Табл син кос: Таблица тригонометрических функций.

Содержание

Подробная таблица тригонометрических функций. Тригонометрические функции

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория «Ахиллес и черепаха». Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт… Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что «… дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось.

.. к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса… » [Википедия, » Апории Зенона «]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места.

Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие «бесконечность» в этой ситуации, то правильно будет говорить «Ахиллес бесконечно быстро догонит черепаху».

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию «Ахиллес и черепаха» очень похоже утверждение Эйнштейна о непреодолимости скорости света.

Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто — достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь).

На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве — это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, «во множестве не может быть двух идентичных элементов», но если идентичные элементы во множестве есть, такое множество называется «мультимножество». Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова «совсем». Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой «чур, я в домике», точнее «математика изучает абстрактные понятия», есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его «математическое множество зарплаты». Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: «к другим это применять можно, ко мне — низьзя!». Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами — на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально…

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует — всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова — значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов — у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких «мыслимое как не единое целое» или «не мыслимое как единое целое».

воскресенье, 18 марта 2018 г.

Сумма цифр числа — это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу «Сумма цифр числа». Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры — это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: «Найти сумму графических символов, изображающих любое число».

Математики эту задачу решить не могут, а вот шаманы — элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки — это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот «курсы кройки и шитья» от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых — нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Открывает дверь и говорит:

Ой! А это разве не женский туалет?
— Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский… Нимб сверху и стрелочка вниз — это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А — это не «минус четыре градуса» или «один а». Это «какающий человек» или число «двадцать шесть» в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

В статье, мы полностью разберемся, как выглядит таблица тригонометрических значений, синуса, косинуса, тангенса и котангенса . Рассмотрим основное значение тригонометрических функций, от угла в 0,30,45,60,90,…,360 градусов. И посмотрим как пользоваться данными таблицами в вычислении значения тригонометрических функций.
Первой рассмотрим таблицу косинуса, синуса, тангенса и котангенса от угла в 0, 30, 45, 60, 90,.. градусов. Определение данных величин дают определить значение функций углов в 0 и 90 градусов:

sin 0 0 =0, cos 0 0 = 1. tg 00 = 0, котангенс от 00 будет неопределенным
sin 90 0 = 1, cos 90 0 =0, ctg90 0 = 0,тангенс от 90 0 будет неопределенным

Если взять прямоугольные треугольники углы которых от 30 до 90 градусов. Получим:

sin 30 0 = 1/2, cos 30 0 = √3/2, tg 30 0 = √3/3, ctg 30 0 = √3
sin 45 0 = √2/2, cos 45 0 = √2/2, tg 45 0 = 1, ctg 45 0 = 1
sin 60 0 = √3/2, cos 60 0 = 1/2, tg 60 0 =√3 , ctg 60 0 = √3/3

Изобразим все полученные значения в виде тригонометрической таблицы :

Таблица синусов, косинусов, тангенсов и котангенсов!

Если использовать формулу приведения, наша таблица увеличится, добавятся значения для углов до 360 градусов. Выглядеть она будет как:

Так же исходя из свойств периодичности таблицу можно увеличить, если заменим углы на 0 0 +360 0 *z …. 330 0 +360 0 *z, в котором z является целым числом. В данной таблице возможно вычислить значение всех углов, соответствующими точками в единой окружности.

Разберем наглядно как использовать таблицу в решении.
Все очень прост. Так как нужное нам значение лежит в точке пересечения нужных нам ячеек. К примеру возьмем cos угла 60 градусов, в таблице это будет выглядеть как:

В итоговой таблице основных значений тригонометрических функций, действуем так же. Но в данной таблице возможно узнать сколько составит тангенс от угла в 1020 градусов, он = -√3 Проверим 1020 0 = 300 0 +360 0 *2. Найдем по таблице.

Таблица Брадиса. Для синуса, косинуса, тангенса и котангенса.

Таблицы Брадиса поделены на несколько частей, состоят из таблиц косинуса и синуса, тангенса и котангенса — которая поделена на две части (tg угла до 90 градусов и ctg малых углов).

Синус и косинус

tg угла начиная с 00 заканчивая 760, ctg угла начиная с 140 заканчивая 900.

tg до 900 и ctg малых углов.


Разберемся как пользоваться таблицами Брадиса в решении задач.

Найдем обозначение sin (обозначение в столбце с левого края) 42 минут (обозначение находится на верхней строчке). Путем пересечения ищем обозначение, оно = 0,3040.

Величины минут указаны с промежутком в шесть минут, как быть если нужное нам значение попадет именно в этот промежуток. Возьмем 44 минуты, а в таблице есть только 42. Берем за основу 42 и воспользуемся добавочными столбцами в правой стороне, берем 2 поправку и добавляем к 0,3040 + 0,0006 получаем 0,3046.

При sin 47 мин, берем за основу 48 мин и отнимаем от нее 1 поправку, т.е 0,3057 — 0,0003 = 0,3054

При вычислении cos работаем аналогично sin только за основу берем нижнюю строку таблицы. К примеру cos 20 0 = 0.9397

Значения tg угла до 90 0 и cot малого угла, верны и поправок в них нет. К примеру, найти tg 78 0 37мин = 4,967


а ctg 20 0 13мин = 25,83

Ну вот мы и рассмотрели основные тригонометрические таблицы. Надеемся это информация была для вас крайне полезной. Свои вопросы по таблицам, если они появились, обязательно пишите в комментариях!

Заметка: Стеновые отбойники — отбойная доска для защиты стен. Перейдите по ссылке настенные отбойники бескаркасные (http://www.spi-polymer.ru/otboyniki/) и узнайте подробнее.

В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов . Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

Навигация по странице.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. — 3-е изд. — М.: Просвещение, 1993. — 351 с.: ил. — ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. — 2-е изд. — М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2
Табличка на двери

Примечание . В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби — символ «/».

См. также полезные материалы:

Для определения значения тригонометрической функции , найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов — ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой «30 градусов», на их пересечении считываем результат — одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других «популярных» углов.

Синус пи, косинус пи, тангенс пи и других углов в радианах

Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах . Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180 .

Примеры :
1. Синус пи .
sin π = sin 180 = 0
таким образом, синус пи — это тоже самое, что синус 180 градусов и он равен нулю.

2. Косинус пи .
cos π = cos 180 = -1
таким образом, косинус пи — это тоже самое, что косинус 180 градусов и он равен минус единице.

3. Тангенс пи
tg π = tg 180 = 0
таким образом, тангенс пи — это тоже самое, что тангенс 180 градусов и он равен нулю.

Таблица значений синуса, косинуса, тангенса для углов 0 — 360 градусов (часто встречающиеся значения)


значение угла α
(градусов)

значение угла α
в радианах

(через число пи)

sin
(синус)
cos
(косинус)
tg
(тангенс)
ctg
(котангенс)
sec
(секанс)
cosec
(косеканс)
0 0 0 1 0 1
15 π/12 2 — √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 — √3
90 π/2 1 0 0 1
105 7π/12
— 2 — √3 √3 — 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 -1
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 0 -1
360 0 1 0 1

Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет — клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов


0, 15, 30, 45, 60, 90 … 360 градусов
(цифровые значения «как по таблицам Брадиса»)
значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

1. Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решении дифференциальных и функциональных уравнений.

2. К тригонометрическим функциям относятся следующие 6 функций: синус , косинус , тангенс ,котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция.

3. Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом r=1. На окружности обозначена точка M(x,y). Угол между радиус-вектором OM и положительным направлением оси Ox равен α.

4. Синусом угла α называется отношение ординаты y точки M(x,y) к радиусу r:
sinα=y/r.
Поскольку r=1, то синус равен ординате точки M(x,y).

5. Косинусом угла α называется отношение абсциссы x точки M(x,y) к радиусу r:
cosα=x/r

6. Тангенсом угла α называется отношение ординаты y точки M(x,y) к ee абсциссе x:
tanα=y/x,x≠0

7. Котангенсом угла α называется отношение абсциссы x точки M(x,y) к ее ординате y:
cotα=x/y,y≠0

8. Секанс угла α − это отношение радиуса r к абсциссе x точки M(x,y):
secα=r/x=1/x,x≠0

9. Косеканс угла α − это отношение радиуса r к ординате y точки M(x,y):
cscα=r/y=1/y,y≠0

10. В единичном круге проекции x, y точки M(x,y) и радиус r образуют прямоугольный треугольник, в котором x,y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом:
Синусом угла α называется отношение противолежащего катета к гипотенузе.
Косинусом угла α называется отношение прилежащего катета к гипотенузе.
Тангенсом угла α называется противолежащего катета к прилежащему.
Котангенсом угла α называется прилежащего катета к противолежащему.
Секанс угла α представляет собой отношение гипотенузы к прилежащему катету.
Косеканс угла α представляет собой отношение гипотенузы к противолежащему катету.

11. График функции синус
y=sinx, область определения: x∈R, область значений: −1≤sinx≤1

12. График функции косинус
y=cosx, область определения: x∈R, область значений: −1≤cosx≤1

13. График функции тангенс
y=tanx, область определения: x∈R,x≠(2k+1)π/2, область значений: −∞

14. График функции котангенс
y=cotx, область определения: x∈R,x≠kπ, область значений: −∞

15. График функции секанс
y=secx, область определения: x∈R,x≠(2k+1)π/2, область значений:secx∈(−∞,−1]∪∪}

Полезное

  • Нападение гитлера на ссср было вероломным

Реклама

  • Рассказы про животных, которые обогатят внутренний мир ребенка Житков про животных читать

Новое

  • «Чудная картина…» А. Фет. Анализ «Чудная картина» Фета Чудная картина как ты мне родна автор
  • Секреты варки рубиновых звезд: как производят главный символ Кремля
  • И дым отечества нам сладок и приятен
  • Школьные каникулы в крыму
  • Самостоятельное оформление классного уголка в начальной школе
  • Легенда об убитом царевиче дмитрие Биография царевича дмитрия
  • Как решать задания егэ по информатике
  • Задания егэ по информатике
  • Можно ли не идти детям в школу из-за плохой погоды
  • К1 – Соблюдение орфографических норм
  • Павел I — биография, история жизни: Униженный император

Тригонометрические и геометрические преобразования, sin(A + B), sin(A

Коэффициенты для суммы углов

Как демонстрируют различные примеры, иногда нам нужны значения углов, отличных от 0, 30, 45, 60 и 90 градусов. В этой главе вы должны научиться двум вещам:
1. sin(A + B) не является равным sinA + sinB. В этом случае не срабатывает простое раскрытие скобок, как в алгебре.
2. Формулу, по которой вычисляется sin(A + B).

Во-первых, покажем, что раскрытие скобок не «срабатывает». Пусть A = 30 градусов и B = 45 градусов. Sin30 равен 0.5. Sin45 равен 0.7071. Складывая, получим 1.2071.

Вы знаете, что ни синус, ни косинус не может быть больше 1. Почему? Потому что в дробях, по которым они вычисляются, гипотенуза выступает в качестве знаменателя. Самое большее значение мы получим, если числитель равен знаменателю. Синус или косинус не может быть больше 1, и поэтому значение 1,2071 не верно.

Нахождение синуса, косинуса или тангенса полного угла (A + B)

Нахождение sin(A + B)

Самый простой способ найти sin (A + B) — используя геометрическое построение, показанное на рисунке. Большой угол (A + B), состоит из двух маленьких, А и В. Рисунок (1) показывает, что противоположная сторона состоит из двух частей. Нижняя часть, разделенная линией между углами (2), есть синус А. Линия между двумя углами, разделенная гипотенузой (3), есть косинус B. Умножаем их. Средняя линия и в числителе, и в знаменателе, поэтому они сокращаются, оставляя нижнюю часть противоположной стороны над гипотенузой (4).

Обратите внимание на маленький прямоугольный треугольник (5). Затененный угол есть A, потому что линия на его верхней части параллельна линии в основании. Подобные прямоугольные треугольники с углом А показывают, что верхний угол, отмеченный А также равен оригинальному углу А. Верхняя часть противоположной (6) над длинной, заштрихованный треугольник является соs А. Противоположный над основной гипотенузой (7) есть синус. Поскольку стороны с пометкой «противоположные» (7) и в числителе и знаменателе, когда cos и sin перемножаются, cosAsinB есть верхняя часть оригинального противоположного — для (A + B) — разделенные основной гипотенузой (8).

Теперь, сложим это все вместе (9). Sin(A + B) есть две части противоположного — все разделенные гипотенузой (9). Записывая это в тригонометрическую форму: sin(A + B) = sin A cos B + cos A sin B.

Нахождение cos(A + B)

Очень похожая конструкция находит формулу для косинуса угла созданного двумя углами, сложенными вместе.

Используя ту же самую конструкцию (1), обратите внимание, что смежная сторона является полной линией основания (для соs A), c частью, которая вычитается справа. Каждая часть должна использовать тот же знаменатель, гипотенузу (A + B) треугольника.

Полная линия основания, разделенная линией между углами A и E есть cosA (2). Эта разделяющая линия, деленная гипотенузой (A + B) треугольника, есть cos B (3). Поэтому, полная линия основания, деленная гипотенузой есть произведение cosAcosB (4).

Теперь, небольшая часть, которая должна быть вычтена. Заштрихованная часть (5) представляет sinA, который умножается заштрихованной частью (6) есть sin E, который есть другой частью и , которая нам нужна (7). Вычитание дает соs (А + В) (8), поэтому формула, которая нам нужна:
            cos(A + B) = cos A cos B — sin A sin B

Нахождение tan(A + B)

Полный геометрический вывод формулы для tg (A + B) является сложным. Проще всего вывести его из двух формул, которые мы уже сделали. В любом угле, тангенс равен синус, деленному на косинус. Используя тот факт, tan (A + B) = sin(A + B)/соs(A + B). Это выражение можно расширить к виду:
      tan(A + B) = [sin A cos B + cos A sin B]/[cos A cos B — sin A sin B]
Разделив верхнюю и нижнюю часть на cos A cos B, что превращает все члены в тангенсы, получаем:
            tan(A + B) = [tan A + tan B]/[1 — tan A tan B]

Коэффициенты для 75 градусов

Покажем коэффициенты синуса, косинуса и тангенса, подставляя в формулу суммы, и потом упрощая результат к своей простейшей форме, прежде чем находить суммы. После внесения основных замен в каждом конкретном случае, примерная работа в заштрихованной части, чтобы показать, как результат сводится к простейшей форме для оценки.


Если вы используете ваш карманный калькулятор для оценки, скорей всего, не имеет значения или вы упрщаете выражения сначала или просто пропускаете его! Все зависит от калькулятора: некоторые вычисля. т разницу, некоторые нет!

Коэффициенты углов, больших, чем 90 градусов

До сих пор рассматривалось соотношение острых углов (между 0 и 90 градусами). Другие треугольники с тупым углом (более 90 градусов) и до 180 градусов могут появиться в последующих задачах. Для упрощения классификации углов по размеру, они делятся на сектора (квадранты).

Квадрант есть четвертой частью круга. Так как круг делится на 360 градусов, квадранты имеют по 90 градусов. 0-90 градусов это первый квадрант, 90-180 — второй, 180-270 — третий и 270-360 — четвертый.

Используя линии, обозначающие границы квадранта, 0 или 360 это горизонталь направо, 90 — вертикально вверх, 180 — горизонталь слева и 270 сверху вниз. Теперь, используем этот метод для построения графиков.

Большие углы определяется вектором вращения, начиная с нуля и вращением против часовой стрелки. Горизонтальные элементы х: положительные справа, отрицательные слева. Вертикальные элементы у: положительные вверх, отрицательные вниз. Вращающийся вектор является р. Таким образом, синус угла есть y/r, косинус х/r, и тангенс у/х. Вектор r — всегда положителен. Таким образом, знак отношения может быть вычислен для различных секторов.

Здесь приведены знаки для трех отношений в четырех квадрантах. Кроме того, как эквивалентный угол в первой четверти «переключается» когда вектор переходит из одного квадранта в другой. В первой четверти, стороны определены в соотношениях для синуса, косинуса и тангенса. При перемещении к большим углам в остальных секторах, противоположная сторона всегда есть вертикальная (у). То, что называется смежное, всегда есть горизонталью (х). Гипотенуза это всегда вращающийся вектор (r). Вы можете видеть картину как изменяются тригонометрические соотношения для углов.

Отношения в четырех квадрантах

Отношения для различных углов

Теперь у вас есть два пути получить формулы для различных углов. Во-первых, используя геометрическую конструкцию, такую, которая, например, была использована для суммы углов, реверсивную так, что (A — B) есть угол B вычитающийся из угла A.

В рассуждениях, аналогичных тем, которые были использованы для суммы углов, здесь представлены несколько сокращенные формулы для синуса и косинуса:
        sin(A — B) = sin A cos B — cos A sin B
and
        cos(A — B) = cos A cos B + sin A sin B
      Геометрическая конструкция

Формулы суммы и разницы

Второй способ нахождения формулы для разницы углов использует уже полученную формулу суммы, но делает B отрицательным. Из нашего исследования знаков для различных секторов, отрицательные углы с 1-го квадранта будут в 4 квадранте. Проводя эту подстановку, получим тот же результат, который был получен геометрически в предыдущем разделе.

Поиск формулы тангенса проходит тем же методом, или заменой синуса и косинуса в формулах или более непосредственно, превращая tg(-B) = — tg B. В любом случае вы получите:
          tan(A — B) = [tan A — tan B]/[1 + tan A tan B]

Отношения с помощью четырех секторов

Вы можете вывести несколько отношений с формулами суммы и разности. Вы уже сделали соотношение для 75 градусов. Теперь можно выполнить то же для 15 градусов. Эти формулы дают соотношения для углов в 15 градусов интервалы через четыре квадранта. Построив их на 360 градусов, вы можете увидеть, как эти три соотношения изменяются, когда вектор проходит через четыре квадранта.

«Волна» синуса и косинуса колеблется вверх и вниз между +1 и -1. Обратите внимание, что «волны» смещены на 90 градусов друг относительно друга. Этот факт станет важным позже.

Кривая тангенса начинается, как синусоида, но вскоре она стремится достичь бесконечности на 90 градусах. Двигаясь » вне видимости» в положительном направлении, она «приходит» с отрицательного направления с другой стороны на 90 градусах. Проходя через точку в 180 градусов, функция тангенса повторяет то, что она «делала» проходя 0 или 360 градусов. На 270 градусах она повторяет то же, было на 90 градусах.

Пифагор в тригонометрии

Формула часто может быть упрощена, так как были найдены выводы формулы тангенса от формул синуса и косинуса, а также изменение ее членов одного отношения к другому отношению, использeущеuj другие члены. При этом, теорема Пифагора, выраженная в тригонометрическом соотношении, очень удобна.

Предположим, что прямоугольный треугольник имеет гипотенузу длиной 1. Тогда одна из сторон будет иметь длину sinA, а другая — cosA. Отсюда, согласно теореме Пифагора: cos2 A + sin2 A = 1. Это выражение всегда истинно для любого значения A.

Немного о том, как это было записано. Cos2 A означает (cos A)2. Если вы написали это как cos A2, уравнение будет означать что-то другое. A есть число в нескольких угловых значениях, которое представляет угол. A2 было бы то же самое число, возведенное в квадрат. Его значение зависело бы от использованного числового значения, поэтому это не очень хороший член для использования. Это означает квадрат синуса ли косинуса, не сам угол.

Формула Пифагора может быть выражена иначе. Например, две другие формы:
cos2 A = 1 — sin2 A, и sin2 = 1 — cos2 A.

Умножение углов

Формулы сумм, вместе с теоремой Пифагора, используются для углов, которые в 2, 3 или больше раз кратны любым оригинальным углам. Здесь приводятся формулы для 2А и 3А.

Формула суммы работает, когда оба угла одинаковые или различны: sin(A + B) или sin(A + A). Однако, sin(A + A) в действительности sin 2A. Поэтому, sin 2A есть sin A cos A + cos A sin A. Оба члена выражения есть одним и тем же произведением, записанным в разном порядке, так что это выражение может быть упрощено до sin 2A = 2 sin A cos A.

Подобным образом, cos 2A = cos A cos A — sin A sin A, что также может быть записано как: cos 2A = cos2 A — sin2 A. Используя теорему Пифагора, изменяем это к виду: cos 2A = 2cos2 A — 1. Наконец, tg 2A = 2 tg A/[1 — tg2 A].

Теперь тройной угол (3А) используется, чтобы показать, как получены следующие кратные углы. В основном, это так же просто, как запись 3A = 2 + A и повторного применения формулы суммы. Но тогда, чтобы получить в результате формулу в работающем виде, необходимо заменить часть 2А, на выражения с простым углом А.

На рисунках внизу вы можете видеть, что с каждым разом вычисления становятся сложнее.

УМНОЖЕНИЕ УГЛОВ       Производные от формул суммы

УМНОЖЕНИЕ УГЛОВ       Соотношения для 3A

Свойства равнобедренного треугольника

Вы уже видели, что прямоугольный треугольник является полезным строительным блоком для других фигур. Равнобедренный треугольник имеет несколько различных видов использования. Дело в том, что его использование основывается на том, что равнобедренный треугольник имеет две равные стороны и два равные углы между основанием и боковыми равными сторонами. Перпендикуляр из третьего угла на третью сторону делит ее пополам. Таким образом весь треугольник делится на два равных прямоугольных треугольника.

Любой треугольник, за исключением прямоугольного треугольника, можно разделить на три прилегающих равнобедренных треугольника, разделив каждую сторону на две равные части и построить перпендикуляры из точек разделения. Там, где любые два из этих перпендикуляров встречаются, если линии тянутся к углам исходного треугольника, три линии должны быть равны, потому что две из них образуют стороны равностороннего треугольника. Таким образом, перпендикуляр с третьей стороны исходного треугольника должен также встретиться в одной точке.

Это утверждение справедливо, как мы покажем здесь, независимо от того, является ли исходный треугольник острым или тупым. Разница с тупым прямоугольным треугольником в том, что место встречи перпендикуляров лежит снаружи исходного треугольника, а не внутри.

Что происходит в прямоугольном треугольнике? Перпендикуляры от средней точки гипотенузы другой стороны будут делить пополам эти две стороны — вы получаете два из трех! Место встречи находится гипотенузе.

Углы в окружности

Основное свойство окружности это то, что ее центр находится на одинаковом расстоянии от любой точки окружности. Это расстояние есть радиусом окружности.

Если вы нарисуете любой треугольник внутри круга, перпендикуляры из средней точки его сторон встретятся в центре окружности а радиусы из углов треугольника делят его на три равнобедренных треугольника

Теперь, если вы назовете равные пары углов в каждом равнобедренном треугольнике A, A, B, B, C, C, вы обнаружите, что исходный треугольник имеет один угол A+B, один угол B+C, и один угол A+ C. Три угла в сумме дают 2A + 2B + 2С, а это как известно равно 180 градусов.

В любом равнобедренном треугольнике угол при вершине равен 180 градусов минус удвоенный угол при основании. Поэтому, согласно предыдущего пункта, 180 — 2A должен быть такой же, как и 2B + 2С, например.

Рассмотрим угол правый нижний угол, опирающийся на окружность. Угол в центре равен 2B + 2С. Углом, опирающийся на окружность равен B + C. Вы видите, что для любого сегмента круга, угол в центре всегда в два раза больше угла, опирающегося на окружность.

Утверждение выше приводит к интересным фактам об углах в окружностях. Вместо определения углов со стороной треугольника, используют дугу (часть окружности) круга. Часть окружности, которая определяется углом в центре называется хордой окружности.

Угол в центре в два раза больше чем угол на окружности

Любой угол, касающийся окружности, используя хорду как ограничение угла, равен половине угла в центре. Таким образом, все углы в круге, с основанием на той же хорде, должны быть равны. Предположим, что хорда имеет угол 120 градусов. Угол на окружности будет равен 60 градусам.

Особый случай представляет собой полукруг (точный полукруг). Угол в центре представляет собой прямую линию (180 градусов). Каждый угол в полукруге равен 90 градусам (прямой угол). Любой треугольник в полукруге является прямоугольным треугольником.

Определения

Выше мы часто использовали углы, которые дополняют углы до прямого угла (90 градусов) или до двух прямых углов (180 градусов). Когда два угла образовывают угол 180 градусов (два прямых угла), они называются дополнительными. Если два угла добавить до 90 градусов (один прямой угол), их называют комплементарными

Вопросы и задачи

1. Синус угла А равен 0,8 и синус угла B равен 0.6. Из различных зависимостей, полученных до сих пор, найдите следующее: тангенс А, тангенс B, синус (A + B), косинус (A + B), синус (A — B), косинус (A — B), тангенс (А + B) и тангенс (A — B) без использования таблиц или тригонометрических клавиш калькулятора.

2.На экваторе Земля имеет радиус 4000 км. Углы вокруг экватора измеряется в меридианах долготы, с линией с севера на юг проходящей через Гринвич (Англия), в качестве нулевого отсчета. Два места используются для наблюдения за луной: первое это Кения, на экваторе 37,5 к востоку от Гринвича, а другой является Суматра, на экваторе к востоку 100,5. Как далеко друг от друга эти два места, если расстояние измерять мнимой прямой, проходящей через Землю?

3.Если бы наблюдения были сделаны горизонтально от точки наблюдения в вопросе 2 (к востоку от первой, к западу от второй), под каким углом была бы линия пересечения наблюдений?

4.В определенное время, точно синхронизированное в обоих местах, наблюдается спутник. В Кении, высота линии визирования с центром на спутнике составляет 58 градусов выше горизонтали на восток. На Суматре, высота составляет 58 градусов выше горизонтали на запад. Как далеко находится спутник? Используйте расстояние между точками рассчитанное в вопросе 2.

5. Косинус определенного угла в два раза больше синуса того же угла. Чему равен тангенс этого угла? Не используйте таблицы или калькулятор для ответа на этот вопрос.

6. Синус определенного угла равен именно 0.28. Найдите косинус и тангенс этого угла. Не используйте таблицы или калькулятор для ответа на этот вопрос.

7. Синус определенного угла равен 0.6. Найдите синус углов, больших чем заданный в два и три раза.

8. Найдите синус и косинус угла, большего ровно в два раза чем угол из вопроса 7.

9. Используя 15 градусов, как единичный угол, и формулы для отношения 2А и 3А найдите значения синусов 30 и 45 градусов.

10. Используя 30 градусов, как единичный угол, найти значения синусов 60 и 90 градусов.

11. Используя 45 градусов, как единичный угол, найдите значения тангенсов 60 и 90 градусов.

12. Используя 60 градусов, как единичный угол, найдите значения косинусов 120 и 180 градусов.

13. Используя 90 градусов, как единичный угол, найдите значения косинусов 180 и 270 градусов.

14. Используя формулы тангенса для умножения углов и таблицы, найдите тангенсы утроенных углов в 29, 31, 59 и 61 градусов. Посчитайте изменения знака между утроенным углом 29 и 31 градусов и между 59 и 61 градусов.

15. Синус угла составляет 0,96. Найдите синус и косинус удвоенного угла.

16. Задача сводится к алгебраической выражению вида 8cos2 A + cos A = 3. Решите для косинуса А, и укажите, в каком квадранте будет угол, представляющий каждое решение придет. Приведите приближенные значения из таблицы или используя калькулятор.

Тригонометрическая таблица — как создать, формула, примеры и часто задаваемые вопросы °.

Тригонометрическая таблица содержит все шесть тригонометрических соотношений: синус, косинус, тангенс, косеканс, секанс, котангенс. Тригонометрические функции, также известные как гониометрические функции, угловые функции или круговые функции, — это функции, которые устанавливают связь между углом и отношением двух сторон прямоугольного треугольника. Тригонометрические функции полезны для изучения различных типов углов, треугольников и других объектов.

Определение тригонометрической таблицы

Табличное представление значений всех шести тригонометрических функций для их общих углов называется тригонометрической таблицей. Значение различных тригонометрических отношений можно узнать с помощью приведенной ниже таблицы:

 

Тригонометрические функции

Тригонометрия имеет 6 основных тригонометрических функций: синус, косинус, тангенс, косеканс, секанс и котангенс. Теперь давайте рассмотрим тригонометрические функции. Для любого прямоугольного треугольника с перпендикуляром (P), основанием (B) и гипотенузой (H) шесть тригонометрических функций следующие:0007

  • Синус: Определяется как отношение перпендикуляра к гипотенузе и представляется как sin θ
  • Косинус: Определяется как отношение основания к гипотенузе и представляется как cos θ
  • Тангенс: Определяется как отношение синуса и косинуса угла. Таким образом, определение тангенса представляет собой отношение перпендикуляра к основанию и представляется как tan θ
  • Косеканс: Это величина, обратная sin θ, и представляется как cosec θ.
  • Секанс: Это величина, обратная cos θ, обозначается как sec θ.
  • Котангенс: Обратная величина тангенса θ и представлена ​​как cot θ.

Советы по изучению тригонометрических соотношений

Изучите приведенную ниже таблицу, чтобы легко запомнить тригонометрические соотношения.

Некоторые люди имеют вьющиеся черные волосы, чтобы создать красоту0062
cos θ (кудрявый) = основание (черный) / гипотенуза (волосы)
загар θ (к) = перпендикуляр (производство) / основание (красота) 

Как создать тригонометрическую таблицу?

Изучите следующие шаги, чтобы создать тригонометрическую таблицу стандартных углов.

Шаг 1: Создайте таблицу

Создайте таблицу и перечислите все углы, такие как 0°, 30°, 45°, 60° и 90°, в верхней строке. Введите все тригонометрические функции sin, cos, tan, cosec, sec и cot в первый столбец.

Шаг 2: Оцените значение для всех углов функции sin.

Для нахождения значений функции sin разделите 0, 1, 2, 3 и 4 на 4 и возьмите под корень каждого значения соответственно как

Для значения sin 0° = √( 0/4) = 0
Аналогично,
sin 30° = √(1/4) = 1/2
sin 45° = √(2/4) = 1/√2
sin 60° = √(3/ 4) = √3/2
sin 90° = √(4/4) = 1

sin 0° sin 30° sin 45° sin 60° sin 90°
0 1/2 1/√2 90 3 900 0061 1

Шаг 3: Оценить значение для всех углов функции cos

Значение функции cos противоположно значению функции sin, т. е. cos 0° = sin 90°, cos 30° = sin 60° и cos 45° = sin 45°, поэтому

cos 0° cos 30° cos 45° cos 60° cos 90°
1 √1/3/2 9006 062 1/2 0

Шаг 4: Оценка значения для всех углов функции тангенса

Значение функции тангенса равно функции sin, деленной на функцию cos, т. е. tan x = sin x / cos x . Значение всех углов в функции тангенса рассчитывается как

тангенс 0°= sin 0° / cos 0° = 0/1 = 0, аналогично

6
тангенс 0° тангенс 30° тангенс 45° тангенс тангенс
0 1/√3    1    √3 Не определено все углы функции cosec

Значение cosec функция равна обратной функции sin. Значение cosec 0° получается путем взятия обратной величины sin 0°

cosec 0° = 1 / sin 0° = 1 / 0 = не определено. Аналогично,

9005 9058 1 Не определено
коссек 0° коссек 30° коссек 45° коссек 60° коссек 90°
2 √2 2/√ 3 1

Шаг 6: Оценка значения для всех углов функции sec

Значение функции sec равно обратному значению функции cos. Значение sec 0° получается путем взятия обратной величины cos 0°

с 0° = 1 / cos 0° = 1 / 1 = 1. Аналогично,

с 0° с 30° с 45° с 9056
1 2/√3 √2 2 Не определено
9000 Функция детской кроватки

Стоимость детской кроватки функция равна обратной функции тангенса. Значение cot 0° получается путем взятия обратной величины cos 0°

с 0° = 1 / cos 0° = 1 / 1 = 1. Аналогично,

с 0° с 30° с 45° с 9056
1 2/√3 √2 2 Не определено

Полученную тригонометрическую таблицу расположите в тригонометрической таблице.

Формулы таблицы тригонометрии
  • Дополнительные углы: Пара углов, сумма которых равна 90°
  • Дополнительные углы: Пара углов, сумма которых равна 180°

Тождества дополнительных углов
  • 19 с θ
  • cos (90° – θ) = sin θ
  • tan (90° – θ) = cot θ
  • cot (90° – θ) = tan θ
  • сек (90° – θ) = cosec θ
  • cosec (90° – θ) = sec θ
  • Тождества дополнительных углов
    • sin (180° – θ) = sin θ
    • cos (180° – θ) = – cos θ
    • tan (180° – θ) = – tan θ
    • cot (180°) = – cot θ
    • сек (180° – θ) = – сек θ
    • cosec (180° – θ) = – cosec θ

    Тригонометрические тождества

    Тригонометрические тождества – это тождества, которые широко используются при решении тригонометрических задач. проблемы. Существуют различные тригонометрические тождества, но три основных тригонометрических тождества:

    • sin 2 θ + cos 2 θ = 1
    • сек. детская кроватка 2 θ = 1

    Эти три тождества являются наиболее часто используемыми тригонометрическими тождествами, которые широко используются для решения ряда сложных задач.

    Также проверьте
    • Тригонометрические соотношения
    • Обратные тригонометрические тождества
    • Высоты и расстояния

    Решенные примеры по тригонометрии

    Пример 1: Если sin θ = 4/5, то найти все тригонометрические значения.

    Решение:

    Здесь мы имеем

    sin θ = 4/5

    as, sin θ = Перпендикуляр / Гипотенуза

    = 5(H) и (P) = 4

    Итак, по теореме Пифагора H 2 = P 2 +B 2

    Найдем значение основания (B)

    5 2 = В 2 + 4 2
    25 = В 2 + 16
    25 -16 = В 2 = 9 084
    2 903 93
    B = 3

    Теперь у нас есть ,

    Sin θ = Перпендикуляр/Гипотенуза 
             = AB/AC = 4/5

    Косинус θ = Основание/Гипотенуза 
                 = BC/AC = 3/5

    Перпендикуляр 93                  = AB/BC = 4 /3

    Косеканс θ = гипотенуза/перпендикуляр
                                = AC/AB = 5/4

    Секанс θ = Гипотенуза/Основание
                    = AC/BC = 5/3

    Котангенс θ = Основание/Перпендикуляр
                5 0 7 90 = 4/AB/AB

    Пример 2: найти значение cos 45° + 2 sin 60° – тангенс 60°.

    Решение:

    Из таблицы тригонометрии

    cos 45° = 1/√2, sin 60° = √3/2 и tan 60° = √3

    7

    0 Таким образом, ° + 2 sin 60° – tan 60° = 1/√2 + 2(√3/2) – √3
                                                = 1/√2

    Пример 3. Найдите значение cos 75°.

    Решение:

    Мы знаем, что

    cos 75° = cos (45° + 30°)                                                           = cos 45° cos 30° – sin 45° sin 30°
                 = 1/√2 × √3/2 – 1/√2 × 1/2 
                 = (√3 – 1)/2√2

    cos 75° = (√3 – 1)/2√2

    Часто задаваемые вопросы по тригонометрии Таблица

    Вопрос 1: Что такое тригонометрия?

    Ответ:

    Тригонометрия — это раздел математики, изучающий углы и стороны любого треугольника.

    Вопрос 2. Что такое тригонометрическая таблица?

    Ответ:

    Тригонометрическая таблица – это таблица, содержащая значения всех шести тригонометрических функций для обычных углов.

    Вопрос 3: Что такое стандартные углы в тригонометрической таблице?

    Ответ:

    В тригонометрической таблице стандартными углами являются 0°, 30°, 45°, 60° и 90°

    Вопрос 4: Каково значение тангенса 45 градусов?

    Ответ:

    Значение тангенса 45 градусов равно 1.

    Вопрос 5: Как выучить таблицы тригонометрии?

    Ответ:

    Трюк для изучения тригонометрической таблицы,

    • Вы должны узнать все значения всех углов функции sin.
    • Значение всех углов функции cos является зеркальным отображением функции sin.
    • Значения функции тангенса можно рассчитать, разделив функцию sin на функцию cos.
    • Значение функции cosec обратно пропорционально sin.
    • Точно так же функции sec и cot обратны функциям cos и cot.

    Значение sin, cos, tan, cot в 0, 30, 45, 60, 90

    Последнее обновление Teachoo 16 марта 2023 г.

    Каково значение sin 30?

    А как насчет cos 0?

    а грех 0?

    Как мы их запоминаем?

    Давайте узнаем, как. Мы обсудим, каковы различные значения sin, cos, tan, cosec, sec, кроватка в 0, 30, 45, 60 и 90 градусов и как их запомнить.

    Итак, мы должны заполнить эту таблицу


    Как найти значения?

    Чтобы выучить таблицу, мы должны сначала знать, как грех, потому что загар относятся к

    Мы знаем это

    • тангенс θ = грех θ/cosθ
    • сек θ = 1 / cos θ
    • cosec θ = 1/sin θ
    • детская кроватка θ = 1/детская кроватка θ

    Теперь давайте обсудим различные значения

    За грех

    Для запоминания sin 0°, sin 30°, sin 45°, sin 60° и sin 90°

    Мы должны научиться этому, как

    1. грех 0° = 0
    2. sin 30° = 1/2
    3. грех 45° = 1/√2
    4. sin 60° = √3/2
    5. sin 90° = 1

    Итак, наш узор будет таким

    0, 1/2, 1/√2, √3/2, 1


    Для cos

    Для запоминания cos 0°, cos 30°, cos 45°, cos 60° и cos 90°

    Кос — это противоположность греху.

    Мы должны научиться этому, как

    1. cos 0° = sin 90° = 1
    2. cos 30° = sin 60° = √3/2
    3. cos 45° = sin 45° = 1/√2
    4. cos 60° = sin 30° = 1/2
    5. cos 90° = sin 0° = 0

    Итак, для cos это будет похоже на

    1, √3/2, 1/√2, 1/2, 0

    -объявление-


    Для загара

    Мы знаем, что tan θ = sin θ / cos θ

    Итак, это будет

    • тангенс 0° = sin 0° / cos 0° = 0/1 = 0
    • tan 30° = sin 30° / cos 30° = (1/2)/(√3/2) = 1/√3
    • tan 45° = sin 45° / cos 45° = (1/√2)/ (1/√2) = 1
    • tan 60° = sin 60° / cos 60° = (√3/2) / (1/2) = √3
    • тангенс 90° = грех 90° / cos 90° = 1/0 = не определено =

    Итак, для загара это

    0, 1/√3, 1, √3, ∞

    -объявление-


    Для cosec

    Мы знаем это

    cosec θ = 1/sin θ

    За грех, мы знаем

    0, 1/2, 1/√2, √3/2, 1

    Итак, для cosec будет

    • cosec 0° = 1 / sin 0° = 1/0 = не определено =
    • cosec 30° = 1 / sin 40° = 1/(1/2) = 2
    • cosec 45° = 1 / sin 45° = 1/(1/√2) = √2
    • cosec 60° = 1 / sin 60° = 1/(√3/2) = 2/√3
    • cosec 90° = 1 / sin 90° = 1/1 = 1

    Итак, для cosec это

    ∞, 2, √2, 2/√3, 1

    -объявление-


    За сек

    Мы знаем это

    сек θ = 1 / cos θ

    Потому что мы знаем

    1, √3/2, 1/√2, 1/2, 0

    Значит, за сек будет

    • сек 0° = 1 / cos 0° = 1/1 = 1
    • сек 30° = 1 / cos 40° = 1/(√3/2) = 2/√3
    • сек 45° = 1 / cos 45° = 1/(1/√2) = √2
    • сек 60° = 1 / cos 60° = 1/(1/2) = 2
    • сек 90° = 1 / cos 90° = 1/0 = не определено =

    Итак, на секундочку, это

    1, 2/√3, √2, 2,

    -объявление-


    Для детской кроватки

    Мы знаем это

    раскладушка θ = 1/тангенс θ

    Для загара мы знаем, что

    0, 1/√3, 1, √3, ∞

    Итак, для детской кроватки будет

    • кроватка 0° = 1 / загар 0° = 1/0 = не определено =
    • кроватка 30° = 1 / загар 30° = 1/(1/√3) = √3
    • кроватка 45° = 1 / загар 45° = 1/1 = 1
    • кроватка 60° = 1 / тангенс 60° = 1/√3
    • кроватка 90° = 1 / тангенс 90° = 1/∞ = 0

    Итак, для детской кроватки

    ∞, √3, 1, 1/√3, 0

    -объявление-

    Итак, наша полная таблица выглядит так

    Вы также можете практиковать вопросы, нажав Следующий.


    Тригонометрическая таблица

    Тригонометрическая таблица содержит все значения sin, cos, tan для всех углов от 0 до 90 градусов.

    Вы также можете скачать его ниже

    Радиан Степень Синус Косинус Тангенс Радиан Степень Синус Косинус Тангенс
    0,000 0 0,000 1.000 0,000 0,803 46 0,719 0,695 1,036
    0,017 1 0,017 1.000 0,017 0,820 47 0,731 0,682 1,072
    0,035 2 0,035 0,999 0,035 0,838 48 0,743 0,669 1. 111
    0,052 3 0,052 0,999 0,052 0,855 49 0,755 0,656 1.150
    0,070 4 0,070 0,998 0,070 0,873 50 0,766 0,643 1.192
    0,087 5 0,087 0,996 0,087 0,890 51 0,777 0,629 1,235
    0,105 6 0,105 0,995 0,105 0,908 52 0,788 0,616 1. 280
    0,122 7 0,122 0,993 0,123 0,925 53 0,799 0,602 1,327
    0,140 8 0,139 0,990 0,141 0,942 54 0,809 0,588 1,376
    0,157 9 0,156 0,988 0,158 0,960 55 0,819 0,574 1,428
    0,175 10 0,174 0,985 0,176 0,977 56 0,829 0,559 1,483
    0,192 11 0,191 0,982 0,194 0,995 57 0,839 0,545 1. 540
    0,209 12 0,208 0,978 0,213 1,012 58 0,848 0,530 1.600
    0,227 13 0,225 0,974 0,231 1.030 59 0,857 0,515 1,664
    0,244 14 0,242 0,970 0,249 1,047 60 0,866 0,500 1,732
    0,262 15 0,259 0,966 0,268 1,065 61 0,875 0,485 1. 804
    0,279 16 0,276 0,961 0,287 1,082 62 0,883 0,469 1,881
    0,297 17 0,292 0,956 0,306 1.100 63 0,891 0,454 1,963
    0,314 18 0,309 0,951 0,325 1,117 64 0,899 0,438 2.050
    0,332 19 0,326 0,946 0,344 1,134 65 0,906 0,423 2,145
    0,349 20 0,342 0,940 0,364 1,152 66 0,914 0,407 2,246
    0,367 21 0,358 0,934 0,384 1,169 67 0,921 0,391 2,356
    0,384 22 0,375 0,927 0,404 1,187 68 0,927 0,375 2,475
    0,401 23 0,391 0,921 0,424 1. 204 69 0,934 0,358 2.605
    0,419 24 0,407 0,914 0,445 1,222 70 0,940 0,342 2,747
    0,436 25 0,423 0,906 0,466 1,239 71 0,946 0,326 2.904
    0,454 26 0,438 0,899 0,488 1,257 72 0,951 0,309 3.078
    0,471 27 0,454 0,891 0,510 1,274 73 0,956 0,292 3. 271
    0,489 28 0,469 0,883 0,532 1,292 74 0,961 0,276 3.487
    0,506 29 0,485 0,875 0,554 1.309 75 0,966 0,259 3,732
    0,524 30 0,500 0,866 0,577 1,326 76 0,970 0,242 4.011
    0,541 31 0,515 0,857 0,601 1,344 77 0,974 0,225 4. 331
    0,559 32 0,530 0,848 0,625 1,361 78 0,978 0,208 4.705
    0,576 33 0,545 0,839 0,649 1,379 79 0,982 0,191 5.145
    0,593 34 0,559 0,829 0,675 1,396 80 0,985 0,174 5.671
    0,611 35 0,574 0,819 0,700 1,414 81 0,988 0,156 6. 314
    0,628 36 0,588 0,809 0,727 1,431 82 0,990 0,139 7.115
    0,646 37 0,602 0,799 0,754 1,449 83 0,993 0,122 8.144
    0,663 38 0,616 0,788 0,781 1,466 84 0,995 0,105 9.514
    0,681 39 0,629 0,777 0,810 1,484 85 0,996 0,087 11. 430
    0,698 40 0,643 0,766 0,839 1.501 86 0,998 0,070 14.301
    0,716 41 0,656 0,755 0,869 1,518 87 0,999 0,052 19.081
    0,733 42 0,669 0,743 0,900 1,536 88 0,999 0,035 28.636
    0,750 43 0,682 0,731 0,933 1,553 89 1.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    © 2015 - 2019 Муниципальное казённое общеобразовательное учреждение «Таловская средняя школа»

    Карта сайта