Вычисление объема тела с помощью двойного интеграла: Вычисление объёмов / Двойной интеграл / 3dstroyproekt.ru

5. Вычисление объёмов тел площадей плоских фигур с помощью двойного интеграла.

Вычисление объемов с помощью двойного интегралаС помощью двойного интеграла, если воспользоваться его геометрической трактовкой, можно вычислить объем цилиндроида; формула для вычисления объема цилиндроида имеет вид:

где функция  задает поверхность, ограничивающую цилиндроид сверху (Рис. 9)Более общая формула для вычисления объема тела с помощью двойного интеграла имеет вид:Она получается как разность объемов двух цилиндроидов (Рис. 10).Объемы других тел вычисляются двойным интегралом только в случаях, когда эти объемы представляются как сумма или разность объемов цилиндроидов.Напомним, что цилиндроидом называется геометрическое тело, которое в координатной системе XOYZ ограничено снизу областью , сверху – частью некоторой поверхности , сбоку – цилиндрической поверхностью с образующими, параллельными оси OZ.

Вычисление площади фигуры с помощью двойного интеграла.

Двойной интеграл применяется для вычисления площади плоской фигуры. f(x;y)=1 с высотой H=1. Объем такого цилиндра равен S обл. D. В полярных координатах эта формула будет иметь вид: Двойной интеграл легко вычисляется, если область D является прямоугольником. В этом случае двойной интеграл будет вычисляться через двукратный интеграл (повторный). — двукратный интеграл, где интеграл f(x;y)dy — внутренний интеграл, а интеграл dx — внешний интеграл. Пределы интегрирования внешнего интеграла всегда должны быть числами. Пределы интегрирования внутреннего интеграла могут представлять либо числа, либо функцию. Подынтегральная функция f(x;y) может разделяться на 2 переменных x и y в том случае, если представляет собой произведение или частное x и y. Если же функция представляет собой сумму или разность двух переменных x и y, то ее полностью записывают во внутренний интеграл и разделить ее нельзя. 

6.

Вычисление площадей поверхностей с помощью двойного интеграла.

Вычисление площади плоской фигурыПлощадь плоской фигуры, ограниченной областью D, находится по формуле . (105)Если область определена в прямоугольной системе координат неравенством  , то из (105) имеем . (106)Если область D определена в полярных координатах неравенством  ,  , то . (107)

Вычисление площади пространственных поверхностейЕсли гладкая однозначная поверхность задана уравнением z = f (x,y),то площадь этой поверхности выражается формулой , (108)где D есть проекция данной поверхности на плоскость хОу.Если поверхность задана уравнением x = f (yz),то для вычисления площади имеем аналогичную формулу . (109)Однако здесь D есть проекция поверхности на плоскость yOz.Аналогично, если поверхность задана уравнением y = f (x,

 z), , (110)где D – проекция поверхности на плоскость xOz.

Пусть в плоскости Oxy есть материальная пластинка, то есть некоторая область D, п о которой распределена масса с плотностью μ(x, y). Тогда:масса пластинки

.статические моменты относительно координатных осей:

,  координаты (xc, yc) центра масс пластинки:

момент инерции пластинки относительно оси Oy  относительно оси Ox  относительно начала координат 

Объем цилиндрического тела. Двойной интеграл. (Лекция 2.1)

1. Лекция 2.1 9 ДВОЙНЫЕ ИНТЕГРАЛЫ. 9.1 Объем цилиндрического тела. Двойной интеграл.

z
y
D
z = z ( x, y ) ³ 0
x
Цилиндрическим телом называется тело,
ограниченное замкнутой областью D плоскости Oxy,
поверхностью z=z(x,y), где z=z(x,y) непрерывна и
неотрицательна в области D и цилиндрической
поверхностью с образующей параллельной оси Oz и
направляющей – границей области D.

2. Разобьем область D на n произвольных частичных областей (k(1,…,n)).

Разобьем область D на n произвольных частичных
областей Ds k (k (1,…,n)).
Ds k
y
( xk , yk )
D
x
Выберем в каждой из частичных областей произвольную точку с
(
)
координатами xk , yk . Объем цилиндрического тела между
опорной плоскостью Oxy и поверхностью z=z(x,y) над частичной
областью Ds k равен DVk » z xk , yk Ds k
. Объем всего
цилиндрического тела равен
(
n
n
k =1
k =1
)
V = å DVk » å z ( xk , yk ) Dsk

Устремим наибольший диаметр частичных областей
max diam ( Dsk ) ® 0 , n ® ¥
Ds k
и рассмотрим предел интегральной суммы
к нулю, при этом
n
lim
max diam( Dsk
n®¥
z ( xk , yk ) Dsk
å
) ®0
k =1
Если этот предел существует, то очевидно, что
V=
n
lim
max diam( Dsk
n®¥
z ( xk , yk ) Dsk
å
) ®0
k =1

4. Определение.

Двойным интегралом от функции z=z(x,y) по области D
называется предел, к которому стремится интегральная
сумма при стремлении к нулю наибольшего диаметра
частичных областей
n
lim
max diam( Dsk
n ®¥
z ( xk , yk ) Dsk = òò z ( x, y ) d s
å
) ®0
k =1
D
z ( x, y ) ds
– подынтегральное выражение;
z(x,y) – подынтегральная функция;
ds — элемент (дифференциал) площади;
D – область интегрирования.
Таким образом, V = z ( x, y ) d s
òò
D

5. Теорема существования двойного интеграла.

Если z(x,y) непрерывна в замкнутой
ограниченной области D, то ее интегральная
сумма стремится к пределу при стремлении к
нулю наибольшего диаметра частичных
областей. Этот предел не зависит от способа
разбиения области на частичные области Ds k
и выбора в них точек ( xk , yk ) .

6. 9.2 Свойства двойных интегралов.

1)
D
òò ( z1 ( x, y ) ± … ± zn ( x, y ) ) d s = òò z1 ( x, y ) d s ± … ± òò zn ( x, y ) d s
2)
D
òò cz ( x, y ) d s = c òò z ( x, y ) d s
D
D
D
3) D = D1 U D2 , D1 I D2 = Æ .
Тогда
òò z ( x, y ) d s = òò z ( x, y ) d s + òò z ( x, y ) d s
D
D1
D2

7. Свойства двойных интегралов.

4) Если (x,y) D z1 ( x, y ) ³ z2 ( x, y )
то
òò z1 ( x, y ) d s ³ òò z2 ( x, y ) d s
D
D
D
5) Если m = zвнаим
, M = zвнаиб
mS £ òò z ( x, y ) d s £ MS
то
D
6)
z ( x, y ) d s = z ( x, h) S , ( x, h) D
òò
D
D
z ( x, h )
,
, где S = òò d s .
D
— среднее значение z в области D.

8. 9.3 Вычисление двойных интегралов.

Разобьем область D с помощью линий,
параллельных осям координат
с шагом dx и dy соответственно.
Тогда d s = dxdyи, следовательно,
y
ds
D
òò z ( x, y ) d s = òò z ( x, y ) dxdy.
D
D
При вычислении двойного интеграла будем использовать
b
формулу
V = ò S ( x ) dx,
(9.1)
a
где
— площадь поперечного
сечения тела плоскостью
S ( x)
x=const.
Предположим, что любая прямая, параллельная осям Ox или
Oy, пересекает границу области D не более чем в двух точках.
x
y
E
d
y = y2 ( x )
B
A
c
a
z = z ( x, y )
y
z
C
y = y1 ( x )
b
S ( x) =
D
x
a
y2 ( x )
b
x
ò z ( x, y ) dy
y1( x )
• Здесь при вычислении интеграла по dy считается,
чтоö x –
b æ y2 ( x )
постоянная.
z ( x, y ) dy ÷ dx =
V = z ( x, y ) dxdy = ç
• Согласно (9. 1)
y2 ( x )
b получим:
= ò dx
a
ò z ( x, y ) dy
y1( x )
òò
D
.
òç ò
a è y1( x )
÷
ø
(9.2)
• Изменив порядок интегрирования, аналогично
получим
d
x2 ( y )
c
x1( y )
òò z ( x, y ) dxdy = ò dy ò z ( x, y ) dx
D
.
(9.3)
• Правые части формул (9.2) и(9.3) называются
повторными (или двухкратными) интегралами.
• Процесс расстановки пределов интегрирования
называется приведением двойного интеграла к
повторному.

11. Примеры:

1)
y
d
D
c
x
a
b
b
d
d
b
a
c
c
a
òò z ( x, y ) dxdy = ò dx ò z ( x, y ) dy = ò dy ò z ( x, y ) dx
D
y
y=x
a
y=0
x=a
x
a
a
x
a
a
0
0
0
y
òò z ( x, y ) dxdy = ò dx ò z ( x, y ) dy = ò dy ò z ( x, y ) dx
D
y
1
y = x2
x+ y =2
y=0
x
2
1
1
x2
2
2- x
1
2- y
0
0
1
0
0
y
òò z ( x, y ) dxdy = ò dx ò z ( x, y ) dy + ò dx ò z ( x, y ) dy = ò dy ò z ( x, y ) dx
D
y
y = y2 ( x )
y = y1 ( x )
a
b
x
b
y2 ( x )
a
y1( x )
òò z ( x, y ) dxdy = ò dx ò z ( x, y ) dy
D
y
d
c
.
x = x1 ( y )
x = x2 ( y )
x
d
x2 ( y )
c
x1( y )
òò z ( x, y ) dxdy = ò dy ò z ( x, y ) dx
D
y
D1
D = D1 + D2 + D3
D2
D3
x
òò z ( x, y ) dxdy =
D
= òò z ( x, y ) dxdy +
D1
òò z ( x, y ) dxdy + òò z ( x, y ) dxdy
D2
D3

интегрирование — Расчет объема тела, окруженного поверхностями (двойной интеграл)

Задавать вопрос

спросил

Изменено 2 года, 10 месяцев назад

Просмотрено 221 раз

92=9$; (цилиндр)

$x+y+z=10$;

$z=0$

Моей первой задачей является построение проекции тела на плоскость $0_{xy}$, которая является окружностью с R=3

Затем я должен построить систему неравенств для описания $D$ На данный момент я не могу понять, должен ли я преобразовывать в полярные координаты, что дает мне $$ D=\влево\{ \начать{массив}{с} 0⩽r⩽3 \\ 0⩽θ⩽π \\ \конец{массив} \Правильно. $$

Или

Используйте декартовы координаты. Я просматривал подобные вопросы и видел, как объем цилиндра решается как с помощью декартовых, так и полярных координат. 93rddr=90\pi$$

$\endgroup$

4

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *