виде строк и столбцов.

От количества строк и столбцов будет зависеть величина таблицы. Матрица размера m*n означает, что в таблице содержится m строк и n столбцов. Допустим, первая строка включает элементы а11, а12, а13, вторая — а21, а22, а23. Тогда элементы, где i = j (а11, а22) образовывают диагональ и называются диагональными.

Различают комплексные матрицы, у которых хотя бы один элемент равен комплексному числу, и действительные, когда все её элементы являются действительными числами. В математике комплексные числа представлены в виде a+b*i, где:

  • a — действительная часть числа;
  • b — мнимая часть;
  • i — мнимая единица (квадратный корень из -1).

На приведенном примере показаны варианты.

Решение матриц

Простейшие действия с матрицами могут быть разными. К их числу относятся:

  • умножение;
  • вычитание;
  • умножение на число;
  • перемножение между собой;
  • транспортирование матриц.

Сложение и вычитание

Действия по сложению возможны только тогда, когда матрицы одинакового порядка равны между собой. В итоге получится новое матричное выражение такой же размерности. Сложение и вычитание выполняются по общей схеме — над соответствующими элементами таблиц проводят необходимые операции. Например, нужно сложить две матрицы А и В размерности 2*2.

Действия с матрицами

Каждый элемент первой строки складывается по порядку с показателями верхней строчки второй матрицы. По аналогии производится вычитание, только вместо плюса ставится минус.

Решение матрицы онлайн калькулятор

Умножение на число

Любую таблицу чисел можно умножить на число. Тогда каждый её элемент перемножается с этим показателем. К примеру, умножим матричное выражение на 2:

Метод гаусса

Операция перемножения

Матрицы подлежат перемножению одна на другую, когда количество столбцов первой таблицы равно числу строк второй. Каждый элемент Aij будет равняться сумме произведений элементов i-строки первой таблицы, перемноженных на числа в j-столбце второй. Способ произведения наглядно представлен на примере.

Решение матрицы методом крамера

Возведение в степень

Формулу возведения в степень применяют только для квадратных матричных выражений. При этом степень должна быть натуральной. Формула возведения следующая:

Нахождение обратной матрицы

Иначе, чтобы выполнить операцию возведения таблицы чисел в степень n, требуется умножить её на себя саму n раз. Для операции возведения в степень удобно применять свойство в соответствии с формулой:

Обратная матрица

Решение представлено на примере. 1 этап: необходимо возвести в степень, где n = 2.

Метод элементарных преобразований

2 этап: сначала возводят в степень n =2. Согласно формуле перемножают таблицу чисел саму на себя n = 2 раз.

Решение систем методом Гаусса

3 этап: в итоге получаем:

Обратная матрица Гаусс

Расчёт определителя

В линейной алгебре существует понятие определителя или детерминанта. Это число, которое ставят в соответствие каждой квадратной матрице, вычисленное из её элементов по специальной формуле. Определитель или модуль используется для решения большинства задач. Детерминант самой простой матрицы определяется с помощью вычитания перемноженных элементов из побочной диагонали и главной.

Определителем матрицы А n-энного порядка называется число, которое получают из алгебраической суммы n! слагаемых, попадающих под определённые критерии. Эти слагаемые являются произведением n-элементов, взятых единично из всех столбов и строк.

Произведения могут отличаться друг от друга составом элементов. Со знаком плюс будут включаться в сумму числа, если их индексы составляют чётную подстановку, в противоположном случае их значение меняется на минус. Определитель обозначается символом det A. Круглые скобки матричной таблицы, обрамляющие её элементы, заменяются на квадратные. Формула определителя:

Решение систем линейных уравнений методом Гаусса

Определитель первого порядка, состоящий из одного элемента, равен самому этому элементу. Детерминант матричной таблицы размером 2*2 второго порядка вычисляется путём перемножения её элементов, расположенных на главной диагонали, и вычитания из них произведения элементов, находящихся в побочной диагонали. Наглядный пример:

Найти обратную матрицу пример

Для матрицы также можно найти дискриминант многочлена, отвечающий формуле:

Метод элементарных преобразований Гаусс

Когда у многочлена имеются кратные корни, тогда дискриминант равен нулю.

Обратная матрица

Прежде чем переходить к понятию обратного выражения матрицы, следует рассмотреть алгоритм её транспонирования. Во время операции строки и столбцы переставляются местами. На рисунке представлен метод решения:

Действия с матрицами

По аналогии обратная матрица сходна с обратными числами. Например, противоположной цифре 5 будет дробь 1/5 = 5 (-1) степени. Произведение этих чисел равно 1, выглядит оно так: 5*5 (-1) = 1. Умножение обычной матричной таблицы на обратную даст в итоге единичную: А* А (-1) = Е. Это аналог числовой единицы.

Но для начала нужно понять алгоритм вычисления обратной матрицы. Для этого находят её определитель. Разработано два метода решения: с помощью элементарных преобразований или алгебраических дополнений.

Более простой способ решения — путём алгебраических дополнений. Рассмотрим матричную таблицу А, обратная ей А (-1) степени находится по формуле:

Высшая математика для экономистов

Матрица обратного вида возможна только для квадратного размера таблиц 2*2, 3*3 и т. д. Обозначается она надстроенным индексом (-1). Задачу легче рассмотреть на более простом примере, когда размер таблицы равен 2*2. На первом этапе выполняют действия:

Нахождение обратной матрицы

Обратного выражения матрицы не может быть, если определитель равен нулю. В рассматриваемом случае он равен -2, поэтому всё в порядке.

2 этап: рассчитывают матрицу миноров, которая имеет те же значения, что и первоначальная. Под минором k-того порядка понимается определитель квадратной матрицы порядка k*k, составленный из её элементов, которые располагаются в выбранных k- столбцах и k-строках.

При этом расположение элементов таблицы не меняется. Чтобы найти минор верхнего левого числа, вычёркивают строчку и столбец, в которых прописан этот элемент. Оставшееся число и будет являться минором. На выходе должна получиться таблица:

Матричные уравнения Метод элементарных преобразований

3 этап: находят алгебраические дополнения.

Метод гаусса матрицы

4 этап: определяют транспонированную матрицу.

Системы линейных уравнений Метод Гаусса решения систем линейных уравнений

Итогом будет:

Проверка решения: чтобы удостовериться, что обратная таблица чисел найдена верно, следует выполнить проверочную операцию.

Алгоритмы решения систем линейных алгебраических уравнений

В рассматриваемом примере получается единичная матрица, когда на главной диагонали находятся единицы, при этом другие элементы равняются нулю. Это говорит о том, что решение было найдено правильно.

Нахождение собственных векторов

Определение собственного вектора и значений матричного выражения легче понять на примере. Для этого задают матричную таблицу чисел и ненулевой вектор Х, называемый собственным для А. Пример выражения:

Решение матриц

Согласно теореме собственными числами матричного выражения будут корни характеристического уравнения:

Вычисление матриц

Из однородной системы уравнений можно определить координаты собственного вектора Х, который соответствует значению лямбда.

Нахождение обратной матрицы

Метод Гаусса

Методом Гаусса называют способ преобразования системы уравнений линейного вида к упрощённой форме для дальнейшего облегчённого решения. Операции упрощения уравнений выполняют с помощью эквивалентных преобразований. К таким относят:

  • действия, когда в системе переставляются местами два уравнения;
  • произведение одного из уравнений в системе на действительное ненулевое число;
  • сложение первого уравнения со вторым, при этом последнее умножено на произвольное число.

Чтобы понять механизм решения, следует рассмотреть линейную систему уравнений.

Метод Гаусса матрицы

Следует переписать эту систему в матричный вид:

Обратная матрица методом Гаусса

А будет являться таблицей коэффициентов системы, b — это правая часть ограничений, а Х — вектор переменных координат, который требуется найти. Для решения используют ранг матрицы. Под ним понимают наивысший порядок минора, который отличается от 0.

В этом примере rang (A) = p. Способ эквивалентных преобразований не изменяет ранг таблицы коэффициентов.

Метод Гаусса предназначен для приведения матричной таблицы коэффициентов А к ступенчатому или диагональному виду. Расширенная система выглядит так:

Метод Гаусса примеры с решением

Допустим, а11 не равен 0. В противном случае, если это не так, то меняют эту строку с другой, где в первом столбце находится элемент, отличный от нуля. Когда подобные строчки отсутствуют, переходят к другому столбцу. Все нижние элементы столбца после а11 обнуляют. Для этих целей выполняют операции сложения строк 2,3…m с первой строчкой, умноженной на а21/а11, -а31/а11….- аm1/a11. В результате система примет вид:

Метод Гаусса алгоритм решения

На втором шаге повторяют все действия с элементами столбца 2, которые расположены ниже а22. Если показатель равен нулю, строку также меняют местами со строчкой, лежащей ниже с ненулевым элементом во втором столбце. Затем обнулению подлежат все показатели ниже а22. Для этого складывают строки 2,3 ..m, как описано выше. Выполняя процедуру со всеми элементами, приходят к матричной таблице ступенчатого или диагонального вида. Полученная расширенная таблица будет выглядеть:

Ранг методом Гаусса

Обращают внимание на последние строки.

Как решать матрицы методом Гаусса

В этом случае система уравнений имеет решение, но когда хотя бы одно из этих чисел отличается от нуля, она несовместима. Таким образом, система совместима, если ранг таблицы А равен расширенному рангу В (А|b).

Как найти обратную матрицу

Если rang А=rang (A|b), то существует множество решений, где n-p — многообразие. Из этого следует n-p неизвестных Хр+1,…Xn выбираются произвольно. Неизвестные X1, X2,…Xp вычисляют следующим образом: из последнего уравнения выражают Хр через остальные переменные, вставляя в предыдущие выражения. Затем из предпоследнего уравнения получают Хр-1 через прочие переменные и подставляют их в предыдущие выражения. Процедуру повторяют.

Найти быстро ответ и проверить себя позволяет онлайн-калькулятор. Решение матрицы методом Гаусса с помощью такого расчёта показывает подробные этапы операций. Для нахождения достаточно указать количество переменных и уравнений, отметить в полях значения чисел и нажать кнопку «Вычислить».

Способ Крамера

Метод Крамера используют для решения квадратной системы уравнений, представленной в линейном виде, где определитель основной матрицы не равен нулю. Считается, что система обладает единственным решением. Например, задана система линейных уравнений:

Матрица 3 на 4

Её необходимо заменить равноценным матричным уравнением.

Как решать матрицы Решение по Жордану матриц

Второй столбец вычисляют, а первый уже задан. Есть предположение, что определитель матрицы отличен от нуля. Из этого можно сделать выводы, что существует обратная матрица. Перемножив эквивалентное матричное уравнение на обратного формата матрицу, получим выражение:

Метод Гаусса алгоритм

В итоге получают выражения:

Метод Жордана Гаусса

Из представленных уравнений выделяют формулы Крамера:

Метод Гаусса матрицы

Метод Крамера не представляет сложности. Он может быть описан следующим алгоритмом:

  1. Высчитывают определитель дельта базовой матрицы.
  2. В матричной таблице А замещают первый столбец на вектор свободных элементов b.
  3. Выполняют расчёт определителя дельта1 выявленной матрицы А1.
  4. Определяют переменную Х1 = дельта1/дельта.
  5. Повторяют шаги со 2 по 4 пункт в матрице А для столбов 2,3…n.

Проверить решение матрицы методом Крамера онлайн позволяет калькулятор автоматического расчёта. Для получения быстрого ответа в представленные поля подставляют переменные числа и их количество. Дополнительно может потребоваться указание вычислительного метода разложения по строке или столбу. Другой вариант заключается в приведении к треугольному виду.

Указывается также представление чисел в виде целого числа, обыкновенной или десятичной дроби. После введения всех предусмотренных параметров и нажатия кнопки «Вычислить» получают готовое решение.

Матрицы, определители, системы линейных уравнений (Лекция №12)

ОПРЕДЕЛЕНИЕ МАТРИЦЫ. ВИДЫ МАТРИЦ

Матрицей размером m×n называется совокупность m·n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Эту таблицу обычно заключают в круглые скобки. Например, матрица может иметь вид:

Для краткости матрицу можно обозначать одной заглавной буквой, например, А или В.

В общем виде матрицу размером m×n записывают так

.

Числа, составляющие матрицу, называются элементами матрицы. Элементы матрицы удобно снабжать двумя индексами aij: первый указывает номер строки, а второй – номер столбца. Например, a23 – элемент стоит во 2-ой строке, 3-м столбце.

Если в матрице число строк равно числу столбцов, то матрица называется квадратной, причём число ее строк или столбцов называется порядком матрицы. В приведённых выше примерах квадратными являются вторая матрица – её порядок равен 3, и четвёртая матрица – её порядок 1.

Матрица, в которой число строк не равно числу столбцов, называется прямоугольной. В примерах это первая матрица и третья.

Различаются также матрицы, имеющие только одну строку или один столбец.

Матрица, у которой всего одна строка , называется матрицей – строкой (или строковой), а матрица, у которой всего один столбец, матрицей – столбцом.

Матрица, все элементы которой равны нулю, называется нулевой и обозначается (0), или просто 0. Например,

.

Главной диагональю квадратной матрицы назовём диагональ, идущую из левого верхнего в правый нижний угол.

Квадратная матрица, у которой все элементы, лежащие ниже главной диагонали, равны нулю, называется треугольной матрицей.

.

Квадратная матрица, у которой все элементы, кроме, быть может, стоящих на главной диагонали, равны нулю, называется диагональной матрицей. Например, или .

Диагональная матрица, у которой все диагональные элементы равны единице, называется единичной матрицей и обозначается буквой E. Например, единичная матрица 3-го порядка имеет вид .

ДЕЙСТВИЯ НАД МАТРИЦАМИ

Равенство матриц. Две матрицы A и B называются равными, если они имеют одинаковое число строк и столбцов и их соответствующие элементы равны aij = bij. Так если и , то A=B, если a11 = b11, a12 = b12, a21 = b21 и a22 = b22.

Транспонирование. Рассмотрим произвольную матрицу A из m строк и n столбцов. Ей можно сопоставить такую матрицу B из n строк и m столбцов, у которой каждая строка является столбцом матрицы A с тем же номером (следовательно, каждый столбец является строкой матрицы A с тем же номером). Итак, если , то .

Эту матрицу B называют транспонированной матрицей A, а переход от A к B транспонированием.

Таким образом, транспонирование – это перемена ролями строк и столбцов матрицы. Матрицу, транспонированную к матрице A, обычно обозначают AT.

Связь между матрицей A и её транспонированной можно записать в виде .

Например. Найти матрицу транспонированную данной.

Сложение матриц. Пусть матрицы A и B состоят из одинакового числа строк и одинакового числа столбцов, т.е. имеют одинаковые размеры. Тогда для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B, стоящие на тех же местах. Таким образом, суммой двух матриц A и B называется матрица C, которая определяется по правилу, например,

или

Примеры. Найти сумму матриц:

  1. .
  2. — нельзя, т.к. размеры матриц различны.
  3. .

Легко проверить, что сложение матриц подчиняется следующим законам: коммутативному A+B=B+A и ассоциативному (A+B)+C=A+(B+C).

Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы A на число k есть новая матрица, которая определяется по правилу или .

Для любых чисел a и b и матриц A и B выполняются равенства:

  1. .

Примеры.

  1. .
  2. Найти 2A-B, если , .

    .

  3. Найти C=–3A+4B.

    Матрицу C найти нельзя, т.к. матрицы A и B имеют разные размеры.

Умножение матриц. Эта операция осуществляется по своеобразному закону. Прежде всего, заметим, что размеры матриц–сомножителей должны быть согласованы. Перемножать можно только те матрицы, у которых число столбцов первой матрицы совпадает с числом строк второй матрицы (т.е. длина строки первой равна высоте столбца второй). Произведением матрицы A не матрицу B называется новая матрица C=AB, элементы которой составляются следующим образом:

.

Таким образом, например, чтобы получить у произведения (т.е. в матрице C) элемент, стоящий в 1-ой строке и 3-м столбце c13, нужно в 1-ой матрице взять 1-ую строку, во 2-ой – 3-й столбец, и затем элементы строки умножить на соответствующие элементы столбца и полученные произведения сложить. И другие элементы матрицы-произведения получаются с помощью аналогичного произведения строк первой матрицы на столбцы второй матрицы.

В общем случае, если мы умножаем матрицу A = (aij) размера m×n на матрицу B = (bij) размера n×p, то получим матрицу C размера m×p, элементы которой вычисляются следующим образом: элемент cij получается в результате произведения элементов i-ой строки матрицы A на соответствующие элементы j-го столбца матрицы B и их сложения.

Из этого правила следует, что всегда можно перемножать две квадратные матрицы одного порядка, в результате получим квадратную матрицу того же порядка. В частности, квадратную матрицу всегда можно умножить саму на себя, т.е. возвести в квадрат.

Другим важным случаем является умножение матрицы–строки на матрицу–столбец, причём ширина первой должна быть равна высоте второй, в результате получим матрицу первого порядка (т.е. один элемент). Действительно,

.

Примеры.

  1. Пусть

    Найти элементы c12, c23 и c21 матрицы C.

  2. Найти произведение матриц.

    .

  3. .
  4. — нельзя, т.к. ширина первой матрицы равна 2-м элементам, а высота второй – 3-м.
  5. Пусть

    Найти АВ и ВА.

  6. Найти АВ и ВА.

    , B·A – не имеет смысла.

Таким образом, эти простые примеры показывают, что матрицы, вообще говоря, не перестановочны друг с другом, т.е. A∙BB∙A. Поэтому при умножении матриц нужно тщательно следить за порядком множителей.

Можно проверить, что умножение матриц подчиняется ассоциативному и дистрибутивному законам, т.е. (AB)C=A(BC) и (A+B)C=AC+BC.

Легко также проверить, что при умножении квадратной матрицы A на единичную матрицу E того же порядка вновь получим матрицу A, причём AE=EA=A.

Можно отметить следующий любопытный факт. Как известно произведение 2-х отличных от нуля чисел не равно 0. Для матриц это может не иметь места, т.е. произведение 2-х не нулевых матриц может оказаться равным нулевой матрице.

Например, если , то

.

ПОНЯТИЕ ОПРЕДЕЛИТЕЛЕЙ

Пусть дана матрица второго порядка – квадратная матрица, состоящая из двух строк и двух столбцов .

Определителем второго порядка, соответствующим данной матрице, называется число, получаемое следующим образом: a11a22 – a12a21.

Определитель обозначается символом .

Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали.

Примеры. Вычислить определители второго порядка.

  1. .
  2. Вычислить определитель матрицы D, если D= -А+2В и

Аналогично можно рассмотреть матрицу третьего порядка и соответствующий ей определитель.

Определителем третьего порядка, соответствующим данной квадратной матрице третьего порядка, называется число, обозначаемое и получаемое следующим образом:

.

Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a11, a12, a13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка.

Примеры. Вычислить определитель третьего порядка.

  1. .
  2. .
  3. Решите уравнение..

    .

    (x+3)(4x-4-3x)+4(3x-4x+4)=0.

    (x+3)(x-4)+4(-x+4)=0.

    (x-4)(x-1)=0.

    x1 = 4, x2 = 1.

Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки «+» и «–» у слагаемых чередуются.

Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *