Как бы не совершенствовалась вычислительная техника, определение синусов, косинусов, тангенсов и котангенсов с помощью таблицы Брадиса будет всегда актуально.
Таблица Брадиса создана выдающимся педагогом-математиком Владимиром Модестовичем Брадисом. Чтобы вы научились пользоваться таблицами Брадиса, которые представлены ниже, рекомендуем сначала прочесть инструкцию.
Таблица брадиса — инструкция
- Возьмите саму таблицу Брадиса. Если у вас нет её в напечатанной виде, то воспользуйтесь нашими таблицами брадиса. Откройте соответствующую главу: тангенсы-котангенсы или синусы-косинусы. Для примера возьмем синус.
- Убедитесь, какой угол нужен Вам для решения задачи. Таблицу Брадиса можно и без проблем применить в том разе, даже когда угол является дробным, то есть его расчет происходит в градусах и минутах. Если величина угла подаётся в радианах, преобразуйте её значения в градусы. Оно будет равняться произведению размера ( считают в радианах) , помноженному на отношение 180-ти градусов на значение π и подаётся общей формулой, а именно : α
- В таблице Брадиса, Вам будут видны некие рядки, которые будут находиться и по горизонтали, и по вертикали. Обратите внимание на самый крайний ряд, находящийся слева. Вверху левого угла находится слово sin, а под ним расположился столбец из цифр с наименованием градуса. Это целая величина градусов. Отыщите число, которое будет напрямую соответствовать величине целых градусов в уже заданном Вами угле. К примеру, вам дан в задании угол равный 27°18′. Обратите внимание, что в крайнем левом столбце имеется число 27. Потом в самой верхней строчку отыщите число 18. На перекрёстке строчки и столбика Вы сможете увидеть нужное для Вас значение.
- Сделайте акцент на то, что градусы в таблице Брадиса идут между собой подряд, а минуты чередуются через шесть. К примеру, 18 минут в таблице подаваться будут, а 19 найти Вы уже не сможете . Чтобы высчитать синус нужного угла, величину минут которого непосредственно не будет кратно 6ти, применяются некие поправки. Они расположились в правой части таблицы. Посчитайте разницу между количеством заданных минут в нужном угле и самом ближайшем угле, где величина минут будет кратна 6ти. Если это различие будет составлять приблизительно 1, 2, 3 минуты, то Вы просто добавьте требуемое значение к конечной цифре величины синуса самого малого угла. Если разность будит близиться к 4 или 5, возьмите величину самого близкого большого угла и вычтите от конечного числа величину первой или второй поправки.
Таблица Брадиса: Косинусы-синусы
Таблица Брадиса: тангенсы — котангенсы
tg и ctg больших углов
tg и ctg малых углов
Если по пользованию таблицами Брадиса у вас возникли какие то вопросы, то пишите их в комментариях.
Спасибо за пользование нашим сервисом.
Москвичей возможно заинтересует — дистанционное образование в москве. Учиться дистанционно — шикарная возможность стать свободнее уже сейчас.
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
Тригонометрическая таблица
В статье, мы полностью разберемся, как выглядит таблица тригонометрических значений, синуса, косинуса, тангенса и котангенса . Рассмотрим основное значение тригонометрических функций, от угла в 0,30,45,60,90,…,360 градусов. И посмотрим как пользоваться данными таблицами в вычислении значения тригонометрических функций.
sin 00=0, cos 00 = 1. tg 00 = 0, котангенс от 00 будет неопределенным
sin 900 = 1, cos 900 =0, ctg900 = 0,тангенс от 900 будет неопределенным
Если взять прямоугольные треугольники углы которых от 30 до 90 градусов. Получим:
sin 300 = 1/2, cos 300 = √3/2, tg 300 = √3/3, ctg 300 = √3
sin 450 = √2/2, cos 450 = √2/2, tg 450= 1, ctg 450 = 1
sin 600 = √3/2, cos 600 = 1/2, tg 600 =√3 , ctg 600 = √3/3
Изобразим все полученные значения в виде тригонометрической таблицы
:Таблица синусов, косинусов, тангенсов и котангенсов!
Если использовать формулу приведения, наша таблица увеличится, добавятся значения для углов до 360 градусов. Выглядеть она будет как:
Так же исходя из свойств периодичности таблицу можно увеличить, если заменим углы на 00+3600*z …. 3300+3600*z, в котором z является целым числом. В данной таблице возможно вычислить значение всех углов, соответствующими точками в единой окружности.
Разберем наглядно как использовать таблицу в решении.
Все очень прост. Так как нужное нам значение лежит в точке пересечения нужных нам ячеек. К примеру возьмем cos угла 60 градусов, в таблице это будет выглядеть как:
В итоговой таблице основных значений тригонометрических функций, действуем так же. Но в данной таблице возможно узнать сколько составит тангенс от угла в 1020 градусов, он = -√3 Проверим 10200 = 3000+3600*2. Найдем по таблице.
Для более поиска тригонометрических значений углов с точностью до минут используются таблицы Брадиса. Подробная инструкция как ими пользоваться на странице по ссылке.
Таблица Брадиса. Для синуса, косинуса, тангенса и котангенса.
Таблицы Брадиса поделены на несколько частей, состоят из таблиц косинуса и синуса, тангенса и котангенса — которая поделена на две части (tg угла до 90 градусов и ctg малых углов).
Синус и косинус
tg угла начиная с 00 заканчивая 760, ctg угла начиная с 140 заканчивая 900.
tg до 900 и ctg малых углов.
Разберемся как пользоваться таблицами Брадиса в решении задач.
Найдем обозначение sin (обозначение в столбце с левого края) 42 минут (обозначение находится на верхней строчке). Путем пересечения ищем обозначение, оно = 0,3040.
Величины минут указаны с промежутком в шесть минут, как быть если нужное нам значение попадет именно в этот промежуток. Возьмем 44 минуты, а в таблице есть только 42. Берем за основу 42 и воспользуемся добавочными столбцами в правой стороне, берем 2 поправку и добавляем к 0,3040 + 0,0006 получаем 0,3046.
При sin 47 мин, берем за основу 48 мин и отнимаем от нее 1 поправку, т.е 0,3057 — 0,0003 = 0,3054
При вычислении cos работаем аналогично sin только за основу берем нижнюю строку таблицы. К примеру cos 200 = 0.9397
Значения tg угла до 900 и cot малого угла, верны и поправок в них нет. К примеру, найти tg 78 0 37мин = 4,967
а ctg 200 13мин = 25,83
Ну вот мы и рассмотрели основные тригонометрические таблицы. Надеемся это информация была для вас крайне полезной. Свои вопросы по таблицам, если они появились, обязательно пишите в комментариях!
Заметка: Стеновые отбойники — отбойная доска для защиты стен (http://www.spi-polymer.ru/otboyniki/)
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
Таблица Брадиса, с примерами
Правила пользования таблицами: таблицы дают значения синусов (косинусов) любого острого угла, содержащего целое число градусов и десятых долей градуса, на пересечении строки, имеющей в заголовке слева (справа) соответствующее число градусов, и столбца, имеющего в заголовке сверху (снизу) соответствующее число минут.
Тригонометрические функции sin x и cos x от аргумента в градусах
Таблица Брадиса тригонометрические функции tg x, ctg x от аргумента в градусах
Таблица Брадиса – тангенсы углов, близких к 90°, котангенсы малых углов
Тригонометрические функции от аргумента в радианах
Примеры решения задач
Если же нужно найти значение угла, которого нет в таблице, то выбирается наиболее близкое к нему значение, а на разницу берется поправочное значение из столбца поправок справа (возможная разница – 1′, 2′, 3′).
Замечание. Для косинусов поправка имеет отрицательный знак.
Эти правила справедливы и для нахождения значений тангенсов и котангенсов углов.
Понравился сайт? Расскажи друзьям! | |||
Синус Косинус — Таблица Брадиса №8 (находить угол)
Таблица Брадиса — синусы и косинусы даёт значение синуса любого острого угла, содержащего целое число градусов и десятых долей градуса, на пересечении строки, имеющей в заголовке (слева) соответствующее число градусов, и столбца, имеющего в заголовке (сверху) соответствующее число минут. Так, sin 70°30’=0,9426. Для получения синусов прочих углов нужна интерполяция, вводящая поправку на разность между данным углом и ближайшим табличным. Эта поправка берётся из соответствующего столбца поправок справа (курсив). Она прибавляется к ближайшему меньшему значению синуса, если данный угол превосходит ближайший меньший табличный на 1, 2, 3 минуты, и отнимается от ближайшего большего табличного синуса в остальных случаях. Например, sin 70°32’=0,9428, так как 9426+2=9428, и sin 70°34’=0,9430, так как 9432-2 = 9430. Эта же таблица Брадиса служит для разыскания косинусов, причём надо пользоваться нумерацией градусов справа, нумерацией минут снизу, и не забывать, что при возрастании острого угла его косинус убывает. Подыскание косинусов можно устранить, заменяя их синусами дополнительных углов.
Таблица Брадиса 8 и таблица брадиса 9 — тангенсы и котангенсы позволяют решать и обратный вопрос, то-есть находить острый угол по данному значению его синуса или тангенса
Читайте также — как пользоваться таблицами Брадиса
Смотрите — все таблицы Брадиса
Таблица Брадиса 8 — cинусы и косинусы
СИНУСЫ | |||||||||||||||
А | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
0,0000 | 90° | ||||||||||||||
0° | 0,0000 | 0017 | 0035 | 0052 | 0070 | 0087 | 0105 | 0122 | 0140 | 0157 | 0175 | 89° | 3 | 6 | 9 |
1° | 0175 | 0192 | 0209 | 0227 | 0244 | 0262 | 0279 | 0297 | 0314 | 0332 | 0349 | 88° | 3 | 6 | 9 |
2° | 0349 | 0366 | 0384 | 0401 | 0419 | 0436 | 0454 | 0471 | 0488 | 0506 | 0523 | 87° | 3 | 6 | 9 |
3° | 0523 | 0541 | 0558 | 0576 | 0593 | 0610 | 0628 | 0645 | 0663 | 0680 | 0698 | 86° | 3 | 6 | 9 |
4° | 0698 | 0715 | 0732 | 0750 | 0767 | 0785 | 0802 | 0819 | 0837 | 0854 | 0,0872 | 85° | 3 | 6 | 9 |
5° | 0,0872 | 0889 | 0906 | 0924 | 0941 | 0958 | 0976 | 0993 | 1011 | 1028 | 1045 | 84° | 3 | 6 | 9 |
6° | 1045 | 1063 | 1080 | 1097 | 1115 | 1132 | 1149 | 1167 | 1184 | 1201 | 1219 | 83° | 3 | 6 | 9 |
7° | 1219 | 1236 | 1253 | 1271 | 1288 | 1305 | 1323 | 1340 | 1357 | 1374 | 1392 | 32° | 3 | 6 | 9 |
8° | 1392 | 1409 | 1426 | 1444 | 1461 | 1478 | 1495 | 1513 | 1530 | 1547 | 1564 | 81° | 3 | 6 | 9 |
9° | 1564 | 1582 | 1599 | 1616 | 1633 | 1650 | 1668 | 1685 | 1702 | 1719 | 0,1736 | 80° | 3 | 6 | 9 |
10° | 0,1736 | 1754 | 1771 | 1788 | 1805 | 1822 | 1840 | 1857 | 1874 | 1891 | 1908 | 79° | 3 | 6 | 9 |
11° | 1908 | 1925 | 1942 | 1959 | 1977 | 1994 | 2011 | 2028 | 2045 | 2062 | 2079 | 78° | 3 | 6 | 9 |
12° | 2079 | 2096 | 2113 | 2130 | 2147 | 2164 | 2181 | 2198 | 2215 | 2233 | 2250 | 77° | 3 | 6 | 9 |
13° | 2250 | 2267 | 2284 | 2300 | 2317 | 2334 | 2351 | 2368 | 2385 | 2402 | 2419 | 76° | 3 | 6 | 8 |
14° | 2419 | 2436 | 2453 | 2470 | 2487 | 2504 | 2521 | 2538 | 2554 | 2571 | 0,2588 | 75° | 3 | 6 | 8 |
15° | 0,2588 | 2605 | 2622 | 2639 | 2656 | 2672 | 2689 | 2706 | 2723 | 2740 | 2756 | 74° | 3 | 6 | 8 |
16° | 2756 | 2773 | 2790 | 2807 | 2823 | 2840 | 2857 | 2874 | 2890 | 2907 | 2924 | 73° | 3 | 6 | 8 |
17° | 2924 | 2940 | 2957 | 2974 | 2990 | 3007 | 3024 | 3040 | 3057 | 3074 | 3030 | 72° | 3 | 6 | 8 |
18° | 3090 | 3107 | 3123 | 3140 | 3156 | 3173 | 3190 | 3206 | 3223 | 3239 | 3256 | 71° | 3 | 6 | 8 |
19° | 3256 | 3272 | 3289 | 3305 | 3322 | 3338 | 3355 | 3371 | 3387 | 3404 | 0,3420 | 70° | 3 | 5 | 8 |
20° | 0,3420 | 3437 | 3453 | 3469 | 3486 | 3502 | 3518 | 3535 | 3551 | 3567 | 3584 | 69° | 3 | 5 | 8 |
21° | 3584 | 3600 | 3616 | 3633 | 3649 | 3665 | 3681 | 3697 | 3714 | 3730 | 3746 | 68° | 3 | 5 | 8 |
22° | 3746 | 3762 | 3778 | 3795 | 3811 | 3827 | 3843 | 3859 | 3875 | 3891 | 3907 | 67° | 3 | 5 | 8 |
23° | 3907 | 3923 | 3939 | 3955 | 3971 | 3987 | 4003 | 4019 | 4035 | 4051 | 4067 | 66° | 3 | 5 | 8 |
24° | 4067 | 4083 | 4099 | 4115 | 4131 | 4147 | 4163 | 4179 | 4195 | 4210 | 0,4226 | 65° | 3 | 5 | 8 |
25° | 0,4226 | 4242 | 4258 | 4274 | 4289 | 4305 | 4321 | 4337 | 4352 | 4368 | 4384 | 64° | 3 | 5 | 8 |
26° | 4384 | 4399 | 4415 | 4431 | 4446 | 4462 | 4478 | 4493 | 4509 | 4524 | 4540 | 63° | 3 | 5 | 8 |
27° | 4540 | 4555 | 4571 | 4586 | 4602 | 4617 | 4633 | 4648 | 4664 | 4679 | 4695 | 62° | 3 | 5 | 8 |
28° | 4695 | 4710 | 4726 | 4741 | 4756 | 4772 | 4787 | 4802 | 4818 | 4833 | 4848 | 61° | 3 | 5 | 8 |
29° | 4848 | 4863 | 4879 | 4894 | 4909 | 4924 | 4939 | 4955 | 4970 | 4985 | 0,5000 | 60° | 3 | 5 | 8 |
30° | 0,5000 | 5015 | 5030 | 5045 | 5060 | 5075 | 5090 | 5105 | 5120 | 5135 | 5150 | 59° | 3 | 5 | 8 |
31° | 5150 | 5165 | 5180 | 5195 | 5210 | 5225 | 5240 | 5255 | 5270 | 5284 | 5299 | 58° | 2 | 5 | 7 |
32° | 5299 | 5314 | 5329 | 5344 | 5358 | 5373 | 5388 | 5402 | 5417 | 5432 | 5446 | 57° | 2 | 5 | 7 |
33° | 5446 | 5461 | 5476 | 5490 | 5505 | 5519 | 5534 | 5548 | 5563 | 5577 | 5592 | 56° | 2 | 5 | 7 |
34° | 5592 | 5606 | 5621 | 5635 | 5650 | 5664 | 5678 | 5693 | 5707 | 5721 | 0,5736 | 55° | 2 | 5 | 7 |
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | А | 1′ | 2′ | 3′ | |
КОСИНУСЫ |
СИНУСЫ | |||||||||||||||
A | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
35° | 0,5736 | 5750 | 5764 | 5779 | 5793 | 5807 | 5821 | 5835 | 5850 | 5864 | 0,5878 | 54° | 2 | 5 | 7 |
36° | 5878 | 5892 | 5906 | 5920 | 5934 | 5948 | 5962 | 5976 | 5990 | 6004 | 6018 | 53° | 2 | 5 | 7 |
37° | 6018 | 6032 | 6046 | 6060 | 6074 | 6088 | 6101 | 6115 | 6129 | 6143 | 6157 | 32° | 2 | 5 | 7 |
38° | 6157 | 6170 | 6184 | 6198 | 6211 | 6225 | 6239 | 6252 | 6266 | 6280 | 6293 | 51° | 2 | 5 | 7 |
39° | 6293 | 6307 | 6320 | 6334 | 6347 | 6361 | 6374 | 6388 | 6401 | 6414 | 0,6428 | 30° | 2 | 4 | 7 |
40° | 0,6428 | 6441 | 6455 | 6468 | 6481 | 6494 | 6508 | 6521 | 6534 | 6547 | 6561 | 49° | 2 | 4 | 7 |
41° | 6561 | 6574 | 6587 | 6600 | 6613 | 6626 | 6639 | 6652 | 6665 | 6678 | 6691 | 48° | 2 | 4 | 7 |
42° | 6691 | 6704 | 6717 | 6730 | 6743 | 6756 | 6769 | 6782 | 6794 | 6807 | 6820 | 47° | 2 | 4 | 6 |
43° | 6820 | 6833 | 6845 | 6858 | 6871 | 6884 | 6896 | 6909 | 6921 | 6934 | 6947 | 46° | 2 | 4 | 6 |
44° | 6947 | 6959 | 6972 | 6984 | 6997 | 7009 | 7022 | 7034 | 7046 | 7059 | 0,7071 | 45° | 2 | 4 | 6 |
45° | 0,7071 | 7083 | 7096 | 7108 | 7120 | 7133 | 7145 | 7157 | 7169 | 7181 | 7193 | 44° | 2 | 4 | 6 |
46° | 7193 | 7206 | 7218 | 7230 | 7242 | 7254 | 7266 | 7278 | 7290 | 7302 | 7314 | 43° | 2 | 4 | 6 |
47° | 7314 | 7325 | 7337 | 7349 | 7361 | 7373 | 7385 | 7396 | 7408 | 7420 | 7431 | 42° | 2 | 4 | 6 |
48° | 7431 | 7443 | 7455 | 7466 | 7478 | 7490 | 7501 | 7513 | 7524 | 7536 | 7547 | 41° | 2 | 4 | 6 |
49° | 7547 | 7559 | 7570 | 7581 | 7593 | 7604 | 7615 | 7627 | 7638 | 7649 | 0,7660 | 40° | 2 | 4 | 6 |
50° | 0,7660 | 7672 | 7683 | 7694 | 7705 | 7716 | 7727 | 7738 | 7749 | 7760 | 7771 | 39° | 2 | 4 | 6 |
51° | 7771 | 7782 | 7793 | 7804 | 7815 | 7826 | 7837 | 7848 | 7859 | 7869 | 7880 | 38° | 2 | 4 | 5 |
52° | 7880 | 7891 | 7902 | 7912 | 7923 | 7934 | 7944 | 7955 | 7965 | 7976 | 7986 | 37° | 2 | 4 | 5 |
53° | 7986 | 7997 | 8007 | 8018 | 8028 | 8039 | 8049 | 8059 | 8070 | 8080 | 8090 | 36° | 2 | 3 | 5 |
34° | 8090 | 8100 | 8111 | 8121 | 8131 | 8141 | 8151 | 8161 | 8171 | 8181 | 0,8192 | 35° | 2 | 3 | 5 |
55° | 0,8192 | 8202 | 8211 | 8221 | 8231 | 8241 | 8251 | 8261 | 8271 | 8281 | 8290 | 34° | 2 | 3 | 5 |
56° | 8290 | 8300 | 8310 | 8320 | 8329 | 8339 | 8348 | 8358 | 8368 | 8377 | 8387 | 33° | 2 | 3 | 5 |
57° | 8387 | 8396 | 8406 | 8415 | 8425 | 8434 | 8443 | 8453 | 8462 | 8471 | 8480 | 32° | 2 | 3 | 5 |
58° | 8480 | 8490 | 8499 | 8508 | 8517 | 8526 | 8536 | 8545 | 8554 | 8563 | 8572 | 31° | 2 | 3 | 5 |
59° | 8572 | 8581 | 8590 | 8599 | 8607 | 8616 | 8625 | 8634 | 8643 | 8652 | 0,8660 | 30° | 1 | 3 | 4 |
60° | 0,8660 | 8669 | 8678 | 8686 | 8695 | 8704 | 8712 | 8721 | 8729 | 8738 | 8746 | 29° | 1 | 3 | 4 |
61° | 8746 | 8755. | 8763 | 8771 | 8780 | 8788 | 8796 | 8805 | 8813 | 8821 | 8829 | 28° | 1 | 3 | 4 |
62° | 8829 | 8838 | 8846 | 8854 | 8862 | 8870 | 8878 | 8886 | 8894 | 8902 | 8910 | 27° | 1 | 3 | 4 |
63° | 8910 | 8918 | 8926 | 8934 | 8942 | 8949 | 8957 | 8965 | 8973 | 8980 | 8988 | 26° | 1 | 3 | 4 |
64° | 8988 | 8996 | 9003 | 9011 | 9018 | 9026 | 9033 | 9041 | 9048 | 9056 | 0,9063 | 25° | 1 | 3 | 4 |
65° | 0,9063 | 9070 | 9078 | 9085 | 9092 | 9100 | 9107 | 9114 | 9121 | 9128 | 9135 | 24° | 1 | 2 | 4 |
66° | 9135 | 9143 | 9150 | 9157 | 9164 | 9171 | 9178 | 9184 | 9191 | 9198 | 9205 | 23° | 1 | 2 | 3 |
67° | 9205 | 9212 | 9219 | 9225 | 9232 | 9239 | 9245 | 9252 | 9259 | 9265 | 9272 | 22° | I | 2 | 3 |
68° | 9272 | 9278 | 9285 | 9291 | 9298 | 9304 | 9311 | 9317 | 9323 | 9330 | 9336 | 21° | 1 | 2 | 3 |
69° | 9336 | 9342 | 9348 | 9354 | 9361 | 9367 | 9373 | 9379 | 9385 | 9391 | 0,9397 | 20° | 1 | 2 | 3 |
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | А | 1′ | 2′ | 3′ | |
КОСИНУСЫ |
СИНУСЫ | |||||||||||||||
А | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
70° | 0,9397 | 9403 | 9409 | 9415 | 9421 | 9426 | 9432 | 9438 | 9444 | 9449 | 0,9455 | 19° | 1 | 2 | 3 |
71° | 9455 | 9461 | 9466 | 9472 | 9478 | 9483 | 9489 | 9494 | 9500 | 9505 | 9511 | 18° | 1 | 2 | 3 |
72° | 9511 | 9516 | 9521 | 9527 | 9532 | 9537 | 9542 | 9548 | 9553 | 9558 | 9563 | 17° | 1 | 2 | 3 |
73° | 9563 | 9568 | 9573 | 9578 | 9583 | 9588 | 9593 | 9598 | 9603 | 9608 | 9613 | 16° | 1 | 2 | 2 |
74° | 9613 | 9617 | 9622 | 9627 | 9632 | 9636 | 9641 | 9646 | 9650 | 9655 | 0,9659 | 15° | 1 | 2 | 2 |
75° | 0,9659 | 9664 | 9668 | 9673 | 9677 | 9681 | 9686 | 9690 | 9694 | 9699 | 9703 | 14° | 1 | 1 | 2 |
76° | 9703 | 9707 | 9711 | 9715 | 9720 | 9724 | 9728 | 9732 | 9736 | 9740 | 9744 | 13° | 1 | 1 | 2 |
77° | 9744 | 9748 | 9751 | 9755 | 9759 | 9763 | 9767 | 9770 | 9774 | 9778 | 9781 | 12° | 1 | 1 | 2 |
78° | 9781 | 9785 | 9789 | 9792 | 9796 | 9799 | 9803 | 9806 | 9810 | 9813 | 9816 | 11° | 1 | 1 | 2 |
79° | 9816 | 9820 | 9823 | 9826 | 9829 | 9833 | 9836 | 9839 | 9842 | 9845 | 0,9848 | 10° | 1 | 1 | 2 |
80° | 0,9848 | 9851 | 9854 | 9857 | 9860 | 9863 | 9866 | 9869 | 9871 | 9874 | 9877 | 9° | 0 | 1 | 1 |
81° | 9877 | 9880 | 9882 | 9885 | 9888 | 9890 | 9893 | 9895 | 9898 | 9900 | 9903 | 8° | 0 | 1 | 1 |
82° | 9903 | 9905 | 9907 | 9910 | 9912 | 9914 | 9917 | 9919 | 9921 | 9923 | 9925 | 7° | 0 | 1 | 1 |
83° | 9925 | 9928 | 9930 | 9932 | 9934 | 9936 | 9938 | 9940 | 9942 | 9943 | 9945 | 6° | 0 | 1 | 1 |
84° | 9945 | 9947 | 9949 | 9951 | 9952 | 9954 | 9956 | 9957 | 9959 | 9960 | 0,9962 | 5° | 0 | 1 | 1 |
85° | 0,9962 | 9963 | 9965 | 9Г66 | 9968 | 9969 | 9971 | 9972 | 9973 | 9974 | 9976 | 4° | 0 | 0 | 1 |
86° | 9976 | 9977 | 9978 | 9979 | 9980 | 9981 | 9982 | 9983 | 9984 | 9985 | 9986 | 3° | 0 | 0 | 0 |
87° | 9986 | 9987 | 9988 | 9989 | 9990 | 9990 | 9991 | 9992 | 9993 | 9993 | 9994 | 2° | 0 | 0 | 0 |
88° | 9994 | 9995 | 9995 | 9S96 | 9996 | 9997 | 9997 | 9997 | 9998 | 9998 | 0,9998 | 1° | 0 | 0 | 0 |
89° | 9998 | 9999 | 9999 | 9999 | 9999 | 0000 | 0000 | 0000 | 0000 | 0000 | 1,0000 | 0° | 0 | 0 | 0 |
90° | 1.0000 | ||||||||||||||
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | А | 1′ | 2′ | 3′ | |
КОСИНУСЫ |
Ниже вы можете скачать таблицу Брадиса — синусы и косинусы в виде изображений
_______________
Источник информации: Брадис В.М. Четырехзначные математические таблицы: Для средней школы. / В.М. Брадис . — 57-е изд., — М.: Просвещение, 1990.
Техническая информация тут | Адрес этой страницы (вложенность) в справочнике dpva.ru: главная страница / / Техническая информация / / Математический справочник / / Таблицы численных значений. (Таблица квадратов, кубов, синусов ….) + Таблицы Брадиса / / Таблицы Брадиса. Значения тригонометрических, логарифмических функций. Прочее / / Таблица Брадиса тригонометрические функции sin x, cos x от аргумента в угловых градусах. Таблица Брадиса синусы-косинусы. Значения тригонометрических функций. Поделиться:
|