Та лица интегралов: Таблица интегралов, таблица основных интегралов для школьников и студентов

Таблица интегралов: первообразная, неопределенный интеграл

Для быстрого интегрального исчисления нужно знать, как искать производные простой и сложной функции. Ведь нахождение интеграла и производных являются взаимно обратные операции. Для интегрирования потребуются: таблица интегралов полная и также формулы интегралов таблица основных свойств, таблица производных и интегралов.

У многих возникает сложность в изучении и понимании неопределенных интегралов. Если производные обладают всего лишь 5 правилами дифференцирования, четким алгоритм, таблицей производных, то при интегрировании совсем иначе. Используются десятки приемов и способов интегрирования. При неверном выборе способа интегрирования и различного метода интеграл вычислять можно долго, так как он представляет собой некий ребус.

Определение первообразной

Определение

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство  для любого х из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство (F(x)+C)׳=f(x)Таким образом, функция f(x) имеет множество первообразных F(x)+C, для произвольной константы С, причем эти первообразные отличаются друг от друга на произвольную постоянную величину.

Определение неопределенного интеграла

Определение

Совокупность функций первообразной для данной функции y=f(x), которая имеет место на некотором отрезке [a;b], называют неопределенным интегралом y=f(x).

Неопределенный интеграл имеет обозначение: \[\int f(x) d x=F(x)+C, c=\text { const }\].

Определение интегрирования

Определение

Операция нахождения интеграла называется интегрированием.

Дифференциал с интегральным выражением являются взаимно обратными действиями. У любой непрерывной на интервале функции есть какой-либо неопределенный интеграл.

Кратко о терминах и обозначениях:

Таблица интегралов:

Таблица производных не включает формулы, которые соответствуют формулам из 10,13,14 таблицы. Чтобы проверить справедливость формул, необходимо произвести дифференцирование над ними.

Формулы интегралов, полная таблица основных свойств:

Расшифровка свойств интегралов:

  1. Неопределенный интеграл при интегрировании функции является равным предоставляемой функции.
  2. Производная от интегрального выражения будет равна подынтегральной функции, а дифференциал будет равен подынтегральному выражению.
  3. Множитель в виде числа можно выносить за интеграл.
  4. Интегральное выражение от суммы функций имеет такое же значение, как сумма интегральных выражений.
  5. Подынтегральное выражение с множителями внутри равен подынтегральному выражению с выносимой константой.

C помощью них можно упростить выражение интеграла и вычислить элементарными действиями. {\prime}=\frac{1}{\sin x} \cdot \cos x=\operatorname{ctg} x \]

Производная получилось такая же, как и подынтегральная функция. Поэтому формула является верной.

Вычислить интеграл:

\[ \int(\cos (3 x+2)+5 x) d x \]

Решение:

Используем одно из основных свойств:

\[ \int(\cos (3 x+2)+5 x) d x=\int(\cos (3 x+2)) d x+\int 5 x d x \]

Используем свойство о вынесении множителя за интеграл:

\[ \int(\cos (3 x+2)) d x+\int 5 x d x=\int(\cos (3 x+2)) d x+5 \int x d x \]

С помощью таблицы:

При вычислении воспользуемся 5 свойством:

\[ \int(\cos (3 x+2)) d x=\frac{1}{3} \sin (3 x+2)+C_{1} \]

Найдем ответ:

При этом C1+C2 являются частями C. Если отдельно решается 2 и более интегралов, то к каждому члену ставится C с определенным индексом.

Нет времени решать самому?

Наши эксперты помогут!

Контрольная

| от 300 ₽ |

Реферат

| от 500 ₽ |

Курсовая

| от 1 000 ₽ |

Понятие и свойства неопределённого интеграла, таблица интегралов

Неопределённый интеграл: 8 фактов, которые надо знать студенту

  • Первообразная функция и неопределённый интеграл
  • Геометрический смысл неопределённого интеграла
  • Свойства неопределённого интеграла
  • Таблица основных неопределённых интегралов

Факт 1. Интегрирование — действие, обратное дифференцированию, а именно, восстановление функции по известной производной этой функции. Восстановленная таким образом функция

F(x) называется первообразной для функции f(x).

Определение 1. Функция F(x) называется первообразной для функции f(x) на некотором промежутке X, если для всех значений x из этого промежутка выполняется равенство F ‘(x)=f(x), то есть данная функция f(x) является производной от первообразной функции F(x)..

Например, функция F(x) = sin x является первообразной для функции f(x) = cos x на всей числовой прямой, так как при любом значении икса (sin x)’ = (cos x).

Определение 2. Неопределённым интегралом функции f(x) называется совокупность всех её первообразных.

При этом употребляется запись

 

f(x)dx

,

где знак   называется знаком интеграла, функция f(x) – подынтегральной функцией, а f(x)dx – подынтегральным выражением.

Таким образом, если F(x) – какая-нибудь первообразная для f(x) , то

 

f(x)dx = F(x) +C

,                 (1)

где C — произвольная постоянная (константа).

Для понимания смысла множества первообразных функции как неопределённого интеграла уместна следующая аналогия. Пусть есть дверь (традиционная деревянная дверь). Её функция — «быть дверью». А из чего сделана дверь? Из дерева. Значит, множеством первообразных подынтегральной функции «быть дверью», то есть её неопределённым интегралом, является функция «быть деревом + С», где С — константа, которая в данном контексте может обозначать, например, породу дерева.

Подобно тому, как дверь сделана из дерева при помощи некоторых инструментов, производная функции «сделана» из первообразной функции при помощи формулы, которую мы узнали, изучая производную.

Тогда таблица функций распространённых предметов и соответствующих им первообразных («быть дверью» — «быть деревом», «быть ложкой» — «быть металлом» и др.) аналогична таблице основных неопределённых интегралов, которая будет приведена чуть ниже. В таблице неопределённых интегралов перечисляются распространённые функции с указанием первообразных, из которых «сделаны» эти функции. В части задач на нахождение неопределённого интеграла даны такие подынтегральные функции, которые без особых услилий могут быть проинтегрированы непосредственно, то есть по таблице неопределённых интегралов. В задачах посложнее подынтегральную функцию нужно предварительно преобразовать так, чтобы можно было использовать табличные интегралы.

Факт 2. Восстанавливая функцию как первообразную, мы должны учитывать произвольную постоянную (константу) C, а чтобы не писать список первообразной с различными константами от 1 до бесконечности, нужно записывать множество первообразных с произвольной константой C, например, так: 5x³+С. Итак, произвольная постоянная (константа) входит в выражение первообразной, поскольку первообразная может быть функцией, например, 5x³+4 или 5x³+3 и при дифференцировании 4 или 3, или любая другая константа обращаются в нуль.

Поставим задачу интегрирования: для данной функции f(x) найти такую функцию F(x), производная которой равна f(x).

Пример 1.Найти множество первообразных функции

Решение. Для данной функции первообразной является функция

так как

Функция F(x) называется первообразной для функции f(x), если производная F(x) равна f(x), или, что одно и то же, дифференциал F(x) равен f(x) dx, т. е.

или

                     (2)

Следовательно, функция — первообразная для функции . Однако она не является единственной первообразной для . Ими служат также функции

и вообще

где С – произвольная постоянная. В этом можно убедиться дифференцированием.

Для самопроверки при расчетах можно воспользоваться калькулятором неопределённых интегралов онлайн.

Таким образом, если для функции существует одна первообразная, то для неё существует бесконечное множество первообразных, отличающихся на постоянное слагаемое. Все первообразные для функции записываются в приведённом выше виде. Это вытекает из следующей теоремы.


Теорема (формальное изложение факта 2). Если F(x) – первообразная для функции f(x) на некотором промежутке Х, то любая другая первообразная для f(x) на том же промежутке может быть представлена в виде

F(x) + C , где С – произвольная постоянная.


В следующем примере уже обращаемся к таблице интегралов, которая будет дана в параграфе 3, после свойств неопределённого интеграла. Делаем это до ознакомления со всей таблицей, чтобы была понятна суть вышеизложенного. А после таблицы и свойств будем пользоваться ими при интегрировании во всей полносте.

Пример 2.  Найти множества первообразных функций:

1)   

2)

3)

Решение. Находим множества первообразных функций, из которых «сделаны» данные функции. При упоминании формул из таблицы интегралов пока просто примите, что там есть такие формулы, а полностью саму таблицу неопределённых интегралов мы изучим чуть дальше.

1) Применяя формулу (7) из таблицы интегралов при n = 3, получим

2) Используя формулу (10) из таблицы интегралов при n = 1/3,  имеем

3) Так как

то по формуле (7) при n = -1/4 найдём

Для самопроверки при расчетах можно воспользоваться калькулятором неопределённых интегралов онлайн.

Под знаком интеграла пишут не саму функцию f, а её произведение на дифференциал dx. Это делается прежде всего для того, чтобы указать, по какой переменной ищется первообразная. Например,

, ;

здесь в обоих случаях подынтегральная функция равна , но её неопределённые интегралы в рассмотренных случаях оказываются различными. В первом случае эта функция рассматривается как функция от переменной

x, а во втором — как функция от z.

Процесс нахождения неопределённого интеграла функции называется интегрированием этой функции.

Для самопроверки при расчетах можно воспользоваться калькулятором неопределённых интегралов онлайн.

Пусть требуется найти кривую y=F(x) и мы уже знаем,что тангенс угла наклона касательной в каждой её точке есть заданная функция f(x) абсциссы этой точки.

Согласно геометрическому смыслу производной, тангенс угла наклона касательной в данной точке кривой y=F(x) равен значению производной F'(x). Значит, нужно найти такую функцию F(x), для которой F'(x)=f(x). Требуемая в задаче функция F(x) является первообразной от f(x). Условию задачи удовлетворяет не одна кривая, а семейство кривых. y=F(x) — одна из таких кривых, а всякая другая кривая может быть получена из неё параллельным переносом вдоль оси Oy.

Назовём график первообразной функции от f(x) интегральной кривой. Если F'(x)=f(x), то график функции y=F(x) есть интегральная кривая.

Факт 3. Неопределённый интеграл геометрически представлен семеством всех интегральных кривых, как на рисунке ниже. Удалённость каждой кривой от начала координат определяется произвольной постоянной (константой) интегрирования C.

Факт 4. Теорема 1. Производная неопределённого интеграла равна подынтегральной функции, а его дифференциал – подынтегральному выражению.


Факт 5. Теорема 2. Неопределённый интеграл от дифференциала функции f(x) равен функции f(x) с точностью до постоянного слагаемого, т.е.

                  (3)

Теоремы 1 и 2 показывают, что дифференцирование и интегрирование являются взаимно-обратными операциями.


Факт 6. Теорема 3. Постоянный множитель в подынтегральном выражении можно выносить за знак неопределённого интеграла, т.е.

  (4)


Факт 7. Теорема 4. Неопределённый интеграл алгебраической суммы конечного числа функций равен алгебраической сумме неопределённых интегралов этих функций, т.е.

  (5)

Факт 8. Пользусь таблицей неопределённых интегралов, свойствами неопределённого интеграла и методами интегрирования, можно отыскать неопределённый интеграл любой функции.

Из определения неопределённого интеграла вытекают следующие формулы, которые в дальнейшем будем называть табличными интегралами:

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

 

НазадЛистатьВперёд>>>

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Интеграл

Продолжение темы «Интеграл»

Найти неопределённый интеграл: начала начал, примеры

Метод замены переменной в неопределённом интеграле

Интегрирование подведением под знак дифференциала

Метод интегрирования по частям

Интегрирование дробей

Интегрирование рациональных функций и метод неопределённых коэффициентов

Интегрирование некоторых иррациональных функций

Интегрирование тригонометрических функций

Определённый интеграл

Несобственные интегралы

Площадь плоской фигуры с помощью интеграла

Объём тела вращения с помощью интеграла

Вычисление двойных интегралов

Длина дуги кривой с помощью интеграла

Площадь поверхности вращения с помощью интеграла

Определение работы силы с помощью интеграла

Поделиться с друзьями

Таблица интегралов.

Расчет, том 1

Основные интегралы

1. ∫undu=un+1n+1+C,n≠−1∫undu=un+1n+1+C,n≠−1

2. ∫duu=ln|u|+C∫duu=ln|u|+C

3. ∫eudu=eu+C∫eudu=eu+C

4. ∫audu=аулна+C∫audu=аулна+C

5. ∫sinudu=-cosu+C∫sinudu=-cosu+C

6. ∫cosudu=сину+C∫cosudu=сину+C

7. ∫sec2udu=тану+C∫sec2udu=тану+C

8. ∫csc2udu=-cotu+C∫csc2udu=-cotu+C

9. ∫secutanudu=secu+C∫secutanudu=secu+C

10. ∫cscucotudu=-cscu+C∫cscucotudu=-cscu+C

11. ∫tanudu=ln|secu|+C∫tanudu=ln|secu|+C

12. ∫котуду=ln|сину|+C∫котуду=ln|сину|+C

13. ∫secudu=ln|secu+tanu|+C∫secudu=ln|secu+tanu|+C

14. ∫cscudu=ln|cscu-cotu|+C∫cscudu=ln|cscu-cotu|+C

15. ∫dua2−u2=sin−1ua+C∫dua2−u2=sin−1ua+C

16. ∫dua2+u2=1atan−1ua+C∫dua2+u2=1atan−1ua+C

17. ∫duuu2−a2=1asec−1ua+C∫duuu2−a2=1asec−1ua+C

Тригонометрические интегралы

18. ∫sin2udu=12u−14sin2u+C∫sin2udu=12u−14sin2u+C

19. ∫cos2udu=12u+14sin2u+C∫cos2udu=12u+14sin2u+C

20. ∫tan2udu=tanu-u+C∫tan2udu=tanu-u+C

21. ∫cot2udu=-cotu-u+C∫cot2udu=-cotu-u+C

22. ∫sin3udu=−13(2+sin2u)cosu+C∫sin3udu=−13(2+sin2u)cosu+C

23. ∫cos3udu=13(2+cos2u)sinu+C∫cos3udu=13(2+cos2u)sinu+C

24. ∫tan3udu=12tan2u+ln|cosu|+C∫tan3udu=12tan2u+ln|cosu|+C

25. ∫cot3udu=-12cot2u-ln|sinu|+C∫cot3udu=-12cot2u-ln|sinu|+C

26. ∫sec3udu=12secutanu+12ln|secu+tanu|+C∫sec3udu=12secutanu+12ln|secu+tanu|+C

27. ∫csc3udu=-12cscucotu+12ln|cscu-cotu|+C∫csc3udu=-12cscucotu+12ln|cscu-cotu|+C

28. ∫sinnudu=−1nsinn−1ucosu+n−1n∫sinn−2udu∫sinnudu=−1nsinn−1ucosu+n−1n∫sinn−2udu

29. ∫cosnudu=1ncosn−1usinu+n−1n∫cosn−2udu∫cosnudu=1ncosn−1usinu+n−1n∫cosn−2udu

30. ∫tannudu=1n−1tann−1u−∫tann−2udu∫tannudu=1n−1tann−1u−∫tann−2udu

31. ∫cotnudu=-1n-1cotn-1u-∫cotn-2udu∫cotnudu=-1n-1cotn-1u-∫cotn-2udu

32. ∫secnudu=1n−1tanusecn−2u+n−2n−1∫secn−2udu∫secnudu=1n−1tanusecn−2u+n−2n−1∫secn−2udu

33. ∫cscnudu=−1n−1cotucscn−2u+n−2n−1∫cscn−2udu∫cscnudu=−1n−1cotucscn−2u+n−2n−1∫cscn−2udu

34. ∫sinausinbudu=sin(a−b)u2(a−b)−sin(a+b)u2(a+b)+C∫sinausinbudu=sin(a−b)u2(a−b)−sin (а+б)и2(а+б)+С

35. ∫cosaucosbudu=sin(a−b)u2(a−b)+sin(a+b)u2(a+b)+C∫cosaucosbudu=sin(a−b)u2(a−b)+sin (а+б)и2(а+б)+С

36. ∫sinaucosbudu=−cos(a−b)u2(a−b)−cos(a+b)u2(a+b)+C∫sinaucosbudu=−cos(a−b)u2(a−b) −cos(a+b)u2(a+b)+C

37. ∫usinudu=sinu-ucosu+C∫usinudu=sinu-ucosu+C

38. ∫ucosudu=cosu+usinu+C∫ucosudu=cosu+usinu+C

39. ∫unsinudu=-uncosu+n∫un-1cosudu∫unsinudu=-uncosu+n∫un-1cosudu

40. ∫ункосуду=унсину-н∫ун-1синуду∫ункосуду=унсину-н∫ун-1синуду

 41. 1un+m+n−1n+m∫sinn−2ucosmudu=sinn+1ucosm−1un+m+m−1n+m∫sinnucosm−2udu

Экспоненциальные и логарифмические интегралы

42. ∫ueaudu=1a2(au-1)eau+C∫ueaudu=1a2(au-1)eau+C

43. ∫uneaudu=1auneau-na∫un-1eaudu∫uneaudu=1auneau-na∫un-1eaudu

44. ∫eausinbudu=eaua2+b2(asinbu−bcosbu)+C∫eausinbudu=eaua2+b2(asinbu−bcosbu)+C

45. ∫eaucosbudu=eaua2+b2(acosbu+bsinbu)+C∫eaucosbudu=eaua2+b2(acosbu+bsinbu)+C

46. ∫lnudu=ulnu-u+C∫lnudu=ulnu-u+C

47. ∫unlnudu=un+1(n+1)2[(n+1)lnu−1]+C∫unlnudu=un+1(n+1)2[(n+1)lnu−1]+ С

48. ∫1ulnudu=ln|lnu|+C∫1ulnudu=ln|lnu|+C

Гиперболические интегралы

49. ∫синхуду=кошу+К∫синхуду=кошу+К

50. ∫кошуду=синху+К∫кошуду=синху+К

51. ∫танхуду=инкошу+К∫танхуду=инкошу+К

52. ∫cothudu=ln|sinhu|+C∫cothudu=ln|sinhu|+C

53. ∫sechudu=tan−1|sinhu|+C∫sechudu=tan−1|sinhu|+C

54. ∫cschudu=ln|tanh22u|+C∫cschudu=ln|tanh22u|+C

55. ∫sech3udu=танху+C∫sech3udu=танху+C

56. ∫csch3udu=−cothu+C∫csch3udu=−cothu+C

57. ∫sechutanhudu=-sechu+C∫sechutanhudu=-sechu+C

58. ∫cschucothudu=-cschu+C∫cschucothudu=-cschu+C

Обратные тригонометрические интегралы

59. ∫sin-1udu=usin-1u+1-u2+C∫sin-1udu=usin-1u+1-u2+C

60. ∫cos-1udu=ucos-1u-1-u2+C∫cos-1udu=ucos-1u-1-u2+C

61. ∫tan−1udu=utan−1u−12ln(1+u2)+C∫tan−1udu=utan−1u−12ln(1+u2)+C

62. ∫usin-1udu=2u2-14sin-1u+u1-u24+C∫usin-1udu=2u2-14sin-1u+u1-u24+C

63. ∫ucos-1udu=2u2-14cos-1u-u1-u24+C∫ucos-1udu=2u2-14cos-1u-u1-u24+C

64. ∫utan−1udu=u2+12tan−1u−u2+C∫utan−1udu=u2+12tan−1u−u2+C

65. ∫unsin−1udu=1n+1[un+1sin−1u−∫un+1du1−u2],n≠−1∫unsin−1udu=1n+1[un+1sin−1u−∫un+1du1− u2],n≠−1

66. ∫uncos−1udu=1n+1[un+1cos−1u+∫un+1du1−u2],n≠−1∫uncos−1udu=1n+1[un+1cos−1u+∫un+1du1−u2] ,n≠−1

67. ∫untan−1udu=1n+1[un+1tan−1u−∫un+1du1+u2],n≠−1∫untan−1udu=1n+1[un+1tan−1u−∫un+1du1+ u2],n≠−1

Интегралы с участием

a 2 + u 2 , a > 0

68. ∫a2+u2du=u2a2+u2+a22ln(u+a2+u2)+C∫a2+u2du=u2a2+u2+a22ln(u+a2+u2)+C

69. ∫u2a2+u2du=u8(a2+2u2)a2+u2−a48ln(u+a2+u2)+C∫u2a2+u2du=u8(a2+2u2)a2+u2−a48ln(u+a2+u2 )+С

70. ∫a2+u2udu=a2+u2−aln|a+a2+u2u|+C∫a2+u2udu=a2+u2−aln|a+a2+u2u|+C

71. ∫a2+u2u2du=−a2+u2u+ln(u+a2+u2)+C∫a2+u2u2du=−a2+u2u+ln(u+a2+u2)+C

72. ∫dua2+u2=ln(u+a2+u2)+C∫dua2+u2=ln(u+a2+u2)+C

73. ∫u2dua2+u2=u2(a2+u2)−a22ln(u+a2+u2)+C∫u2dua2+u2=u2(a2+u2)−a22ln(u+a2+u2)+C

74. ∫duua2+u2=−1aln|a2+u2+au|+C∫duua2+u2=−1aln|a2+u2+au|+C

75. ∫duu2a2+u2=−a2+u2a2u+C∫duu2a2+u2=−a2+u2a2u+C

76. ∫du(a2+u2)3/2=ua2a2+u2+C∫du(a2+u2)3/2=ua2a2+u2+C

Интегралы с участием

u 2 a 2 , a > 0

77. ∫u2−a2du=u2u2−a2−a22ln|u+u2−a2|+C∫u2−a2du=u2u2−a2−a22ln|u+u2−a2|+C

78. ∫u2u2−a2du=u8(2u2−a2)u2−a2−a48ln|u+u2−a2|+C∫u2u2−a2du=u8(2u2−a2)u2−a2−a48ln|u+u2−a2 |+С

79. ∫u2−a2udu=u2−a2−acos−1a|u|+C∫u2−a2udu=u2−a2−acos−1a|u|+C

80. ∫u2−a2u2du=−u2−a2u+ln|u+u2−a2|+C∫u2−a2u2du=−u2−a2u+ln|u+u2−a2|+C

81. ∫duu2−a2=ln|u+u2−a2|+C∫duu2−a2=ln|u+u2−a2|+C

82. ∫u2duu2−a2=u2u2−a2+a22ln|u+u2−a2|+C∫u2duu2−a2=u2u2−a2+a22ln|u+u2−a2|+C

83. ∫duu2u2−a2=u2−a2a2u+C∫duu2u2−a2=u2−a2a2u+C

84а. ∫du(u2−a2)3/2=−ua2u2−a2+C∫du(u2−a2)3/2=−ua2u2−a2+C

84б. ∫duu2-a2=12alnu-au+a+C∫duu2-a2=12alnu-au+a+C

Интегралы с участием

a 2 u 2 , и > 0

85. ∫a2−u2du=u2a2−u2+a22sin−1ua+C∫a2−u2du=u2a2−u2+a22sin−1ua+C

86. ∫u2a2−u2du=u8(2u2−a2)a2−u2+a48sin−1ua+C∫u2a2−u2du=u8(2u2−a2)a2−u2+a48sin−1ua+C

87. ∫a2−u2udu=a2−u2−aln|a+a2−u2u|+C∫a2−u2udu=a2−u2−aln|a+a2−u2u|+C

88. ∫a2−u2u2du=−1ua2−u2−sin−1ua+C∫a2−u2u2du=−1ua2−u2−sin−1ua+C

89. ∫u2dua2−u2=−u2a2−u2+a22sin−1ua+C∫u2dua2−u2=−u2a2−u2+a22sin−1ua+C

90. ∫duua2−u2=−1aln|a+a2−u2u|+C∫duua2−u2=−1aln|a+a2−u2u|+C

91. ∫duu2a2−u2=−1a2ua2−u2+C∫duu2a2−u2=−1a2ua2−u2+C

92. ∫(a2−u2)3/2du=−u8(2u2−5a2)a2−u2+3a48sin−1ua+C∫(a2−u2)3/2du=−u8(2u2−5a2)a2−u2+ 3a48sin−1ua+C

93а. ∫du(a2−u2)3/2=ua2a2−u2+C∫du(a2−u2)3/2=ua2a2−u2+C

93б. ∫dua2-u2=12alnu+au-a+C∫dua2-u2=12alnu+au-a+C

Интегралы с участием 2

au u 2 , a > 0

94. ∫2au-u2du=u-a22au-u2+a22cos-1(a-ua)+C∫2au-u2du=u-a22au-u2+a22cos-1(a-ua)+C

95. ∫du2au-u2=cos-1(a-ua)+C∫du2au-u2=cos-1(a-ua)+C

96. ∫u2au-u2du=2u2-au-3a262au-u2+a32cos-1(a-ua)+C∫u2au-u2du=2u2-au-3a262au-u2+a32cos-1(a-ua)+C

97. ∫duu2au-u2=-2au-u2au+C∫duu2au-u2=-2au-u2au+C

Интегралы с участием

a + bu , a ≠ 0

98. ∫udua+bu=1b2(a+bu-aln|a+bu|)+C∫udua+bu=1b2(a+bu-aln|a+bu|)+C

99. ∫u2dua+bu=12b3[(a+bu)2−4a(a+bu)+2a2ln|a+bu|]+C∫u2dua+bu=12b3[(a+bu)2−4a(a +bu)+2a2ln|a+bu|]+C

100. ∫duu(a+bu)=1aln|ua+bu|+C∫duu(a+bu)=1aln|ua+bu|+C

101. ∫duu2(a+bu)=−1au+ba2ln|a+buu|+C∫duu2(a+bu)=−1au+ba2ln|a+buu|+C

102. ∫udu(a+bu)2=ab2(a+bu)+1b2ln|a+bu|+C∫udu(a+bu)2=ab2(a+bu)+1b2ln|a+bu|+ С

103. ∫uduu(a+bu)2=1a(a+bu)−1a2ln|a+buu|+C∫uduu(a+bu)2=1a(a+bu)−1a2ln|a+buu|+ С

104. ∫u2du(a+bu)2=1b3(a+bu−a2a+bu−2aln|a+bu|)+C∫u2du(a+bu)2=1b3(a+bu−a2a+bu− 2aln|a+bu|)+C

105. ∫ua+budu=215b2(3bu−2a)(a+bu)3/2+C∫ua+budu=215b2(3bu−2a)(a+bu)3/2+C

106. ∫udua+bu=23b2(bu−2a)a+bu+C∫udua+bu=23b2(bu−2a)a+bu+C

107. ∫u2dua+bu=215b3(8a2+3b2u2−4abu)a+bu+C∫u2dua+bu=215b3(8a2+3b2u2−4abu)a+bu+C

108. ∫duua+bu=1aln|a+bu−aa+bu+a|+C,ifa>0=2−atan−1a+bu−a+C,ifa<0∫duua+bu=1aln|a +bu-aa+bu+a|+C,ifa>0=2-atan-1a+bu-a+C,ifa<0

109. ∫a+buudu=2a+bu+a∫duua+bu∫a+buudu=2a+bu+a∫duua+bu

110. ∫a+buu2du=−a+buu+b2∫duua+bu∫a+buu2du=−a+buu+b2∫duua+bu

111. ∫una+budu=2b(2n+3)[un(a+bu)3/2−na∫un−1a+budu]∫una+budu=2b(2n+3)[un(a+bu) )3/2−na∫un−1a+budu]

112. ∫undua+bu=2una+bub(2n+1)−2nab(2n+1)∫un−1dua+bu∫undua+bu=2una+bub(2n+1)−2nab(2n+1)∫ ип-1дуа+бу

113. ∫duuna+bu=−a+bua(n−1)un−1−b(2n−3)2a(n−1)∫duun−1a+bu∫duuna+bu=−a+bua(n −1)un−1−b(2n−3)2a(n−1)∫duun−1a+bu

Таблица интегралов — Mathematics LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    14727
  • Для этого курса необходимо показать всю работу, чтобы получить большинство этих интегральных форм. Из приведенных ниже формул интегрирования только те, которые можно применить без дополнительной работы, это #1 — 10, 15 — 17, а также 49 и 50. И даже они потребуют работы, чтобы показать, если используется замена.

    Все остальные могут быть полезны для проверки ваших окончательных ответов, но их нельзя использовать для пропуска необходимой работы, чтобы показать, что вы понимаете, как использовать методы интеграции, изучаемые в этом курсе. 9{n−2}u\,du\)

    34. \(\quad \displaystyle ∫\sin au\sin bu\,du=\frac{\sin (a−b)u}{2(a−b )}−\frac{\sin (a+b)u}{2(a+b)}+C\)

    35. \(\quad \displaystyle ∫\cos au\cos bu\,du=\frac {\ sin (a-b) u} {2 (a-b)} + \ frac {\ sin (a + b) u} {2 (a + b)} + C \)

    36. \(\ quad \ displaystyle ∫ \ sin au \ cos bu \, du = — \ frac {\ cos (a-b) u} {2 (a-b)} — \ frac {\ cos (a + b) u} {2 (a+b)}+C\)

    37. \(\quad \displaystyle ∫u\sin u\,du=\sin u−u\cos u+C\)

    38. \(\quad \ стиль отображения ∫u\cos u\,du=\cos u+u\sin u+C\) 92}[(n+1)\ln u−1]+C\)

    48. \(\quad \displaystyle ∫\frac{1}{u\ln u}\,du=\ln |\ln u |+C\)

    Гиперболические интегралы

    49. \(\quad \displaystyle ∫\sinh u\,du=\cosh u+C\)

    50. \(\quad \displaystyle ∫\cosh u\, du=\sinh u+C\)

    51. \(\quad \displaystyle ∫\tanh u\,du=\ln \cosh u+C\)

    52. \(\quad \displaystyle ∫\coth u \,du=\ln |\sinh u|+C\)

    53. \(\quad \displaystyle ∫\text{sech}\,u\,du=\arctan |\sinh u|+C\)

    54.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *