Подготовка школьников к ЕГЭ и ОГЭ (Справочник по математике — Алгебра
Справочник по математике | Алгебра | Уравнения, сводящиеся к квадратным уравнениям |
Существует ряд уравнений, которые удается решить при помощи сведения их к квадратным уравнениям.
К таким уравнениям, в частности, относятся уравнения следующих типов:
Трёхчленные уравнения | |
Уравнения 4-ой степени, левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии | |
Возвратные (симметричные) уравнения 3-ей степени | |
Возвратные (симметричные) уравнения 4-ой степени | |
Обобщенные возвратные уравнения 4-ой степени |
Замечание. Уравнения, носящие название «Биквадратные уравнения», относятся к типу «Трехчленные уравнения».
Возвратные (симметричные) уравнения 3-ей степени
Возвратным уравнением 3-ей степени называют уравнение вида
ax3 + bx2 + bx + a = 0, | (1) |
где a, b – заданные числа.
Решение уравнения (1) осуществляется при помощи разложения левой части уравнения (1) на множители:
Для завершения решения уравнения (1) остаётся лишь решить квадратное уравнение
ax2 + (b – a) x + a = 0.
Пример 1. Решить уравнение
2x3 + 7x2 + 7x + 2 = 0. | (2) |
Решение. Разложим левую часть уравнения (2) на множители:
Ответ:.
Возвратные (симметричные) уравнения 4-ой степени
Возвратными (симметричными) уравнениями 4-ой степени называют уравнения вида
ax4 + bx3 + cx2 + + bx + a = 0, | (3) |
а также уравнения вида
ax4 + bx3 + cx2– – bx + a = 0, | (4) |
где a, b, c – заданные числа.
Для того, чтобы решить возвратное уравнение (3), разделим его на x2. В результате получится уравнение
(5) |
Преобразуем левую часть уравнения (5):
В результате этого преобразования уравнение (5) принимает вид
(6) |
Если теперь обозначить
(7) |
то уравнение (6) станет квадратным уравнением:
ay2 + by + c – 2a = 0. | (8) |
Найдем корни уравнения (8), а после этого, подставив каждый из найденных корней в равенство (7), решим полученное уравнение относительно x.
Описание метода решения уравнений вида (3) завершено.
Для того, чтобы решить возвратное уравнение (4), разделим его на x2. В результате получится уравнение
(9) |
Преобразуем левую часть уравнения (9):
В результате этого преобразования уравнение (9) принимает вид
(10) |
Если теперь обозначить
(11) |
то уравнение (10) станет квадратным уравнением:
ay2 + by + c + 2a = 0. | (12) |
Найдем корни уравнения (13), а после этого, подставив каждый из найденных корней в равенство (11), решим полученное уравнение относительно x.
Описание метода решения уравнений вида (4) завершено.
Пример 2. Решить уравнение
2x4 – 3x3 – x2 – – 3x + 2 = 0. | (13) |
Решение. Уравнение (13) является возвратным и относится к виду (3). Разделим его на x2. В результате получится уравнение
(14) |
Преобразуем левую часть уравнения (14):
В результате этого преобразования уравнение (14) принимает вид
(15) |
Если теперь обозначить
(16) |
то уравнение (15) станет квадратным уравнением:
2y2 – 3y – 5 = 0. | (17) |
Решим уравнение (17):
(18) |
В первом случае из равенства (16) получаем уравнение:
которое решений не имеет.
Во втором случае из равенства (16) получаем:
Ответ:
Пример 3. Решить уравнение
6x4 – 25x3 + 12x2 + + 25x + 6 = 0. | (19) |
Решение. Уравнение (19) является возвратным и относится к виду (4). Разделим его на x2. В результате получится уравнение
(20) |
Преобразуем левую часть уравнения (20):
В результате этого преобразования уравнение (20) принимает вид
(21) |
Если теперь обозначить
(22) |
то уравнение (21) станет квадратным уравнением:
6y2 – 25y + 24 = 0. | (23) |
Решим уравнение (23):
(24) |
В первом случае из равенства (22) получаем:
Во втором случае из равенства (22) получаем:
Ответ:
Обобщенные возвратные уравнения 4-ой степени
Обобщенным возвратным уравнением 4-ой степени назовём уравнение вида
(25) |
где a, b, c, d – заданные числа.
Для того, чтобы решить уравнение (25), разделим его на x2. В результате получится уравнение
(26) |
Преобразуем левую часть уравнения (26):
В результате этого преобразования уравнение (26) принимает вид
Если теперь обозначить
(28) |
то уравнение (27) станет квадратным уравнением:
(29) |
Найдем корни уравнения (29), а после этого, подставив каждый из найденных корней в равенство (28), решим полученное уравнение относительно x.
Описание метода решения уравнений вида (25) завершено.
Пример 4. Решить уравнение
2x4 – 15x3 + 35x2 – – 30 x + 8 = 0. | (30) |
Решение. Введем для коэффициентов уравнения (30) следующие обозначения
a = 2 , b =– 15,
c = 35, d = – 30,
и найдем значение выражения
Поскольку
то уравнение (30) является обобщенным возвратным уравнением 4-ой степени. В соответствии с изложенным выше, разделим его на x2. В результате получится уравнение
(31) |
Преобразуем левую часть уравнения (31):
В результате этого преобразования уравнение (31) принимает вид
(32) |
Если теперь обозначить
(33) |
то уравнение (32) станет квадратным уравнением:
2y2 – 15y + 27 = 0. 2 + b*x + c = 0,где x- переменная, a,b,c – константы; a<>0. Задача состоит в отыскании корней уравнения.Геометрический смысл квадратного уравненияГрафиком функции, которая представлена квадратным уравнением является парабола. Решения (корни) квадратного уравнения — это точки пересечения параболы с осью абсцисс (х). Из этого следует, что есть три возможных случая: 2) парабола имеет одну точку пересечения с осью Ох. Такую точку называют вершиной параболы, а квадратное уравнение в ней приобретает свое минимальное или максимальное значение. В этом случае квадратное уравнение имеет один действительный корень (или два одинаковых корня). 3) Последний случай на практике интересный больше — существует две точки пересечения параболы с осью абсцисс. 2 и осуществим преобразование Отсюда находим Формула дискриминанта и корней квадратного уравненияДискриминантом называют значение подкоренного выраженияЕсли он положительный то уравнение имеет два действительных корня, вычисляемые по формулеПри нулевом дискриминант квадратное уравнение имеет одно решение (два совпадающих корня), которые легко получить из приведенной выше формулы при D=0При отрицательном дискриминант уравнения действительных корней нет. Однако исують решения квадратного уравнения в комплексной плоскости, и их значение вычисляют по формуле Теорема ВиетаРассмотрим два корня квадратного уравнения и построим на их основе квадратное уравнение.С записи легко следует сама теорема Виета: если имеем квадратное уравнение видато сумма его корней равна коэффициенту p, взятому с противоположным знаком, а произведение корней уравнения равен свободному слагаемому q. Формульная запись вышесказанного будет иметь видЕсли в классическом уравнении константа а отлична от нуля, то нужно разделить на нее все уравнение, а затем применять теорему Виета. 2+x-6=0. Решение: В случаях когда есть малые коэффициенты при х целесообразно применять теорему Виета. По ее условию получаем два уравнения
Задача 5. Найти длины сторон прямоугольника, если его периметр 18 см, а площадь 77 см2. Решение: Половина периметра прямоугольника равна сумме соседних сторон. Обозначим х – большую сторону, тогда 18-x меньшая его сторона. Площадь прямоугольника равна произведению этих длин:
Задача 6. Разложить квадратное 10x2-11x+3=0 уравнения на множители. Решение: Вычислим корни уравнения, для этого находим дискриминант Квадратное уравнение с параметромПример 1. При каких значениях параметра а, уравнение (а-3)х2+(3-а)х-1/4=0 имеет один корень? Решение: Прямой подстановкой значения а=3 видим, что оно не имеет решения. Далее воспользуемся тем, что при нулевом дискриминанте уравнение имеет один корень кратности 2. Выпишем дискриминант Решение:Рассмотрим сначала особые точки, ими будут значения а=0 и а=-3. При а=0 уравнение упростится до вида 6х-9=0; х=3/2 и будет один корень. При а= -3 получим тождество 0=0. уравнений с бесконечными решениями (6 примеров и пояснений) — JDM EducationalРешая уравнение, мы можем обнаружить, что решения нет, есть одно решение, несколько решений или бесконечное количество решений (мы также можем сказать «бесконечно много решений») . Полезно знать, как выглядят некоторые из них, чтобы вы могли узнать их в случае, если вы столкнетесь с ними. Итак, какие есть уравнения с бесконечными решениями? Некоторые уравнения с тригонометрическими функциями (например, sin(x) = 0) имеют бесконечно много решений. Есть некоторые уравнения с одной переменной (типа (x+1) 2 = х 2 + 2х + 1), которые имеют бесконечно много решений. Существуют также уравнения с двумя или более переменными (например, x = y), которые имеют бесконечно много решений. Конечно, существует множество уравнений с бесконечными решениями — приведенные выше лишь несколько примеров. В этой статье мы поговорим о том, что означает, что уравнение имеет бесконечные решения. Мы также рассмотрим несколько примеров и объясним, почему в этих случаях существует бесконечное число решений. Начнем. Уравнения с бесконечными решениямиСуществуют некоторые общие признаки того, что уравнение может иметь бесконечные решения. Например:
*Примечание: когда мы говорим, что уравнение имеет бесконечные решения (или бесконечно много решений), мы не имеем в виду, что ∞ является решением уравнения. Мы имеем в виду, что существует неограниченное число решений уравнения (каждое решение — конечное число). Теперь давайте рассмотрим несколько примеров уравнений с бесконечными решениями, а также объяснение каждого из них. Использование квадратных корней Пожалуйста, включите JavaScript Использование квадратных корней Пример 1. Уравнение с одной переменной с бесконечным числом решенийРассмотрим следующее уравнение с одной переменной:
Нам нужно будет выполнить некоторую работу (используя FOIL и комбинируя подобные термины), чтобы увидеть, существуют ли бесконечные решения:
Это последнее утверждение всегда истинно, независимо от того, какое значение x мы выбираем. Итак, исходное уравнение имеет бесконечное число решений — подойдет любое реальное значение x! Пример 2. Уравнение с двумя переменными и бесконечным числом решенийРассмотрим следующее уравнение с двумя переменными:
У этого уравнения бесконечно много решений. . В этом случае мы можем выбрать любое реальное значение x и найти y, подставив выбранное значение x в уравнение. Например:
График ниже показано множество решений (парабола, которая является графиком квадратного). График квадратного уравнения y = 2x 2 – 5x + 1, имеющего бесконечно много решений.Пример 3. Уравнение с тремя переменными с бесконечным числом решенийРассмотрим следующее уравнение с двумя переменными:
У этого уравнения бесконечно много решений. В этом случае мы можем выбрать любое действительное значение для x и любое действительное значение для y и найти z, подставив выбранные нами значения x и y в уравнение. Например:
График уравнения z = x + y будет представлять собой целую плоскость при отображении в 3D космос. Плоскость (например, z = x + y) отображается в трехмерном пространстве. У уравнения z = x + y есть бесконечные решения.Пример 4. Уравнение с тригонометрическими функциями с бесконечным числом решенийРассмотрим следующее уравнение с тригонометрической функцией:
Поскольку k может быть любым целым числом, существуют бесконечно много решений уравнения. Ниже вы можете увидеть график, показывающий некоторые точки пересечения y = 2sin(x) и y = 1. Здесь показаны некоторые решения уравнения 2sin(x) = 1. Синяя кривая — часть графика y = 2sin(x), а красная линия — горизонтальная линия y = 1. Решения уравнения бесконечны. уравнение 2sin(x) = 1,Обратите внимание, что шаблон того же типа будет иметь место для любой периодической функции (синуса, косинуса и т. д.) Пример 5. Уравнение с триггерными функциями с бесконечным числом решенийРассмотрим следующее уравнение с тригонометрической функцией:
Поскольку k может быть любым целым числом, у уравнения существует бесконечно много решений. Ниже вы можете увидеть график, показывающий некоторые точки пересечения y = cos(x) и y = 1. Здесь показаны некоторые решения уравнения cos(x) = 1. Синяя кривая — часть графика y = cos(x), а красная линия — горизонтальная линия y = 1. Существует бесконечное количество решений уравнения уравнение cos(x) = 1.Пример 6. Уравнение с тригонометрическими функциями с бесконечным числом решенийРассмотрим следующее уравнение с тригонометрической функцией:
Это происходит, когда x = (8k+1)π/4 и x = (8k+5)π/4 для каждого целого числа k. *Примечание: поскольку мы делили на cos(x), мы должны проверить случай, когда cos(x) = 0, что имеет место, когда x = kπ/2 для каждого k. В этом случае sin(x) равен 1, что не равно 0. Поскольку k может быть любым целым числом, у уравнения существует бесконечно много решений. Ниже вы можете увидеть график, показывающий некоторые точки пересечения y = cos(x) и y = 1. Здесь показаны некоторые решения уравнения sin(x) = cos(x). Синяя кривая является частью графика y = sin(x), а красная линия является частью графика y = cos(x). У уравнения sin(x) = cos(x) есть бесконечные решения.ЗаключениеТеперь вы знаете о некоторых уравнениях, имеющих бесконечные решения, и о том, как они выглядят. Чтобы узнать больше о системах линейных уравнений с бесконечными решениями, ознакомьтесь с этой статьей. Надеюсь, эта статья оказалась вам полезной. Если это так, пожалуйста, поделитесь ею с теми, кто может использовать эту информацию. Не забудьте подписаться на наш канал YouTube и получать обновления о новых математических видео! Подпишитесь на наш канал на YouTube! Решения линейного уравнения | КалькуляторРешения линейного уравнения относятся к набору значений переменных в линейных уравнениях, дающих все возможные решения. Линейные уравнения включают неизвестные величины в виде одной или нескольких переменных для представления реальных задач. Это помогает легко узнать стоимость, пробег, скорость, расстояние и т. Д. Мы все используем линейные уравнения в нашей повседневной жизни, не зная об этом. В этом уроке мы подробно узнаем о решениях линейных уравнений, типах решений, способах их нахождения и т. д.
Каковы решения линейного уравнения?Решениями линейных уравнений являются точки, в которых линии или плоскости, представляющие линейные уравнения, пересекаются или встречаются друг с другом. Множество решений системы линейных уравнений — это множество значений переменных всех возможных решений. Например, при решении линейных уравнений можно визуализировать решение системы одновременных линейных уравнений, нарисовав 2 линейных графика и найдя точку их пересечения. Красная линия представляет все решения уравнения 1, а синяя линия — решения уравнения 2. Пересечение в единственной точке (2,4) — это решение, удовлетворяющее обоим уравнениям. Типы решений линейных уравненийСистема линейных уравнений может иметь 3 типа решений. Единственное решение системы линейных уравненийЕдинственное решение системы линейных уравнений означает, что существует только одна точка, при подстановке которой левая и правая стороны уравнения становятся равными. Линейное уравнение с одной переменной всегда имеет единственное решение. Например, 3m = 6 имеет единственное решение m = 2, для которого L.H.S = R.H.S. Точно так же для одновременных линейных уравнений с двумя переменными единственным решением является упорядоченная пара (x, y), которая удовлетворяет обоим уравнениям. Нет решенияСистема линейных уравнений не имеет решения, если не существует точки, в которой прямые пересекаются друг с другом, или графики линейных уравнений параллельны. Бесконечное множество решенийСистема линейных уравнений имеет бесконечное множество решений, если существует множество решений, состоящее из бесконечных точек, для которых левая и правая стороны уравнения становятся равными или на графике прямые линии перекрывают друг друга.Как найти решение линейного уравнения?Решения для линейных уравнений с одной переменнойРассмотрим уравнение 2x + 4 = 8
Следовательно, решение уравнения 2x + 4 = 8 равно x=2. Решения линейных уравнений с двумя переменнымиДля нахождения решений линейных уравнений с двумя переменными можно использовать следующие методы. Метод подстановки Рассмотрим следующую пару линейных уравнений, давайте решим следующие линейные уравнения. x + y = 4 и x — y = 2
Должно быть понятно, почему этот процесс называется замещением. Мы выражаем одну переменную через другую, используя одно из двух уравнений, и подставляем это выражение во второе уравнение. Метод исключения Рассмотрим следующую пару линейных уравнений: 2x + 3y — 11 = 0, 3x + 2y — 9 = 0 Коэффициенты x в двух уравнениях равны 2 и 3 соответственно. Умножим первое уравнение на 3, а второе уравнение на 2, чтобы коэффициенты при x в двух уравнениях стали равными:
Теперь вычтем два уравнения, это значит, что мы вычтем левые части двух уравнений, а правые части двух уравнений и равенство все равно сохранится. 6x + 9y — 33 = 0 ,6x + 4y — 18 = 0 0 + 5y — 15 = 0, 5y = 15, y = 3 . Получив значение y, мы действуем, как и раньше, — подставляем его в любое из двух уравнений. Подставим это в первое уравнение: 2х + 3у — 11 = 0, 2х + 3 (3) — 11 = 0, 2х + 9 — 11 = 0\, 2х = 2, х = 1 Таким образом, нетривиальное решение: x = 1, y = 3 Графический метод В качестве примера решим следующее линейное уравнение: x — y + 2 = 0, 2x + y — 5 = 0. Рисуем соответствующие линии на тех же осях: Точка пересечения (1,3), что означает, что x = 1, y = 3 является решением пары линейных уравнений, заданной (2). Фактически, это единственное решение пары , так как две непараллельные прямые не могут пересекаться более чем в одной точке. Важные примечания Вы можете напрямую проверить типы решений, используя следующие условия:
Часто задаваемые вопросы о решениях линейных уравненийКак решить систему линейных уравнений?У нас есть разные методы решения системы линейных уравнений:
Что такое уникальное решение линейного уравнения?Единственным решением системы линейных уравнений является упорядоченная пара или точка, которая делает равенство истинным в уравнении. Что произойдет, если пара линейных уравнений непротиворечива?Если пара линейных уравнений непротиворечива, то линии либо пересекаются, либо совпадают (накладываются) друг на друга. Каковы 3 решения линейных уравнений?Существует три способа решения систем линейных уравнений: замена, исключение и построение графика Как найти решение линейной системы?
Линии пересекаются в нулевых точках. Как найти решение двух линейных уравнений?Решение систем уравнений путем замены
Как решать линейные уравнения с одной переменной?
Сколько существует решений линейного уравнения 2x-5y=7?В данном уравнении 2x – 5y = 7 для каждого значения x мы получаем соответствующее значение y и наоборот. Следовательно, линейное уравнение имеет бесконечно много решений. Как найти упорядоченные парные решения линейных уравнений?Чтобы выяснить, является ли упорядоченная пара решением уравнения, вы можете выполнить тест. Определите значение x в упорядоченной паре и подставьте его в уравнение. При упрощении, если полученное вами значение y совпадает со значением y в упорядоченной паре, то эта упорядоченная пара действительно является решением уравнения. |